J. Mater. Sci. Technol. ›› 2022, Vol. 126: 80-92.DOI: 10.1016/j.jmst.2022.02.028
Special Issue: Mg-based alloys 2022
• Research Article • Previous Articles Next Articles
Yiwen Chena, Quan Lia, Yangxin Lia, Weisen Zhengc, Jingya Wanga,*(
), Xiaoqin Zenga,b,*(
)
Accepted:2022-04-07
Published:2022-11-01
Online:2022-11-10
Contact:
Jingya Wang,Xiaoqin Zeng
About author:xqzeng@sjtu.edu.cn(X. Zeng).Yiwen Chen, Quan Li, Yangxin Li, Weisen Zheng, Jingya Wang, Xiaoqin Zeng. Phase equilibria of long-period stacking ordered phase in the ternary Mg-Y-Al alloys[J]. J. Mater. Sci. Technol., 2022, 126: 80-92.
Fig. 1. Measured compositions of the designed typical Mg-Y-Al alloys. For sake of clear description, these alloys are divided into two categories: LAY with low Al:Y ratio (< 1, LAY1# - 8#) marked with black solid triangles, and HAY with high Al:Y ratio (≥ 1, HAY1# - 3#) represented by red solid hexagons.
| Samples no. | Measured compositions of Mg-Y-Al alloy (at.%) by ICP method | Annealed process | ||||
|---|---|---|---|---|---|---|
| Mg | Y | Al | ||||
| Empty Cell | ||||||
| LAY1# | 96.4 | 3.0 | 0.6 | 450 °C/30 days | 500 °C/30 days | 550 °C/30 days |
| LAY2# | 95.0 | 3.8 | 1.2 | 450 °C/30 days | 500 °C/30 days | 550 °C/30 days |
| LAY3# | 95.7 | 3.8 | 0.5 | 450 °C/30 days | 500 °C/30 days | 550 °C/30 days |
| LAY4# | 80.3 | 9.0 | 1.7 | 450 °C/60 days | 500 °C/30 days | 550 °C/30 days |
| LAY5# | 82.0 | 14.0 | 4.0 | 450 °C/60 days | 500 °C/30 days | 550 °C/30 days |
| LAY6# | 81.0 | 14.5 | 4.5 | 450 °C/60 days | 500 °C/30 days | 550 °C/30 days |
| LAY7# | 73.9 | 18.1 | 8.0 | 450 °C/60 days | 450 °C/30 days | 550 °C/30 days |
| LAY8# | 73.0 | 14.2 | 12.8 | 450 °C/60 days | 500 °C/30 days | 550 °C/30 days |
| HAY1# | 96.8 | 1.6 | 1.6 | 450 °C/30 days | 500 °C/30 days | 550 °C/30 days |
| HAY2# | 75.3 | 10.3 | 14.4 | 450 °C/60 days | 500 °C/30 days | 550 °C/30 days |
| HAY3# | 90.2 | 2.9 | 6.9 | 450 °C/60 days | 500 °C/30 days | 550 °C/30 days |
Table 1. Eleven Mg-Y-Al samples compositions and related annealing process.
| Samples no. | Measured compositions of Mg-Y-Al alloy (at.%) by ICP method | Annealed process | ||||
|---|---|---|---|---|---|---|
| Mg | Y | Al | ||||
| Empty Cell | ||||||
| LAY1# | 96.4 | 3.0 | 0.6 | 450 °C/30 days | 500 °C/30 days | 550 °C/30 days |
| LAY2# | 95.0 | 3.8 | 1.2 | 450 °C/30 days | 500 °C/30 days | 550 °C/30 days |
| LAY3# | 95.7 | 3.8 | 0.5 | 450 °C/30 days | 500 °C/30 days | 550 °C/30 days |
| LAY4# | 80.3 | 9.0 | 1.7 | 450 °C/60 days | 500 °C/30 days | 550 °C/30 days |
| LAY5# | 82.0 | 14.0 | 4.0 | 450 °C/60 days | 500 °C/30 days | 550 °C/30 days |
| LAY6# | 81.0 | 14.5 | 4.5 | 450 °C/60 days | 500 °C/30 days | 550 °C/30 days |
| LAY7# | 73.9 | 18.1 | 8.0 | 450 °C/60 days | 450 °C/30 days | 550 °C/30 days |
| LAY8# | 73.0 | 14.2 | 12.8 | 450 °C/60 days | 500 °C/30 days | 550 °C/30 days |
| HAY1# | 96.8 | 1.6 | 1.6 | 450 °C/30 days | 500 °C/30 days | 550 °C/30 days |
| HAY2# | 75.3 | 10.3 | 14.4 | 450 °C/60 days | 500 °C/30 days | 550 °C/30 days |
| HAY3# | 90.2 | 2.9 | 6.9 | 450 °C/60 days | 500 °C/30 days | 550 °C/30 days |
| Sample No. | Equilibrium phases constituent and compositions (at.%) | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| Phase constitutions at 450 °C | Compositions | Phase constitutions at 500 °C | Compositions | Phase constitutions at 550 °C | Compositions | ||||
| Al | Y | Al | Y | Al | Y | ||||
| LAY1# | α-Mg | 0.03 | 1.95 | α-Mg | 0.17 | 2.05 | α-Mg | 0.23 | 2.64 |
| 18R | 7.62 | 10.64 | 18R | 7.27 | 10.73 | 18R | 7.24 | 10.90 | |
| LAY2# | α-Mg | 0.06 | 2.58 | α-Mg | 0.15 | 2.95 | α-Mg | 0.24 | 2.80 |
| 18R | 7.74 | 11.59 | 18R | 7.59 | 11.11 | 18R | 7.21 | 10.75 | |
| LAY3# | α-Mg | 0.01 | 2.30 | α-Mg | 017 | 3.31 | α-Mg | 0.28 | 3.45 |
| 18R | 7.92 | 11.96 | 18R | 7.95 | 11.63 | 18R | 7.38 | 10.97 | |
| Mg24Y5 | 0.24 | 12.88 | |||||||
| LAY4# | α-Mg | 0.1 | 2.77 | α-Mg | 0.18 | 3.31 | α-Mg | 0.25 | 4.23 |
| 18R | 8.03 | 12.01 | 18R | 7.99 | 11.80 | 10H | 9.69 | 14.39 | |
| Mg24Y5 | 0.24 | 12.65 | Mg24Y5 | 0.38 | 12.99 | Mg24Y5 | 0.74 | 13.22 | |
| LAY5# | 10H | 9.40 | 13.82 | 10H | 9.54 | 14.24 | 10H | 9.80 | 14.50 |
| Mg24Y5 | 0.53 | 14.28 | Mg24Y5 | 0.54 | 14.06 | Mg24Y5 | 0.79 | 13.65 | |
| LAY6# | 10H | 9.46 | 13.91 | 10H | 9.54 | 14.34 | 10H | 9.96 | 14.72 |
| Mg24Y5 | 0.46 | 14.76 | Mg24Y5 | 0.54 | 14.48 | Mg24Y5 | 0.97 | 14.56 | |
| LAY7# | 10H | 9.35 | 13.95 | 10H | 9.75 | 14.76 | 10H | 10.16 | 14.94 |
| Mg24Y5 | 0.61 | 15.95 | Mg24Y5 | 0.69 | 15.10 | Mg24Y5 | 0.95 | 14.95 | |
| Mg2Y | 20.51 | 27.66 | Mg2Y | 22.88 | 29.89 | Mg2Y | 28.02 | 30.26 | |
| LAY8# | 18R | 8.37 | 11.72 | 18R | 8.23 | 11.80 | 18R | 7.71 | 11.22 |
| 10H | 10.37 | 13.74 | 10H | 9.73 | 14.31 | 10H | 9.75 | 14.41 | |
| Al2Y | 58.65 | 33.86 | Al2Y | 56.39 | 33.78 | Al2Y | 59.20 | 33.71 | |
| HAY1# | α-Mg | 0.01 | 0.62 | α-Mg | 0.24 | 0.96 | α-Mg | 0.23 | 0.65 |
| Al2Y | 63.12 | 34.41 | Al2Y | 63.18 | 34.35 | Al2Y | 64.38 | 33.41 | |
| 18R | 7.26 | 9.99 | |||||||
| HAY2# | α-Mg | 0.01 | 0.72 | α-Mg | 0.18 | 1.61 | α-Mg | 0.24 | 2.45 |
| 18R | 7.43 | 10.19 | 18R | 7.16 | 10.39 | 18R | 7.21 | 10.65 | |
| Al2Y | 62.9 | 33.7 | Al2Y | 57.74 | 34.02 | Al2Y | 64.18 | 33.44 | |
| HAY3# | α-Mg | 1.77 | 0.024 | α-Mg | 1.99 | 0 | α-Mg | 1.66 | 0 |
| Al2Y | 64.38 | 32.90 | Al2Y | 64.58 | 32.12 | Al2Y | 65.17 | 32.44 | |
Table 2. Equilibrium phase constituents and phase compositions of Mg-Y-Al alloys annealed at 450 °C for 30/60 days, 500 °C for 30 days and 550 °C for 30 days.
| Sample No. | Equilibrium phases constituent and compositions (at.%) | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| Phase constitutions at 450 °C | Compositions | Phase constitutions at 500 °C | Compositions | Phase constitutions at 550 °C | Compositions | ||||
| Al | Y | Al | Y | Al | Y | ||||
| LAY1# | α-Mg | 0.03 | 1.95 | α-Mg | 0.17 | 2.05 | α-Mg | 0.23 | 2.64 |
| 18R | 7.62 | 10.64 | 18R | 7.27 | 10.73 | 18R | 7.24 | 10.90 | |
| LAY2# | α-Mg | 0.06 | 2.58 | α-Mg | 0.15 | 2.95 | α-Mg | 0.24 | 2.80 |
| 18R | 7.74 | 11.59 | 18R | 7.59 | 11.11 | 18R | 7.21 | 10.75 | |
| LAY3# | α-Mg | 0.01 | 2.30 | α-Mg | 017 | 3.31 | α-Mg | 0.28 | 3.45 |
| 18R | 7.92 | 11.96 | 18R | 7.95 | 11.63 | 18R | 7.38 | 10.97 | |
| Mg24Y5 | 0.24 | 12.88 | |||||||
| LAY4# | α-Mg | 0.1 | 2.77 | α-Mg | 0.18 | 3.31 | α-Mg | 0.25 | 4.23 |
| 18R | 8.03 | 12.01 | 18R | 7.99 | 11.80 | 10H | 9.69 | 14.39 | |
| Mg24Y5 | 0.24 | 12.65 | Mg24Y5 | 0.38 | 12.99 | Mg24Y5 | 0.74 | 13.22 | |
| LAY5# | 10H | 9.40 | 13.82 | 10H | 9.54 | 14.24 | 10H | 9.80 | 14.50 |
| Mg24Y5 | 0.53 | 14.28 | Mg24Y5 | 0.54 | 14.06 | Mg24Y5 | 0.79 | 13.65 | |
| LAY6# | 10H | 9.46 | 13.91 | 10H | 9.54 | 14.34 | 10H | 9.96 | 14.72 |
| Mg24Y5 | 0.46 | 14.76 | Mg24Y5 | 0.54 | 14.48 | Mg24Y5 | 0.97 | 14.56 | |
| LAY7# | 10H | 9.35 | 13.95 | 10H | 9.75 | 14.76 | 10H | 10.16 | 14.94 |
| Mg24Y5 | 0.61 | 15.95 | Mg24Y5 | 0.69 | 15.10 | Mg24Y5 | 0.95 | 14.95 | |
| Mg2Y | 20.51 | 27.66 | Mg2Y | 22.88 | 29.89 | Mg2Y | 28.02 | 30.26 | |
| LAY8# | 18R | 8.37 | 11.72 | 18R | 8.23 | 11.80 | 18R | 7.71 | 11.22 |
| 10H | 10.37 | 13.74 | 10H | 9.73 | 14.31 | 10H | 9.75 | 14.41 | |
| Al2Y | 58.65 | 33.86 | Al2Y | 56.39 | 33.78 | Al2Y | 59.20 | 33.71 | |
| HAY1# | α-Mg | 0.01 | 0.62 | α-Mg | 0.24 | 0.96 | α-Mg | 0.23 | 0.65 |
| Al2Y | 63.12 | 34.41 | Al2Y | 63.18 | 34.35 | Al2Y | 64.38 | 33.41 | |
| 18R | 7.26 | 9.99 | |||||||
| HAY2# | α-Mg | 0.01 | 0.72 | α-Mg | 0.18 | 1.61 | α-Mg | 0.24 | 2.45 |
| 18R | 7.43 | 10.19 | 18R | 7.16 | 10.39 | 18R | 7.21 | 10.65 | |
| Al2Y | 62.9 | 33.7 | Al2Y | 57.74 | 34.02 | Al2Y | 64.18 | 33.44 | |
| HAY3# | α-Mg | 1.77 | 0.024 | α-Mg | 1.99 | 0 | α-Mg | 1.66 | 0 |
| Al2Y | 64.38 | 32.90 | Al2Y | 64.58 | 32.12 | Al2Y | 65.17 | 32.44 | |
Fig. 2. BSE images of LAY1# alloy annealed at (a) 450 °C; (b) 500 °C; (c) 550 °C and (d) corresponding XRD patterns of the alloys annealed at the three temperatures.
Fig. 3. The BF-TEM, SAED pattern and HR-TEM images of LAY1# alloy annealed at (a-c): 450 °C and (d-f) 550 °C. All the SAED pattern and HR-TEM images were taken along the [112¯0] zone axis.
Fig. 4. BSE images of LAY4# alloy annealed at: (a) 450 °C; (b) 500 °C; (c) 550 °C and (d) the corresponding XRD patterns of the alloys annealed at the three temperatures.
Fig. 5. BF-TEM, SAED pattern and HAADF-STEM images of LAY4# alloy annealed at (a-c) 500 °C and (d-f) 550 °C. The SAED patterns and HAADF-STEM images were taken along the [112¯0] zone axis.
Fig. 6. BSE images of LAY6# alloy annealed at (a) 450 °C; (b) 500 °C; (c) 550 °C and (d) corresponding XRD patterns of the alloys annealed at the three temperatures.
Fig. 7. BSE images of LAY7# alloy annealed at (a) 450 °C; (b) 500 °C; (c) 550 °C and (d) corresponding XRD patterns of the alloys annealed at the three temperatures.
Fig. 8. BSE images of LAY8# alloy annealed at (a) 450 °C; (b) 500 °C; (c) 550 °C and (d) corresponding XRD patterns of the alloys annealed at the three temperatures.
Fig. 9. (a) The BF-TEM image of LAY8# alloy annealed at 550 °C; (b-c) the SAED patterns images taken from areas A and B in (a); (d-e) the HAADF-STEM images taken from the areas A and B in (a). All the electron beam is parallel to [112¯0] axis.
Fig. 10. BSE images of the HAY1# alloy annealed at (a) 450 °C; (b) 500 °C; (c) 550 °C and (d) the corresponding XRD patterns annealed at the three temperatures.
Fig. 11. (a) BF-TEM image of the HAY1# alloy annealed at 550 °C; (b) the corresponding SAED patterns taken form the area A in (a) along the [001] zone axis.
Fig. 12. BSE images of HAY2# alloy annealed at (a) 450 °C; (b) 500 °C; (c) 550 °C and (d) corresponding XRD patterns annealed at the three temperatures.
Fig. 13. BSE images of HAY3# alloy annealed at (a) 450 °C; (b) 500 °C; (c) 550 °C and (d) corresponding XRD patterns annealed at the three temperatures.
Fig. 14. (a) Chemical compositions of the 18R and 10H phases in Mg-Y-Al alloys annealed at 450, 500 and 550 °C in the present work; (b) and (c) atomic structure models of ideal crystal structure of the LPSOs viewed along [12¯10]direction of 18R and 10H structure, respectively.
Fig. 15. Isothermal sections of the Mg-rich corner in Mg-Y-Al alloys at: (a) 450 °C, (c) 500 °C and (e) 550 °C, respectively, constructed by the experimental data in this work. The blue filled triangles and red circles represent the Mg-Y-Al alloys in two-phase and three-phase regions, respectively. Meanwhile, the black filled squares represent the phase composition measured by the EDS analysis. Besides, the extrapolated lines are plotted as dotted lines. Local magnifications of the isothermal sections around the phase regions focusing on the LPSO phases at (b) 450 °C; (d) 500 °C and (f) 550 °C, respectively.
| [1] | J. Gröbner, A. Kozlov, X.Y. Fang, J. Geng, J.F. Nie, R. Schmid-Fetzer, Acta Mater, 60 (2012), pp. 5948-5962. |
| [2] | M. Jiang, X. Su, H. Li, Y. Ren, G. Qin, J. Alloys Compd., 593 (2014), pp. 141-147. |
| [3] | M. Jiang, S. Zhang, Y. Bi, H. Li, Y. Ren, G. Qin, Intermetallics, 57 (2015), pp. 127-132. |
| [4] | B.S. Liu, H.X. Li, Y.P. Ren, H.B. Xie, H.C. Pan, M. Jiang, G.W. Qin, J. Alloys Compd., 870 (2021), Article 159502. |
| [5] | C. Liu, Q. Luo, Q.F. Gu, Q. Li, K.C. Chou, J. Magnes. Alloy. In Press, doi:10.1016/j.jma.2021.03.011. |
| [6] | Z. Wang, Q. Luo, S. Chen, K.C. Chou, Q. Li, J. Alloys Compd., 649 (2015), pp. 1306-1314. |
| [7] | K. Xu, S. Liu, K. Chang, Y. Liang, Y. Du, Z. Jin, J. Magnes. Alloy., 9 (2021), pp. 144-155. |
| [8] | K. Xu, S. Liu, D. Huang, Y. Du, J. Mater. Sci., 53 (2018), pp. 9243-9257. |
| [9] | Y. Ruan, C. Li, Y. Ren, X. Wu, R. Schmid-Fetzer, C. Guo, Z. Du, J. Mater. Sci. Technol., 68 (2021), pp. 147-159. |
| [10] | Z.P. Luo, S.Q. Zhang, J. Mater. Sci. Lett., 19 (2000), pp. 813-815. |
| [11] | Y. Kawamura, K. Hayashi, A. Inoue, T. Masumoto, Mater. Trans., 42 (2001), pp. 1172-1176. |
| [12] | J.F. Nie, X. Gao, S.M. Zhu, Scr. Mater., 53 (2005), pp. 1049-1053. |
| [13] | M. Yamasaki, K. Hashimoto, K. Hagihara, Y. Kawamura, Acta Mater, 59 (2011), pp. 3646-3658. |
| [14] | X.H. Shao, Z.Q. Yang, X.L. Ma, Acta Mater, 58 (2010), pp. 4760-4771. |
| [15] | D. Xu, E.H. Han, Y. Xu, Prog. Nat. Sci., 26 (2016), pp. 117-128. |
| [16] | C. Xu, M.Y. Zheng, S.W. Xu, K. Wu, E.D. Wang, G.H. Fan, S. Kamado, X.D. Liu, G.J. Wang, X.Y. Lv, Mater.Sci. Eng. A, 559 (2013), pp. 844-851. |
| [17] | C. Xu, M.Y. Zheng, S.W. Xu, Mater.Sci. Eng. A, 748 (2019), pp. 100-107. |
| [18] | D.D. Yin, Q.D. Wang, C.J. Boehlert, V. Janik, Y. Gao, W.J. Ding, Mater.Sci. Eng. A, 546 (2012), pp. 239-247. |
| [19] | Y.M. Zhu, A.J. Morton, J.F. Nie, Acta Mater, 58 (2010), pp. 2936-2947. |
| [20] | Y.M. Zhu, A.J. Morton, J.F. Nie, Acta Mater, 60 (2012), pp. 6562-6572. |
| [21] | J.F. Nie, Y.M. Zhu, A.J. Morton, Metall. Mater. Trans. A, 45 (2014), pp. 3338-3348. |
| [22] | E. Abe, A. Ono, T. Itoi, M. Yamasaki, Y. Kawamura, Philos. Mag. Lett., 91 (2011), pp. 690-696. |
| [23] | Y. Kawamura, T. Kasahara, S. Izumi, M. Yamasaki, Scr. Mater., 55 (2006), pp. 453-456. |
| [24] | Q.Q. Jin, X.H. Shao, M. Lv, B. Zhang, C. Liu, Y.M. Li, X.L. Ma, J. Alloys Compd., 861 (2021), Article 157990. |
| [25] | Y. Guo, Q. Luo, B. Liu, Q. Li, Scr. Mater., 178 (2020), pp. 422-427. |
| [26] | C. Liu, Y. Zhu, Q. Luo, B. Liu, Q. Gu, Q. Li, J. Mater. Sci. Technol., 34 (2018), pp. 2235-2239. |
| [27] | J. Gröbner, A. Kozlov, X.Y. Fang, S. Zhu, J.F. Nie, M.A. Gibson, R. Schmid-Fetzer, Acta Mater, 90 (2015), pp. 400-416. |
| [28] | M. Itakura, M. Yamaguchi, D. Egusa, E. Abe, Acta Mater, 203 (2021), Article 116491. |
| [29] | X.F. Gu, T. Furuhara, L. Chen, P. Yang, Scr. Mater., 187 (2020), pp. 19-23. |
| [30] | J. Yin, C. Lu, X. Ma, B. Dai, H.L. Chen, Intermetallics, 68 (2016), pp. 63-70. |
| [31] | J.K. Kim, W.S. Ko, S. Sandlöbes, M. Heidelmann, B. Grabowski, D. Raabe, Acta Mater, 112 (2016), pp. 171-183. |
| [32] | K. Kishida, K. Nagai, A. Matsumoto, A. Yasuhara, H. Inui, Acta Mater, 99 (2015), pp. 228-239. |
| [33] | H. Yokobayashi, K. Kishida, H. Inui, M. Yamasaki, Y. Kawamura, Acta Mater, 59 (2011), pp. 7287-7299. |
| [34] | H. Zhang, C.Q. Liu, Y.M. Zhu, H.W. Chen, L. Bourgeois, J.F. Nie, Acta Mater, 152 (2018), pp. 96-106. |
| [35] | Y.X. Li, D. Qiu, Y.H. Rong, M.X. Zhang, Philos. Mag., 94 (2014), pp. 1311-1326. |
| [36] | M. Takeda, K. Konno, A. Yasuhara, K. Hiraga, Philos. Mag., 98 (2018), pp. 2247-2256. |
| [37] | Y. Li, C. Yang, X. Zeng, P. Jin, D. Qiu, W. Ding, Mater. Charact., 141 (2018), pp. 286-295. |
| [38] | D. Qiu, M.X. Zhang, J.A. Taylor, P.M. Kelly, Acta Mater, 57 (2009), pp. 3052-3059. |
| [39] | X. Liu, F. Liu, Z. Liu, H. Xie, J. Li, Mater. Today. Com., 25 (2020), Article 101286. |
| [40] | C. Su, J. Wang, H. Hu, Y. Wen, S. Liu, K. Ma, J. Alloys Compd. (2021), Article 160557. |
| [41] | Y. Guo, B. Liu, W. Xie, Q. Luo, Q. Li, Scr. Mater., 193 (2021), pp. 127-131. |
| [42] | Y. Li, B. Hu, B. Liu, A. Nie, Q. Gu, J. Wang, Q. Li, Acta Mater, 187 (2020), pp. 51-65. |
| [43] | Q. Luo, Y. Guo, B. Liu, Y. Feng, J. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol., 44 (2020), pp. 171-190. |
| [44] | Y. Pang, D. Sun, Q. Gu, K.C. Chou, X. Wang, Q. Li, Cryst. Growth Des., 16 (2016), pp. 2404-2415. |
| [45] | M.E. Drits, E.M. Padezhnova, T.V. Dobatkina, Russ. Metall., 3 (1979), pp. 223-227. |
| [46] | O.S. Zarechnyuk, M.E. Drits, R.M. Rykhal, V.V. Kinzhibalo, Russ. Metall., 4 (1980), pp. 75-77. |
| [47] | K.O. Odinev, I.N. Ganiev, V.V. Kinzhibalo, K.K. Kurbanov, Tsvetn. Metall., 5 (1989), pp. 242-244. |
| [48] | K. Cheng, J. Zhou, J. Zhao, S. Tang, Y. Yang, Chin. Mater. Conf., 48 (2018), pp. 1255-1264. |
| [49] | M. Yamasaki, M. Matsushita, K. Hagihara, H. Izuno, E. Abe, Y. Kawamura, Scr. Mater., 78-79 (2014), pp. 13-16. |
| [50] | D. Egusa, E. Abe, Acta Mater, 60 (2012), pp. 166-178. |
| [51] | Z.Z. Peng, X.H. Shao, X.W. Guo, J. Wang, Y.J. Wang, X.L. Ma, Adv. Eng. Mater., 20 (2018), Article 1701015. |
| [52] | D. Egusa, H. Somekawa, E. Abe, Mater. Trans., 61 (2020), pp. 833-838. |
| [53] | X.H. Shao, Z.Q. Yang, X.L. Ma, Acta Mater, 58 (2010)4760-4711. |
| [54] | D. Qiu, M.X. Zhang, P.M. Kelly, Scr. Mater., 61 (2009), pp. 312-315. |
| [55] | D. Qiu, M.X. Zhang, J. Alloys Compd., 488 (2009), pp. 260-264. |
| [1] | Yuchen Liu, Yu Zhou, Dechang Jia, Zhihua Yang, Daxin Li, Bin Liu. Unveiling structural features and mechanical properties of amorphous Si2BC3N by density functional theory [J]. J. Mater. Sci. Technol., 2023, 139(0): 103-112. |
| [2] | Xing Tong, Yan Zhang, Yaocen Wang, Xiaoyu Liang, Kai Zhang, Fan Zhang, Yuanfei Cai, Haibo Ke, Gang Wang, Jun Shen, Akihiro Makino, Weihua Wang. Structural origin of magnetic softening in a Fe-based amorphous alloy upon annealing [J]. J. Mater. Sci. Technol., 2022, 96(0): 233-240. |
| [3] | Zhong Shiyu, Zhang Dingfei, Wang Yongqin, Chai Sensen, Feng Jingkai, Luo Yulun, Hua Jianrong, Dai Qimin, Hu Guangshan, Xu Junyao, Jiang Bin, Pan Fusheng. Microstructures, mechanical properties and degradability of Mg-2Gd-0.5(Cu/Ni) alloys: A comparison study [J]. J. Mater. Sci. Technol., 2022, 128(0): 44-58. |
| [4] | Yongxin Ruan, Changrong Li, Yuping Ren, Xiaopan Wu, R. Schmid-Fetzer, Cuiping Guo, Zhenmin Du. Phases equilibrated with long-period stacking ordered phases in the Mg-rich corner of the Mg-Y-Zn system [J]. J. Mater. Sci. Technol., 2021, 68(0): 147-159. |
| [5] | Yifei Xu, Lars P.H. Jeurgens, Peter Schützendübe, Shengli Zhu, Yuan Huang, Yongchang Liu, Zumin Wang. Effect of atomic structure on preferential oxidation of alloys: amorphous versus crystalline Cu-Zr [J]. J. Mater. Sci. Technol., 2020, 40(0): 128-134. |
| [6] | Binbin Wang, Liangshun Luo, Fuyu Dong, Liang Wang, Hongying Wang, Fuxin Wang, Lei Luo, Baoxian Su, Yanqing Su, Jingjie Guo, Hengzhi Fu. Impact of hydrogen microalloying on the mechanical behavior of Zr-bearing metallic glasses: A molecular dynamics study [J]. J. Mater. Sci. Technol., 2020, 45(0): 198-206. |
| [7] | Haijiang LIU, Shaoqing WANG, An DU, Caibei ZHANG. Molecular Dynamics Study on Interfacial Energy and Atomic Structure of Ag/Ni and Cu/Ni Heterophase System [J]. J Mater Sci Technol, 2004, 20(06): 644-648. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
