J. Mater. Sci. Technol. ›› 2022, Vol. 126: 106-115.DOI: 10.1016/j.jmst.2022.03.014
Special Issue: Composites 2022
• Research Article • Previous Articles Next Articles
Zhi Zhao(), Fawei Tang, Chao Hou, Xintao Huang, Xiaoyan Song(
)
Accepted:
2022-04-21
Published:
2022-11-01
Online:
2022-11-10
Contact:
Zhi Zhao,Xiaoyan Song
About author:
xysong@bjut.edu.cn (X. Song).Zhi Zhao, Fawei Tang, Chao Hou, Xintao Huang, Xiaoyan Song. Uncover the mystery of interfacial interactions in immiscible composites by spectroscopic microscopy: A case study with W-Cu[J]. J. Mater. Sci. Technol., 2022, 126: 106-115.
Fig. 1. Optical images of various samples. (a) Scheme of the spectroscopic microscopy. (b) Representative bright field image of W powders (1-5 µm in diameter). (c) Dark field image of the same sample in (b). (d) Representative bright field image of Cu powders (500 nm in diameter). (e) Dark field image of the same sample in (d). (f) Representative bright field image of a W-Cu composite. (g) Dark field image of the same sample in (f). (h) A comparison between the optical and SEM images of a W-Cu sample. Scale bars: 2 µm.
Fig. 2. Spectral characterizations of W and Cu powders. (a) BF spectra of W powders of various diameters. (b) DF spectra of W powders of various diameters. (c) BF spectra of Cu powders of various diameters. (d) DF spectra of Cu powders of various diameters. The dashed lines indicate the peak position of each band in the spectra. The grey zones in the plots represent the range of WI and CuI bands.
Fig. 3. Experimental and simulated spectra of W-Cu composites. (a) Scheme of three potential situations at W-Cu interfaces. (b) BF of a W-Cu sample. (c) DF spectrum of a W-Cu sample. (d) The calculated RN value as a function of experimental W and Cu BF spectra for sample 1. The minimum RN value is marked by the red circle. (e) The calculated RN value as a function of experimental W and Cu DF spectra for sample 1. The minimum RN value is marked by the red circle. (f) The experimental and simulated W-Cu BF spectrum with the minimum RN. (g) The experimental and simulated W-Cu DF spectrum with the minimum RN.
Sample | W diameter (Optical) | W diameter (SEM) | Cu diameter (optical) | Cu diameter (SEM) | W(Actual) | W(Fitted) | Conductivity(% IACS) |
---|---|---|---|---|---|---|---|
S1 | 25 µm | 170 nm | 1 µm | <170 nm | 58 at.% | 58 at.% | 31% |
S2 | 25 µm | 800 nm | 1 µm | <800 nm | 58 at.% | 59 at.% | 33% |
S3 | 46 µm | 2.4 µm | 1 µm | <2 µm | 58 at.% | 57 at.% | 32% |
S4 | 25 µm | 200 nm | 74 µm | <200 nm | 45 at.% | 46 at.% | 43% |
Table 1. Critical parameters of a few W-Cu samples from experiments and spectral fittings.
Sample | W diameter (Optical) | W diameter (SEM) | Cu diameter (optical) | Cu diameter (SEM) | W(Actual) | W(Fitted) | Conductivity(% IACS) |
---|---|---|---|---|---|---|---|
S1 | 25 µm | 170 nm | 1 µm | <170 nm | 58 at.% | 58 at.% | 31% |
S2 | 25 µm | 800 nm | 1 µm | <800 nm | 58 at.% | 59 at.% | 33% |
S3 | 46 µm | 2.4 µm | 1 µm | <2 µm | 58 at.% | 57 at.% | 32% |
S4 | 25 µm | 200 nm | 74 µm | <200 nm | 45 at.% | 46 at.% | 43% |
Fig. 4. Spectral evidence of interactions between W and Cu. (a) Experimental and simulated DF/BF spectra of W-Cu samples. (b) Time lapse vis-NIR spectra of Cu solution incubated with W powder. (c) DF image of W powders after incubation with Cu(II) solution. (d) Magnified BF images of representative regions containing copper crystals. Scale bars: 10 µm. (e) DF/BF spectra of regions containing copper crystals. The red dashed line is at 527 nm.
Fig. 5. Crystallographic characterizations of W-Cu interactions. (a) TEM image of W particles coated by a thin layer of copper. Inset: A low magnification image of connected W particles. (b) HR-TEM image of a W-Cu boundary in (a). (c) Selected area diffraction pattern of the W side in (b). (d) EDS elemental mapping at the W-Cu boundary. The yellow and purple color represent W and Cu, respectively. (e) TEM image of a copper crystal found in optical microscope. (f) Selected area diffraction pattern of the green-circled region in (e). (g) Selected area diffraction pattern of the yellow-circled region in (e). (h) HR-TEM image of W-Cu boundary in (e). (i, j) HR-TEM image of the representative crystallographic morphology of W that supports Cu crystal growth. (k) HR-TEM image of a W-W-Cu triple junction.
Fig. 6. First-principle study on W-Cu bonding. (a) The boundary structure of W(110)/Cu(200) before and after relaxation. (b) The boundary structure of W(110)-d/Cu(200) before and after relaxation. (c) The LCD plot of the yellow-boxed region in (a). (d) The LCDD plot of the yellow-boxed region in (a) and LCDD of selected regions. (e) The LCD plot of the yellow-boxed region in (b). (f) The LCDD plot of the yellow-boxed region in (b). (g) LDOS of the yellow boxed regions in (a) and (b). The purple dashed line indicates the Fermi energy level.
[1] | A.K. Bhalla, J.D. Williams, Powder Metall, 19 (1976), pp. 31-37. |
[2] | B. Curzadd, A. Von Müller, R. Neu, U. Von Toussaint, Nucl. Fusion, 59 (2019), Article 086003. |
[3] | R.M. German, K.F. Hens, J.L. Johnson, Int. J. Powder Met., 30 (1994), pp. 205-215. |
[4] | L.L. Dong, M. Ahangarkani, W.G. Chen, Y.S. Zhang, Int. J. Refract. Hard Met., 75 (2018), pp. 30-42. |
[5] | M.P. Echlin, A. Mottura, M. Wang, P.J. Mignone, D.P. Riley, G.V. Franks, T.M. Pollock, Acta Mater, 64 (2014), pp. 307-315. |
[6] | C. Hou, L. Cao, Y. Li, Tang F, X. Song, Nanotechnology, 31 (2019), Article 084003. |
[7] | O. El-Atwani, J.A. Hinks, G. Greaves, S. Gonderman, T. Qiu, M. Efe, J.P. Allain, Sci. Rep., 4 (2014), pp. 1-7. |
[8] | H.D. Espinosa, R.A. Bernal, T. Filleter, Small, 8 (2012), pp. 3233-3252. |
[9] | W. Wu, C. Hou, L. Cao, X. Liu, H. Wang, H. Lu, X. Song, Nanotechnology, 31 (2020), Article 135704. |
[10] | Y. Li, C. Hou, H. Lu, S. Liang, X. Song, Int. J. Refract. Hard Met., 79 (2019), pp. 154-157. |
[11] | C. Hou, X. Song, F. Tang, Y. Li, L. Cao, J. Wang, Z. Nie, NPG Asia Mater, 11 (2019), pp. 1-20. |
[12] | H. Zhang, W.C. Cao, C.Y. Bu, K. He, K.C. Chou, G.H. Zhang, Int. J. Refract. Hard Met., 88 (2020), Article 105194. |
[13] | S. Liang, L. Chen, Z. Yuan, Y. Li, J. Zou, P. Xiao, L. Zhuo, Mater. Charact., 110 (2015), pp. 33-38. |
[14] | Y. Zhang, L. Zhuo, Z. Zhao, Q. Zhang, J. Zhang, S. Liang, B. Luo, Q. Chen, H. Wang, J. Alloys Compd., 823 (2020), Article 153761. |
[15] | Q. Zhang, S. Liang, B. Hou, L. Zhuo, Int. J. Refract. Hard Met., 59 (2016), pp. 87-92. |
[16] | K. Zhou, W.G. Chen, J.J. Wang, G.Y. Yan, Y.Q. Fu, Int. J. Refract. Hard Met., 82 (2019), pp. 91-99. |
[17] | J.L. Johnson, J.J. Brezovsky, R.M. German, Metall. Mater. Trans. A, 36 (2005), pp. 1557-1565. |
[18] | J.L. Johnson, J.J. Brezovsky, R.M. German, Metall. Mater. Trans. A, 36 (2005), pp. 2807-2814. |
[19] | W. Chen, L. Dong, H. Zhang, J. Song, N. Deng, J. Wang, Mater. Lett., 205 (2017), pp. 198-201. |
[20] | P. Zhao, S. Guo, G. Liu, Y. Chen, J. Li, J. Alloys. Compd., 601 (2014), pp. 289-292. |
[21] | J. Zhang, Y. Huang, Y. Liu, Z. Wang, Mater. Des., 137 (2018), pp. 473-480. |
[22] | P. Villain, P. Goudeau, P.O. Renault, K.F. Badawi, Appl. Phys. Lett., 81 (2002), pp. 4365-4367. |
[23] | P. Goudeau, P. Villain, T. Girardeau, P.O. Renault, K.F. Badawi, Scr. Mater., 50 (2004), pp. 723-727. |
[24] | Y. Gai, F. Tang, C. Hou, H. Lu, X. Song, Acta. Metall. Sin., 56 (2020), pp. 1036-1046. |
[25] | M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, J. Phys-Condens. Ma., 14 (2002), pp. 2717-2744. |
[26] | M.Y. Wang, W. Wang, M. Ji, X.L. Cheng, Appl. Surf. Sci., 439 (2018), pp. 350-363. |
[27] | P. Basumatary, D. Konwar, Y.S. Yoon, Appl. Catal. B-Environ., 267 (2020), Article 118724. |
[28] | X.B. Wu, Y.W. You, X.S. Kong, J.L. Chen, G.N. Luo, G.H. Lu, C.S. Liu, Z.G. Wang, Acta Mater, 120 (2016), pp. 315-326. |
[29] | B. Ohler, S. Prada, G. Pacchioni, W. Langel, J. Phys. Chem. C, 117 (2013), pp. 358-367. |
[30] | M. Minissale, C. Pardanaud, R. Bisson, L. Gallais, J. Phys. D Appl. Phys., 50 (2017), Article 455601. |
[31] | P.F. Robusto, R. Braunstein, Phys. Status Solidi. B, 107 (1981), pp. 443-449. |
[32] | D.B. Pedersen, S. Wang, J. Phys. Chem. C, 111 (2007), pp. 17493-17499. |
[33] | T. Svensson, E. Adolfsson, M. Lewander, C.T. Xu, S. Svanberg, Phys. Rev. Lett., 107 (2011), Article 143901. |
[34] | A. Penttilä, K. Lumme, J. Quant. Spectrosc. Radiat. Transfer., 110 (2009), pp. 1993-2001. |
[35] | J.L. McHale, Molecular spectroscopy CRC Press, Boca Raton (2017). |
[36] | V. Amendola, R. Pilot, M. Frasconi, O.M. Maragò, M.A. Iatì, J. Phys. Condens. Matter., 29 (2017), Article 203002. |
[37] | Z. Zhao, Y. Cao, Y. Cai, J. Yang, X. He, P. Nordlander, P.S. Cremer, ACS Nano, 11 (2017), pp. 6594-6604. |
[38] | J. Singleton, Band theory and electronic properties of solids Oxford University Press, Oxford (2001). |
[39] | J.G. Speight, Lange's handbook of chemistry McGraw-Hill Education, New York (2017). |
[40] | L. Wang, L. Xu, C. Srinivasakannan, S. Koppala, Z. Han, H. Xia, J. Alloys. Compd., 764 (2018), pp. 177-185. |
[41] | Y.S. Kim, D.L. Bae, H. Yang, H.S. Shin, G.W. Wang, J.J. Senkevich, T.M. Lu, J. Electrochem. Soc., 152 (2005), p. C89. |
[42] | R.S. Mulliken, I. J. Chem. Phys., 23 (1955), pp. 1833-1840. |
[1] | Junxiong Xiao, Xiaosi Qi, Xiu Gong, Qiong Peng, Yanli Chen, Ren Xie, Wei Zhong. Tunable and improved microwave absorption of flower-like core@shell MFe2O4@MoS2 (M = Mn, Ni and Zn) nanocomposites by defect and interface engineering [J]. J. Mater. Sci. Technol., 2023, 139(0): 137-146. |
[2] | Melody M. Wang, Mehrdad T. Kiani, Abhinav Parakh, Yue Jiang, X. Wendy Gu. Effect of grain size on iron-boride nanoglasses [J]. J. Mater. Sci. Technol., 2023, 141(0): 116-123. |
[3] | Qun Luo, Xingrui Li, Qian Li, Lingyang Yuan, Liming Peng, Fusheng Pan, Wenjiang Ding. Achieving grain refinement of α-Al and Si modification simultaneously by La‒B‒Sr addition in Al‒10Si alloys [J]. J. Mater. Sci. Technol., 2023, 135(0): 97-110. |
[4] | Qianxing Yin, Guoqing Chen, Xi Shu, Binggang Zhang, Chun Li, Zhibo Dong, Jian Cao, Rong An, Yongxian Huang. Analysis of interaction between dislocation and interface of aluminum matrix/second phase from electronic behavior [J]. J. Mater. Sci. Technol., 2023, 136(0): 78-90. |
[5] | Hongru Zhou, Jun Ke, Desheng Xu, Jie Liu. MnWO4 nanorods embedded into amorphous MoSx microsheets in 2D/1D MoSx/MnWO4 S-scheme heterojunction for visible-light photocatalytic water oxidation [J]. J. Mater. Sci. Technol., 2023, 136(0): 169-179. |
[6] | Hui-Ya Wang, Xiao-Bo Sun, Yue Xin, Shu-Hao Yang, Peng-Fei Hu, Guang-Sheng Wang. Ultrathin self-assembly MXene/Co-based bimetallic oxide heterostructures as superior and modulated microwave absorber [J]. J. Mater. Sci. Technol., 2023, 134(0): 132-141. |
[7] | Haibin Ma, Xuejing Yang, Zhili Wang, Qing Jiang. Engineering the interface of porous CoMoO3 nanosheets with Co3Mo nanoparticles for high-performance electrochemical overall water splitting [J]. J. Mater. Sci. Technol., 2023, 137(0): 184-192. |
[8] | F. Wang, L.M. Lei, X. Fu, L. Shi, X.M. Luo, Z.M. Song, G.P. Zhang. Toward developing Ti alloys with high fatigue crack growth resistance by additive manufacturing [J]. J. Mater. Sci. Technol., 2023, 132(0): 166-178. |
[9] | Xingpu Zhang, Zhongkang Han, Liangliang Xu, Haohan Ni, Xiaojuan Hu, Haofei Zhou, Yu Zou, Jiangwei Wang. Evolution of precipitate and precipitate/matrix interface in Al-Zn-Mg-Cu (-Ag) alloys [J]. J. Mater. Sci. Technol., 2023, 138(0): 157-170. |
[10] | Fanjin Yao, Guoqiang You, Sheng Zeng, Dashi Lu, Yue Ming. Reaction-tunable diffusion bonding to multilayered Cu mesh/ZK61 Mg foil composites with thermal conductivity and lightweight synergy [J]. J. Mater. Sci. Technol., 2023, 139(0): 10-22. |
[11] | Junjie Zhao, ChuanSong Wu, Lei Shi, Hao Su. Evolution of microstructures and intermetallic compounds at bonding interface in friction stir welding of dissimilar Al/Mg alloys with/without ultrasonic assistance [J]. J. Mater. Sci. Technol., 2023, 139(0): 31-46. |
[12] | Peihao Geng, Ninshu Ma, Hong Ma, Yunwu Ma, Kazuki Murakami, Huihong Liu, Yasuhiro Aoki, Hidetoshi Fujii. Flat friction spot joining of aluminum alloy to carbon fiber reinforced polymer sheets: Experiment and simulation [J]. J. Mater. Sci. Technol., 2022, 107(0): 266-289. |
[13] | Zhuang Tang, Kai Ning, Zhiyao Fu, Ze Lian, Kangning Wu, Shoudao Huang. Significantly enhanced varistor properties of CaCu3Ti4O12 based ceramics by designing superior grain boundary: Deepening and broadening interface states [J]. J. Mater. Sci. Technol., 2022, 108(0): 82-89. |
[14] | Zhong Zheng, Xuexi Zhang, Mingfang Qian, Jianchao Li, Muhammad Imran, Lin Geng. Ultra-high strength GNP/2024Al composite via thermomechanical treatment [J]. J. Mater. Sci. Technol., 2022, 108(0): 164-172. |
[15] | Sen Yu, Zhe Yu, Dagang Guo, Hui Zhu, Minghua Zhang, Jianye Han, Zhentao Yu, Yemin Cao, Gui Wang. Enhanced bioactivity and interfacial bonding strength of Ti3Zr2Sn3Mo25Nb alloy through graded porosity and surface bioactivation [J]. J. Mater. Sci. Technol., 2022, 100(0): 137-149. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||