J. Mater. Sci. Technol. ›› 2022, Vol. 126: 93-105.DOI: 10.1016/j.jmst.2022.02.042
Special Issue: Ti-based alloys 2022
• Research Article • Previous Articles Next Articles
Ying Zhanga, Dongsheng Lia,*(), Xiaoqiang Lia, Xiaochun Liub, Shiteng Zhaoc, Yong Lia
Received:
2021-12-23
Revised:
2022-02-12
Accepted:
2022-02-22
Published:
2022-11-01
Online:
2022-11-10
Contact:
Dongsheng Li
About author:
*E-mail address: lidongs@buaa.edu.cn (D. Li).Ying Zhang, Dongsheng Li, Xiaoqiang Li, Xiaochun Liu, Shiteng Zhao, Yong Li. Creep deformation and strength evolution mechanisms of a Ti-6Al-4V alloy during stress relaxation at elevated temperatures from elastic to plastic loading[J]. J. Mater. Sci. Technol., 2022, 126: 93-105.
Fig. 1. (a) Schematic of the thermomechanical history of the as-received material with illustrated microstructures and the subsequent experimental plan, (b) the specimen dimension of SR and tensile experiments. (Unit: mm).
Temperature (°C) | Initial strain | Time (s) | ||||
---|---|---|---|---|---|---|
Empty Cell | Elastic region | Plastic region | Empty Cell | |||
700 | 0.3% | 0.5% | 1.5% | 4% | 10% | 0, 1200, 2400 |
750 | 0.3% | 0.5% | 1.5% | 4% | 10% | 0, 2400 |
800 | 0.3% | 0.5% | 1.5% | 4% | 10% | 0, 1200, 2400 |
850 | 0.3% | 0.5% | 1.5% | 4% | 10% | 0, 2400 |
Table 1. The plan of SR tests.
Temperature (°C) | Initial strain | Time (s) | ||||
---|---|---|---|---|---|---|
Empty Cell | Elastic region | Plastic region | Empty Cell | |||
700 | 0.3% | 0.5% | 1.5% | 4% | 10% | 0, 1200, 2400 |
750 | 0.3% | 0.5% | 1.5% | 4% | 10% | 0, 2400 |
800 | 0.3% | 0.5% | 1.5% | 4% | 10% | 0, 1200, 2400 |
850 | 0.3% | 0.5% | 1.5% | 4% | 10% | 0, 2400 |
Fig. 2. (a) SR curves with different initial strain levels at four temperatures, (b) variations of relaxed stress percentage, defined by the ratio of the total relaxed stress to the initial stress, with initial strain levels at 700 °C and 800 °C, which are derived from the SR experimental results of 2400 s.
Fig. 3. (a) Evolution of the YS of Ti-6Al-4V during the whole SR, (The hollow symbols indicate elastic strain and the solid symbols indicate plastic strain.) and (b) YS loss in different stages of the whole SR. (The percentage is defined as the strength loss at the current stage divided by the YS of as-received material.).
Fig. 4. Microstructural evolution in Ti-6Al-4V alloy from SEM observations, (a) as-received state, (b) after SR at 700 °C/10%, (c) after loading at 800 °C/0.5%, (d) after SR at 800 °C/0.5%, (e) after loading at 800 °C/10%, (f) after SR at 800 °C/10%.
Fig. 6. (a) KAM map at 700 °C/10%/0s, (b) GND map at 700 °C/10%/0s and (c) Evolution of GND density during SR for different temperatures and initial strain levels.
Fig. 7. Orientation map for samples with different SR conditions, (a) as-received, (b) 800 °C/0.5%/2400 s, (c) 800 °C /10%/1200 s, (d)-(f) the development of misorientation curves along the line direction. (PTP, point to point, represents adjacent misorientations, and PTO, point to origin, represents cumulative misorientations.).
Fig. 10. HRTEM characterization of Ti-6Al-4V alloy, (a) HRTEM image of lamellar structure, (b) and (c) are the atomic images of α and β phases, respectively, (d) and (e) are the inverse fast Fourier transform (IFFT) images of α and β phases, respectively, (f) magnified image of two-phase interface in frame Ⅲ, (g) the IFFT images in frame Ⅲ, (h) magnified image of two-phase interface in frameⅣand (i) IFFT image of yellow frame in (g) filtered, showing the dislocations at the interface.
Fig. 11. Characterization of dislocation morphology and phase structure, (a) TEM image of dislocation at 700 °C/0.5%/0 s, (b) TEM image of fractured β phase and dislocation at 700 °C/10%/200 s, (c)-(e) two-beam images using three imaging conditions of g=[0002], g=[11¯01] and g=[11¯00], respectively, (f) dislocation slip induced micro-shear banding and fragmentation of β phase, (g)-(i) the elemental distribution of Al, V and Ti after 700 °C/10%/200 s, respectively.
Fig. 12. Evolution of the GND gradient as indicated by the yellow arrow in (d)-(f) with different relaxation times, (a)-(c) secondary electron image, (d)-(f) GND distribution, (g)-(i) the GND curves along arrow scan in the same colony.
Fig. 13. The development of the stress exponent with different initial strain levels during SR. (The hollow symbols indicate elastic strain and the solid symbols indicate plastic strain.).
Fig. 14. Schematics of microstructure evolution during SR with different temperatures and initial strains. (Elastic and Plastic, respectively represent elastic and plastic loadings.) The σρ is the dislocations strength, and the σH-P is the Hall-Petch strength of interfaces. (The horizontal line represents that the strength is hardly affected by the relaxation stage; the up and down arrows represent the increase and decrease of strength, respectively.).
Symbol | Description | Magnitude |
---|---|---|
σ0 | inherent strength | 172 MPa [18] |
ky | Hall-Petch coefficient | 0.46 MPa/(m−1/2) [54] |
α | geometrical constant | 0.5 [54] |
M | Taylor factor | 5 [18] |
G | shear modulus | 44 GPa [55] |
b | the Burgers vector of α phase | 2.95×10−10 m |
lα | the width of α lamellae for as-received material | 0.81 μm |
before, after 2400 s SR at 700 °C/10% | 1.2 μm, 1.5 μm | |
before, after 2400 s SR at 800 °C/0.5% | 0.9 μm, 1.1 μm | |
before, after 2400 s SR at 800 °C/10% | 1.5 μm, 2.1 μm |
Table 2. Description, symbol and magnitude of the different parameters of the model.
Symbol | Description | Magnitude |
---|---|---|
σ0 | inherent strength | 172 MPa [18] |
ky | Hall-Petch coefficient | 0.46 MPa/(m−1/2) [54] |
α | geometrical constant | 0.5 [54] |
M | Taylor factor | 5 [18] |
G | shear modulus | 44 GPa [55] |
b | the Burgers vector of α phase | 2.95×10−10 m |
lα | the width of α lamellae for as-received material | 0.81 μm |
before, after 2400 s SR at 700 °C/10% | 1.2 μm, 1.5 μm | |
before, after 2400 s SR at 800 °C/0.5% | 0.9 μm, 1.1 μm | |
before, after 2400 s SR at 800 °C/10% | 1.5 μm, 2.1 μm |
[1] | X. Pan, S. Xu, G. Qian, A. Nikitin, A. Shanyavskiy, T. Palin-Luc, Y. Hong, Mater.Sci. Eng. A, 798 (2020), Article 140110. |
[2] | A. Nikitin, T. Palin-Luc, A. Shanyavskiy, C. Bathias, Eng. Fract. Mech., 167 (2016), pp. 259-272. |
[3] | G. Guo, D. Li, X. Li, T. Deng, S. Wang, Int. J.Adv. Manuf. Technol., 92 (2017), pp. 1707-1719. |
[4] | A. Astarita, L. Giorleo, F. Scherillo, A. Squillace, E. Ceretti, L. Carrino, Key Eng. Mater., 611-612 (2014), pp. 149-161. |
[5] | Z. Zhang, Y. Yang, L. Li, J. Yin, Int. J. Mech. Sci., 164 (2019), Article 105184. |
[6] | H. Peng, Z. Hou, X. Chen, T. Li, J. Luo, X. Li, Mater.Sci. Eng. A, 824 (2021), Article 141789. |
[7] | K. Wang, Y. Jiao, X. Wu, B. Qu, X. Wang, G. Liu, J. Mater. Process. Technol., 288 (2020), Article 116904. |
[8] | X. Ji, B. Guo, F. Jiang, H. Yu, D. Fu, J. Teng, H. Zhang, J.J. Jonas, J. Mater. Sci. Technol., 36 (2020), pp. 160-166. |
[9] | R.H. Buzolin, F. Miller Branco Ferraz, M. Lasnik, A. Krumphals, M.C. Poletti, Materials, 13 (2020), p. 5678. |
[10] | R.H. Buzolin, M. Lasnik, A. Krumphals, M.C. Poletti, Int. J. Plast., 136 (2021), Article 102862. |
[11] | J.H. Zheng, J. Lin, J. Lee, R. Pan, C. Li, C.M. Davies, Int. J. Plast., 106 (2018), pp. 31-47. |
[12] | L. Zhan, Z. Ma, J. Zhang, J. Tan, Z. Yang, H. Li, J. Alloys Compd., 679 (2016), pp. 316-323. |
[13] | J. Luo, W. Xiong, X. Li, J. Chen, Mater.Sci. Eng. A, 743 (2019), pp. 755-763. |
[14] | X. Nie, H. Liu, X. Zhou, D. Yi, B. Huang, Z. Hu, Y. Xu, Q. Yang, D. Wang, Q. Gao, Mater.Sci. Eng. A, 651 (2016), pp. 37-44. |
[15] | J. Da Costa Teixeira, B. Appolaire, E. Aeby-Gautier, S. Denis, F. Bruneseaux, Acta Mater., 54 (2006), pp. 4261-4271. |
[16] | Y. Gu, F. Zeng, Y. Qi, C. Xia, X. Xiong, Mater.Sci. Eng. A, 575 (2013), pp. 74-85. |
[17] | J. Ma, Y. Zhang, J. Li, D. Cui, Z. Wang, J. Wang, Mater.Sci. Eng. A, 811 (2021), Article 140984. |
[18] | D. Li, H. Huang, C. Chen, S. Liu, X. Liu, X. Zhang, K. Zhou, Mater.Sci. Eng. A, 814 (2021), Article 141245. |
[19] | P.F. Gao, G. Qin, X.X. Wang, Y.X. Li, M. Zhan, G.J. Li, J.S. Li, Mater.Sci. Eng. A, 739 (2019), pp. 203-213. |
[20] | Y. Chong, T. Bhattacharjee, N. Tsuji, Mater.Sci. Eng. A, 762 (2019), Article 138077. |
[21] | B. Callegari, J.P. Oliveira, R.S. Coelho, P.P. Brito, N. Schell, F.A. Soldera, F. Mücklich, M.I. Sadik, J.L. García, H.C. Pinto, Mater. Charact., 162 (2020), Article 110180. |
[22] | Y. Chong, G. Deng, J. Yi, A. Shibata, N. Tsuji, J. Alloys Compd., 811 (2019), Article 152040. |
[23] | Y. Chong, T. Bhattacharjee, J. Yi, S. Zhao, N. Tsuji, Materialia, 8 (2019), Article 100479. |
[24] | Z.X. Zhang, S.J. Qu, A.H. Feng, X. Hu, J. Shen, J. Alloys Compd., 773 (2019), pp. 277-287. |
[25] | J. Xu, W. Zeng, X. Sun, Z. Jia, J. Alloys Compd., 637 (2015), pp. 449-455. |
[26] | J. Fan, J. Li, Y. Zhang, H. Kou, L. Germain, C. Esling, Mater. Charact., 130 (2017), pp. 149-155. |
[27] | S.L. Semiatin, Metall. Mater. Trans. A, 51 (2020), pp. 2593-2625. |
[28] | P. Gao, M. Fu, M. Zhan, Z. Lei, Y. Li, J. Mater. Sci. Technol., 39 (2020), pp. 56-73. |
[29] | C. Zhang, D. Li, X. Li, Q. Xia, Proced. Manuf., 50 (2020), pp. 483-487. |
[30] | T. Deng, D. Li, X. Li, P. Ding, K. Zhao, Proc. Inst. Mech. Eng. Part B, 230 (2015), pp. 505-516. |
[31] | Q. Rong, Y. Li, Z. Shi, L. Meng, X. Sun, X. Sun, J. Lin, Mater.Sci. Eng. A, 750 (2019), pp. 108-116. |
[32] | F. Lyu, Y. Li, Z. Shi, X. Huang, Y. Zeng, J. Lin, Mater.Sci. Eng. A, 773 (2020), Article 138859. |
[33] | C.L. Jia, H.C. Kou, N.N. Chen, S.B. Liu, J.K. Fan, B. Tang, J.S. Li, J. Alloys Compd., 781 (2019), pp. 674-679. |
[34] | S. Zherebtsov, M. Murzinova, G. Salishchev, S.L. Semiatin, Acta Mater., 59 (2011), pp. 4138-4150. |
[35] | J. Zhang, H. Ju, H. Xu, L. Yang, Z. Meng, C. Liu, P. Sun, J. Qiu, C. Bai, D. Xu, R. Yang, J. Mater. Sci. Technol., 94 (2021), pp. 1-9. |
[36] | S. Huang, J. Zhang, Y. Ma, S. Zhang, S.S. Youssef, M. Qi, H. Wang, J. Qiu, D. Xu, J. Lei, R. Yang, J. Alloys Comd., 791 (2019), pp. 575-585. |
[37] | Z. Zheng, S. Xiao, X. Wang, Y. Guo, J. Yang, L. Xu, Y. Chen, Mater.Sci. Eng. A, 803 (2021), Article 140487. |
[38] | Y. Liu, Z.D. Yin, J.C. Zhu, Trans. Nonferr. Met. Soc. China, 13 (2003), pp. 881-884. |
[39] | R. Cottam, V. Luzin, Q. Liu, E. Mayes, Y.C. Wong, J. Wang, M. Brandt, Mater.Sci. Eng. A, 601 (2014), pp. 65-69. |
[40] | S. Pan, H. Liu, Y. Chen, G. Chi, D. Yi, Mater.Sci. Eng. A, 808 (2021), Article 140945. |
[41] | Y. Zong, P. Liu, B. Guo, D. Shan, Mater.Sci. Eng. A, 620 (2015), pp. 172-180. |
[42] | H. Peng, X. Li, X. Chen, J. Jiang, J. Luo, W. Xiong, J. Chen, Trans. Nonferr. Met. Soc. China, 30 (2020), pp. 668-677. |
[43] | S.L. Semiatin, T.R. Bieler, Acta Mater., 49 (2001), pp. 3565-3573. |
[44] | Y. Yang, L. Zhan, C. Liu, X. Wang, Q. Wang, Z. Tang, G. Li, M. Huang, Z. Hu, Int. J. Plast., 127 (2020), Article 102646. |
[45] | R. Zhang, S. Zhao, C. Ophus, Y. Deng, J. Vachhani Shraddha, B. Ozdol, R. Traylor, C. Bustillo Karen, J.W. Morris, C. Chrzan Daryl, M. Asta, M. Minor Andrew, Sci. Adv. 5(12) (2019) eaax2799. |
[46] | J. Jiang, T.B. Britton, A.J. Wilkinson, Acta Mater., 61 (2013), pp. 7227-7239. |
[47] | Y. Guo, T.B. Britton, A.J. Wilkinson, Acta Mater., 76 (2014), pp. 1-12. |
[48] | M.J.R. Barboza, E.A.C. Perez, M.M. Medeiros, D.A.P. Reis, M.C.A. Nono, F.P. Neto, C.R.M. Silva, Mater.Sci. Eng. A, 428 (2006), pp. 319-326. |
[49] | Y. Pang, D. Sun, Q. Gu, K.C. Chou, X. Wang, Q. Li, Cryst. Growth Des., 16 (2016), pp. 2404-2415. |
[50] | Q. Luo, Y. Guo, B. Liu, Y. Feng, J. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol., 44 (2020), pp. 171-190. |
[51] | S.H. He, B.B. He, K.Y. Zhu, M.X. Huang, Acta Mater., 135 (2017), pp. 382-389. |
[52] | X.G. Fan, H. Yang, P.F. Gao, Mater. Des., 51 (2013), pp. 34-42. |
[53] | Y. Sun, C. Zhang, H. Feng, S. Zhang, J. Han, W. Zhang, E. Zhao, H. Wang, Mater. Charact., 163 (2020), Article 110281. |
[54] | H. Matsumoto, V. Velay, J. Alloys Compd., 708 (2017), pp. 404-413. |
[55] | C. de Formanoir, G. Martin, F. Prima, S.Y.P. Allain, T. Dessolier, F. Sun, S. Vivès, B. Hary, Y. Bréchet, S. Godet, Acta Mater., 162 (2019), pp. 149-162. |
[56] | Q. Li, Y. Lu, Q. Luo, X. Yang, Y. Yang, J. Tan, Z. Dong, J. Dang, J. Li, Y. Chen, B. Jiang, S. Sun, F. Pan, J. Magnes. Alloys, 9 (2021), pp. 1922-1941. |
[57] | Q. Li, X. Lin, Q. Luo, Y.a. Chen, J. Wang, B. Jiang, F. Pan, Int. J. Miner. Metall. Mater., 29 (2022), pp. 32-48. |
[1] | Rui Ma, Xiping Guo. Cooperative effects of Mo, V and Zr additions on the microstructure and properties of multi-elemental Nb-Si based alloys [J]. J. Mater. Sci. Technol., 2023, 132(0): 27-41. |
[2] | Xiaopeng Xiao, Dianzhong Li, Yiyi Li, Shanping Lu. Microstructural evolution and stress relaxation cracking mechanism for Super304H austenitic stainless steel weld metal [J]. J. Mater. Sci. Technol., 2022, 100(0): 82-90. |
[3] | Xin Gai, Rui Liu, Yun Bai, Shujun Li, Yang Yang, Shenru Wang, Jianguo Zhang, Wentao Hou, Yulin Hao, Xing Zhang, Rui Yang, R.D.K. Misra. Electrochemical behavior of open-cellular structured Ti-6Al-4V alloy fabricated by electron beam melting in simulated physiological fluid: the significance of pore characteristics [J]. J. Mater. Sci. Technol., 2022, 97(0): 272-282. |
[4] | Yu Liao, Junhua Bai, Fuwen Chen, Guanglong Xu, Yuwen Cui. Microstructural strengthening and toughening mechanisms in Fe-containing Ti-6Al-4V: A comparison between homogenization and aging treated states [J]. J. Mater. Sci. Technol., 2022, 99(0): 114-126. |
[5] | Yi Xiong, Phani S. Karamched, Chi-Toan Nguyen, David M.Collins, Christopher M.Magazzeni, Edmund Tarleton, Angus J.Wilkinson. Macroscopic analysis of time dependent plasticity in Ti alloys [J]. J. Mater. Sci. Technol., 2022, 124(0): 135-140. |
[6] | Hoon Sohn, Peipei Liu, Hansol Yoon, Kiyoon Yi, Liu Yang, Sangjun Kim. Real-time porosity reduction during metal directed energy deposition using a pulse laser [J]. J. Mater. Sci. Technol., 2022, 116(0): 214-223. |
[7] | Y.J. Duan, L.T. Zhang, T. Wada, H. Kato, E. Pined, D. Crespo, J.M. Pelletier, J.C. Qiao. Analysis of the anelastic deformation of high-entropy Pd20Pt20Cu20Ni20P20 metallic glass under stress relaxation and recovery [J]. J. Mater. Sci. Technol., 2022, 107(0): 82-91. |
[8] | Yi Wan, Zihe Zhao, Mingzhi Yu, Zhenbing Ji, Teng Wang, Yukui Cai, Chao Liu, Zhanqiang Liu. Osteogenic and antibacterial ability of micro-nano structures coated with ZnO on Ti-6Al-4V implant fabricated by two-step laser processing [J]. J. Mater. Sci. Technol., 2022, 131(0): 240-252. |
[9] | Xinde Huang, Yunchang Xin, Yu Cao, Guangjie Huang, Wei Li. A quantitative study on planar mechanical anisotropy of a Mg-2Zn-1Ca alloy [J]. J. Mater. Sci. Technol., 2022, 109(0): 30-48. |
[10] | L.R. Zeng, L.M. Lei, X.M. Luo, G.P. Zhang. Toward an understanding of dwell fatigue damage mechanism of bimodal Ti-6Al-4V alloys [J]. J. Mater. Sci. Technol., 2022, 108(0): 244-255. |
[11] | Qianqian Fu, Bing Li, Minqiang Gao, Ying Fu, Rongzhou Yu, Changfeng Wang, Renguo Guan. Quantitative mechanisms behind the high strength and electrical conductivity of Cu-Te alloy manufactured by continuous extrusion [J]. J. Mater. Sci. Technol., 2022, 121(0): 9-18. |
[12] | Sheng Ding, Jingwei Zhang, Sabrina Alam Khan, Jun Yanagimoto. Static recovery of A5083 aluminum alloy after a small deformation through various measuring approaches [J]. J. Mater. Sci. Technol., 2022, 104(0): 202-213. |
[13] | Yu Lu, Richard Turner, Jeffery Brooks, Hector Basoalto. A study of process-induced grain structures during steady state and non-steady state electron-beam welding of a titanium alloy [J]. J. Mater. Sci. Technol., 2022, 113(0): 117-127. |
[14] | S.L. Lu, C.J. Todaro, Y.Y. Sun, T. Sun, T. Song, M. Brandt, M. Qian. Variant selection in additively manufactured alpha-beta titanium alloys [J]. J. Mater. Sci. Technol., 2022, 113(0): 14-21. |
[15] | R. Liu, P. Zhang, Z.J. Zhang, B. Wang, Z.F. Zhang. A practical model for efficient anti-fatigue design and selection of metallic materials: I. Model building and fatigue strength prediction [J]. J. Mater. Sci. Technol., 2021, 70(0): 233-249. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||