J. Mater. Sci. Technol. ›› 2022, Vol. 128: 44-58.DOI: 10.1016/j.jmst.2022.03.027
• Resarch Article • Previous Articles Next Articles
Zhong Shiyua,b, Zhang Dingfeia,b,*(), Wang Yongqina,b, Chai Sensenc, Feng Jingkaia,b, Luo Yuluna,b, Hua Jianronga,b, Dai Qimina,b, Hu Guangshand, Xu Junyaoa,b, Jiang Bina,b, Pan Fushengb,e
Received:
2022-01-25
Revised:
2022-03-03
Accepted:
2022-03-05
Published:
2022-11-20
Online:
2022-11-22
Contact:
Zhang Dingfei
About author:
*E-mail address: zhangdingfei@cqu.edu.cn (D. Zhang).Zhong Shiyu, Zhang Dingfei, Wang Yongqin, Chai Sensen, Feng Jingkai, Luo Yulun, Hua Jianrong, Dai Qimin, Hu Guangshan, Xu Junyao, Jiang Bin, Pan Fusheng. Microstructures, mechanical properties and degradability of Mg-2Gd-0.5(Cu/Ni) alloys: A comparison study[J]. J. Mater. Sci. Technol., 2022, 128: 44-58.
Fig. 1. Schematic of (a) the manufacturing process, (b) samples for tensile tests, and (c) samples for immersion tests. Noted that the specimens were cut from the longitudinal section of the extruded rods.
Alloys | Chemical compositions (wt.%) | |||
---|---|---|---|---|
Gd | Cu | Ni | Mg | |
Mg-2Gd-0.5Cu alloy | 1.98 | 0.54 | - | Bal. |
Mg-2Gd-0.25Cu-0.25Ni alloy | 1.98 | 0.26 | 0.24 | Bal. |
Mg-2Gd-0.5Ni alloy | 1.99 | - | 0.53 | Bal. |
Table 1. Chemical composition of studied alloys.
Alloys | Chemical compositions (wt.%) | |||
---|---|---|---|---|
Gd | Cu | Ni | Mg | |
Mg-2Gd-0.5Cu alloy | 1.98 | 0.54 | - | Bal. |
Mg-2Gd-0.25Cu-0.25Ni alloy | 1.98 | 0.26 | 0.24 | Bal. |
Mg-2Gd-0.5Ni alloy | 1.99 | - | 0.53 | Bal. |
Fig. 4. (a-d) SEM images of Mg-Gd-Cu/Ni alloys in longitudinal section, where (c) shows the topography in high magnification and corresponding EDS mapping of the Mg-Gd-Ni ternary phase highlighted by the yellow rectangle in (b). (e) HAADF-STEM image of the Mg-Gd-Ni ternary phase and corresponding SAED patterns.
Alloys | Rs (Ω cm2) | Ydl (sn μΩ-1 cm-2) | ndl | Rct (Ω cm2) | L (H cm-2) | RL (Ω cm2) |
---|---|---|---|---|---|---|
Mg-2Gd-0.5Cu alloy | 20 ± 0.5 | 16 ± 0.6 | 0.93 ± 0.02 | 99 ± 3 | 367 ± 8 | 48 ± 2 |
Mg-2Gd-0.5Ni alloy | 20 ± 0.5 | 25 ± 0.8 | 0.80 ± 0.01 | 25 ± 2 | 60 ± 3 | 15 ± 2 |
Mg-2Gd-0.5Ni alloy | 19 ± 0.5 | 27 ± 0.8 | 0.80 ± 0.02 | 9 ± 1 | 62 ± 4 | 9 ± 1 |
Table 2. Fitted results of EIS.
Alloys | Rs (Ω cm2) | Ydl (sn μΩ-1 cm-2) | ndl | Rct (Ω cm2) | L (H cm-2) | RL (Ω cm2) |
---|---|---|---|---|---|---|
Mg-2Gd-0.5Cu alloy | 20 ± 0.5 | 16 ± 0.6 | 0.93 ± 0.02 | 99 ± 3 | 367 ± 8 | 48 ± 2 |
Mg-2Gd-0.5Ni alloy | 20 ± 0.5 | 25 ± 0.8 | 0.80 ± 0.01 | 25 ± 2 | 60 ± 3 | 15 ± 2 |
Mg-2Gd-0.5Ni alloy | 19 ± 0.5 | 27 ± 0.8 | 0.80 ± 0.02 | 9 ± 1 | 62 ± 4 | 9 ± 1 |
Fig. 14. Maps show the corrosion rate, EL, and overall alloying elements of different Mg alloys: (a) corrosion rate vs EL and (b) corrosion rate vs content of alloying elements. Mg-Al(-Sm) alloys [64], Mg-Dy alloys [65], Mg-Gd-Zn alloys [9], Mg-Zn-Zr(-La) alloys [66], Mg-Al-Zn alloys [67], Mg-Zn-Mn(-Ca) alloys [68], Mg-Zn-La alloys [69], Mg-Zn-Ca(-Ce/La) alloys [70], Mg-Y-Nd alloys [71], Mg-Li-Al(-Ca) alloys [72], Mg-Cu-Al alloys [23], and Mg-Gd-Cu alloys [31,32] were used to compare with Mg-Gd-(Cu/Ni) alloys prepared in this work.
Fig. 15. (a) Hydrogen gas evolution curves, (b) corrosion rates, and (c) optical topographies and corresponding three-dimensional reconstruction images of Mg-Gd-Cu/Ni alloys. Noted that both macro topographies shown in the insets in (b) and optical topographies shown in (c) were captured after 48 h immersion, and corrosion products were removed before observation.
Fig. 16. SEM images of (a-d) the Mg-2Gd-0.5Ni alloy immersed in 3.5 wt.% NaCl solution for 5 min, (e, f) LPSO phases eroded by picric acid, (g) Mg-2Gd-0.5Cu alloy immersed in 3.5 wt.% NaCl solution for 10 min, (h) α-Mg matrix in the vicinity of Mg2Cu phases eroded by picric acid, (i, j) Mg-2Gd-0.5Ni alloy immersed in 3.5 wt.% NaCl solution for 10 min, (k) Mg-2Gd-0.5Cu alloy immersed in 3.5 wt.% NaCl solution for 60 min, and (l) Mg-2Gd-0.5Ni alloy immersed in 3.5 wt.% NaCl solution for 60 min. Noted that white arrows highlight the uncorroded area, red arrows highlight the filiform corrosion, yellow arrows highlight corroded LPSO phases and blue arrows highlight the corroded α-Mg matrix in the vicinity of Mg2Cu phases.
Fig. 17. Longitudinal section of the Mg-2Gd-0.5Ni alloy after 1 h immersion, where cracks of corrosion product film are highlighted by the yellow triangles.
Fig. 18. Schematic of corrosion progress of Mg-Gd-Cu/Ni alloys. (a1-c1, a3-c3) and (a2-c2, a4-c4) show transverse and longitudinal topographies, respectively. Corrosion occurred preferentially at grain boundaries and expanded into the grain interior (highlighted by the black shadows near grain boundaries in b1, b3, c1, and c3). The α-Mg matrix in the vicinity Mg2Cu phases was corroded prior to the Mg2Cu phases (highlighted by the black polygons in b1), whereas LPSO phases were corroded before the α-Mg matrix (highlighted by black polygons in b3). LPSO phases dispersed along the ED accelerated the longitudinal development of corrosion and grains with the (0001) tilting to the ED showed lower corrosion resistance.
[1] |
A. Atrens, Z.N. Shi, S.U. Mehreen, S. Johnston, G.L. Song, X.H. Chen, F.S. Pan, J. Magnes. Alloy. 8 (2020) 989-998.
DOI URL |
[2] |
D. Mei, S.V. Lamaka, X. Lu, M.L. Zheludkevich, Corros. Sci. 171 (2020) 108722.
DOI URL |
[3] |
D.H. Xiao, Z.W. Geng, L. Chen, Z. Wu, H.Y. Diao, M. Song, P.F. Zhou, Metall. Mater. Trans. A 46 (2015) 4793-4803.
DOI URL |
[4] |
X.W. Wang, W. Wang, W. Chen, D.M. Chen, J. Mater. Sci. Technol. 98 (2022) 219-232.
DOI |
[5] |
N. Hort, Y. Huang, D. Fechner, M. Stormer, C. Blawert, F. Witte, C. Vogt, H. Drucker, R. Willumeit, K.U. Kainer, F. Feyerabend, Acta Biomater. 6 (2010) 1714-1725.
DOI PMID |
[6] |
W. Rong, Y. Zhang, Y.J. Wu, Y.L. Chen, T. Tang, L.M. Peng, D.Y. Li, Mater. Charact. 131 (2017) 380-387.
DOI URL |
[7] |
T.S. Zhao, Y.B. Hu, B. He, C. Zhang, T.X. Zheng, F.S. Pan, Mater. Sci. Eng. A 765 (2019) 138292.
DOI URL |
[8] |
X. Zhang, J. Dai, H. Yang, S. Liu, X. He, Z. Wang, Mater. Technol. 32 (2017) 399-408.
DOI URL |
[9] |
A. Srinivasan, Y. Huang, C.L. Mendis, C. Blawert, K.U. Kainer, N. Hort, Mater. Sci. Eng. A 595 (2014) 224-234.
DOI URL |
[10] |
J.X. Chen, L.L. Tan, X.M. Yu, K. Yang, J. Mater. Sci. Technol. 35 (2019) 503-511.
DOI URL |
[11] |
Z.M. Shi, F.Y. Cao, G.L. Song, M. Liu, A. Atrens, Corros. Sci. 76 (2013) 98-118.
DOI URL |
[12] |
L.S. Wang, J.H. Jiang, T. Yuan, Q.Y. Xie, H. Liu, A.B. Ma, Met. Mater. Int. 26 (2019) 551-563.
DOI URL |
[13] |
Y.N. Nie, J.W. Dai, X. Li, X.B. Zhang, J. Magnes. Alloy. 9 (2020) 1123-1146.
DOI URL |
[14] |
J. Wang, T. Li, H.X. Li, Y.Z. Ma, K.N. Zhao, C.L. Yang, J.S. Zhang, J. Magnes. Alloy. 9 (2021) 1632-1643.
DOI URL |
[15] |
K. Ma, S.J. Liu, C.N. Dai, X.Y. Liu, J. Ren, Y.L. Pan, Y.H. Peng, C. Su, J.F. Wang, F.S. Pan, J. Mater. Sci. Technol. 91 (2021) 121-133.
DOI URL |
[16] | Z.H. Han, K. Zhang, J. Yang, R. Wei, C.J. Zhang, Mater. Corros. 70 (2019) 537-548. |
[17] |
Z.H. Han, K. Zhang, J. Yang, R. Wei, Y.X. Liu, C.J. Zhang, J. Mater. Eng. Perform. 28 (2019) 2451-2458.
DOI URL |
[18] |
J.F. Wang, S.Q. Gao, X.Y. Liu, X. Peng, K. Wang, S.J. Liu, W.Y. Jiang, S.F. Guo, F.S. Pan, J. Magnes. Alloy. 8 (2020) 127-133.
DOI URL |
[19] |
K. Ma, J.F. Wang, J. Ren, C.N. Dai, S.J. Liu, Y.H. Peng, Y.L. Pan, Mater. Charact. 181 (2021) 111489.
DOI URL |
[20] |
Z.W. Geng, D.H. Xiao, L. Chen, J. Alloys Compd. 686 (2016) 145-152.
DOI URL |
[21] | L. Chen, Z. Wu, D.H. Xiao, Z.W. Geng, P.F. Zhou, Mater. Corros. 66 (2015) 1159-1168. |
[22] |
Y.Z. Zhang, X.Y. Wang, Y.F. Kuang, B.S. Liu, K.W. Zhang, D.Q. Fang, Mater. Lett. 195 (2017) 194-197.
DOI URL |
[23] |
W. Tan, T.S. Li, S.Z. Li, D.Q. Fang, X.D. Ding, J. Sun, J. Mater. Sci. Technol. 94 (2021) 22-31.
DOI URL |
[24] |
Y. Kawamura, K. Hayashi, A. Inoue, T. Masumoto, Mater. Trans. 42 (2001) 1172-1176.
DOI URL |
[25] |
Y.L. Guo, Q. Luo, B. Liu, Q. Li, Scr. Mater. 178 (2020) 422-427.
DOI URL |
[26] |
Y.L. Zhou, Q. Luo, B. Jiang, Q. Li, F.S. Pan, Scr. Mater. 208 (2022) 114345.
DOI URL |
[27] |
M. Yamasaki, S. Izumi, Y. Kawamura, H. Habazaki, Appl. Surf. Sci. 257 (2011) 8258-8267.
DOI URL |
[28] |
K. Hagihara, M. Okubo, M. Yamasaki, T. Nakano, Corros. Sci. 109 (2016) 68-85.
DOI URL |
[29] | D. Drozdenko, M. Yamasaki, K. Mathis, P. Dobron, S.I. Inoue, Y. Kawamura, Ma- terials 14 (2021) 7278. |
[30] |
S.Y. Zhong, D.F. Zhang, S. Chai, J. Zhou, J.R. Hua, J. Y.Xu, B. Jiang, F.S. Pan, J. Mater. Res. Technol. 15 (2021) 477-487.
DOI URL |
[31] |
S.Y. Zhong, D.F. Zhang, J.Y. Xu, J. Zhou, Y. Zhao, J. Feng, Y. Wang, B. Jiang, F. Pan, J. Electrochem. Soc. 168 (2021) 071504.
DOI URL |
[32] |
S.Y. Zhong, D.F. Zhang, S. Chai, J.Y. Xu, X.X. Zhang, X. Han, Z. Liu, Y.F. Sheng, B. Jiang, F.S. Pan, J. Electrochem. Soc. 168 (2021) 101503.
DOI URL |
[33] |
S.Z. Zhu, T.J. Luo, T.G. Zhang, Y.J. Li, Y.S. Yang, Mater. Sci. Eng. A 689 (2017) 203-211.
DOI URL |
[34] |
Y.C. Lee, A.K. Dahle, D.H. StJohn, Metall. Mater. Trans. A 31 (2000) 2895-2906.
DOI URL |
[35] | H.M. Zhu, C.P. Luo, J.W. Liu, D.L. Jiao, Trans. Nonferrous Met. Soc. China 24 (2014) 605-610. |
[36] |
Y. Ali, D. Qiu, B. Jiang, F.S. Pan, M.X. Zhang, J. Alloys Compd. 619 (2015) 639-651.
DOI URL |
[37] |
D.H. StJohn, M. Qian, M.A. Easton, P. Cao, Z. Hildebrand, Metall. Mater. Trans. A 36 (2005) 1669-1679.
DOI URL |
[38] |
J.D. Robson, D.T. Henry, B. Davis, Acta Mater. 57 (2009) 2739-2747.
DOI URL |
[39] |
C. Xu, G.H. Fan, T. Nakata, X. Liang, Y.Q. Chi, X.G. Qiao, G.J. Cao, T.T. Zhang, M. Huang, K.S. Miao, M.Y. Zheng, S. Kamado, H.L. Xie, Metall. Mater. Trans. A 49 (2018) 1931-1947.
DOI URL |
[40] |
S.Q. Chen, X.P. Dong, R. Ma, L. Zhang, H. Wang, Z.T. Fan, Mater. Sci. Eng. A 551 (2012) 87-94.
DOI URL |
[41] |
X.D. Yan, P. Wan, L.L. Tan, M.C. Zhao, L. Qin, K. Yang, Mater. Sci. Eng. C 93 (2018) 565-581.
DOI URL |
[42] | K. Hagihara, N. Yokotani, Y. Umakoshi, Intermetallics 18 (2010) 267-276. |
[43] | K. Hagihara, A. Kinoshita, Y. Sugino, M. Yamasaki, Y. Kawamura, H.Y. Yasuda, Y. Umakoshi, Intermetallics 18 (2010) 1079-1085. |
[44] |
K. Hagihara, A. Kinoshita, Y. Sugino, M. Yamasaki, Y. Kawamura, H.Y. Yasuda, Y. Umakoshi, Acta Mater. 58 (2010) 6282-6293.
DOI URL |
[45] |
N. Stanford, M.R. Barnett, Mater. Sci. Eng. A 496 (2008) 399-408.
DOI URL |
[46] |
J. Zhao, B. Jiang, Y. Yuan, A.T. Tang, Q.H. Wang, T.H. Yang, G.S. Huang, D. F. Zhang, F.S. Pan, Mater. Sci. Eng. A 785 (2020) 139344.
DOI URL |
[47] |
J.B. Lyu, J.H. Kim, H.X. Liao, J. She, J.F. Song, J. Peng, F.S. Pan, B. Jiang, Mater. Sci. Eng. A 773 (2020) 138735.
DOI URL |
[48] |
H.H. Yu, Y.C. Xin, M.Y. Wang, Q. Liu, J. Mater. Sci. Technol. 34 (2018) 248-256.
DOI URL |
[49] |
W. Fu, R.H. Wang, K. Wu, J. Kuang, J.Y. Zhang, G. Liu, J. Sun, J. Mater. Sci. 54 (2018) 2628-2647.
DOI URL |
[50] |
G.L. Bi, Y.X. Han, J. Jiang, Y.D. Li, D.Y. Zhang, Mater. Sci. Eng. A 760 (2019) 246-257.
DOI URL |
[51] | A. Zergani, H. Mirzadeh, R. Mahmudi, Steel Res. Int. 91 (2020) 20 0 0114. |
[52] |
X.H. Shao, Z.Q. Yang, X.L. Ma, Acta Mater. 58 (2010) 4760-4771.
DOI URL |
[53] |
K.H. Fekete, D. Drozdenko, J. Čapek, K. Máthis, D. Tolnai, A. Stark, G. Garcés, P. Dobroň, J. Magnes. Alloy. 8 (2020) 199-209.
DOI URL |
[54] |
Q. Luo, Y.L. Guo, B. Liu, Y.J. Feng, J.Y. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol. 44 (2020) 171-190.
DOI |
[55] |
M. Esmaily, J.E. Svensson, S. Fajardo, N. Birbilis, G.S. Frankel, S. Virtanen, R. Arrabal, S. Thomas, L.G. Johansson, Prog. Mater. Sci. 89 (2017) 92-193.
DOI URL |
[56] |
Y. Lu, A.R. Bradshaw, Y.L. Chiu, I.P. Jones, Mater. Sci. Eng. C 48 (2015) 480-486.
DOI URL |
[57] |
L.S. Wang, J.H. Jiang, H. Liu, B. Saleh, A.B. Ma, J. Magnes. Alloy. 8 (2020) 1208-1220.
DOI URL |
[58] |
S.Q. Yin, W.C. Duan, W.H. Liu, L. Wu, J.M. Yu, Z.L. Zhao, M. Liu, P. Wang, J.Z. Cui, Z.Q. Zhang, Corros. Sci. 166 (2020) 108419.
DOI URL |
[59] |
P.P. Wu, F.J. Xu, K.K. Deng, F.Y. Han, Z.Z. Zhang, R. Gao, Corros. Sci. 127 (2017) 280-290.
DOI URL |
[60] |
H.B. Yang, L. Wu, B. Jiang, B. Lei, W.J. Liu, J.F. Song, A. Atrens, G.S. Huang, D. F. Zhang, F.S. Pan, J. Electrochem. Soc. 167 (2020) 110529.
DOI URL |
[61] |
F.Y. Cao, Z.M. Shi, J. Hofstetter, P.J. Uggowitzer, G.L. Song, M. Liu, A. Atrens, Corros. Sci. 75 (2013) 78-99.
DOI URL |
[62] |
Q. Li, Y.F. Lu, Q. Luo, X. Yang, Y.H. Yang, J. Tan, Z.H. Dong, J. Dang, J.B. Li, Y. Chen, B. Jiang, S.H. Sun, F.S. Pan, J. Magnes. Alloy. 9 (2021) 1922-1941.
DOI URL |
[63] | E.L. Silva, S.V. Lamaka, D. Mei, M.L. Zheludkevich, ChemistryOpen 7 (2018) 664-668. |
[64] |
Y. Hu, N. Yu, L.Z. Zhao, G.G. Chen, Int. J. Cast Met. Res. 30 (2017) 317-321.
DOI URL |
[65] |
L. Yang, Y.D. Huang, Q.M. Peng, F. Feyerabend, K.U. Kainer, R. Willumeit, N. Hort, Mater. Sci. Eng. B 176 (2011) 1827-1834.
DOI URL |
[66] |
H. Zengin, Y. Turen, H. Ahlatci, Y. Sun, J. Mater. Eng. Perform. 27 (2018) 389-397.
DOI URL |
[67] |
G.M. Naik, B.N. Anjan, S. Narendranath, S.S.S. Kumar, G.V.P. Kumar, Mater. Res. Express 6 (2019) 096538.
DOI URL |
[68] | J. Yang, J. Peng, M. Li, E.A. Nyberg, F.S. Pan, Acta Metall. Sin.-Engl. Lett. 30 (2017) 53-65. |
[69] | H. Zengin, Y. Turen, H. Ahlatci, Y. Sun, Rare Metals 39 (2020) 909-917. |
[70] |
L.B. Tong, Q.X. Zhang, Z.H. Jiang, J.B. Zhang, J. Meng, L.R. Cheng, H.J. Zhang, J. Mech. Behav. Biomed. Mater. 62 (2016) 57-70.
DOI PMID |
[71] |
Q.T. Jiang, X.Z. Lv, D.Z. Lu, J. Zhang, B.R. Hou, J. Magnes. Alloy. 6 (2018) 346-355.
DOI URL |
[72] | X.M. Xiong, Y. Yang, H.J. Deng, M.M. Li, J.G. Li, G.B. Wei, X.D. Peng, Metals 9 (2019) 1212. |
[73] |
C.Q. Li, D.K. Xu, X.B. Chen, B.J. Wang, R.Z. Wu, E.H. Han, N. Birbilis, Electrochim. Acta 260 (2018) 55-64.
DOI URL |
[74] | N. Birbilis, K.D. Ralston, S. Virtanen, H.L. Fraser, C.H.J. Davies, Corros. Eng., Sci. Technol. 45 (2013) 224-230. |
[75] |
G.R. Argade, S.K. Panigrahi, R.S. Mishra, Corros. Sci 58 (2012) 145-151.
DOI URL |
[76] |
S. Gollapudi, Corros. Sci. 62 (2012) 90-94.
DOI URL |
[77] |
H.B. Yang, L. Wu, B. Jiang, B. Lei, W.J. Liu, J.F. Song, G.S. Huang, D.F. Zhang, F.S. Pan, J. Electrochem. Soc. 167 (2020) 130515.
DOI URL |
[78] |
B.Q. Fu, W. Liu, Z.L. Li, Appl. Surf. Sci. 255 (2009) 9348-9357.
DOI URL |
[79] |
G.L. Song, R. Mishra, Z. Xu, Electrochem. Commun. 12 (2010) 1009-1012.
DOI URL |
[80] |
G.L. Song, Z. Xu, Corros. Sci. 63 (2012) 100-112.
DOI URL |
[81] | Q. Xiang, B. Jiang, Y.X. Zhang, X.B. Chen, J.F. Song, J.Y. Xu, L. Fang, F.S. Pan, Corros. Sci 119 (2017) 14-22. |
[82] |
V. Beura, D. Zhang, N. Overman, J. Darsell, D.R. Herling, K. Solanki, V.V. Joshi, Corros. Sci. 197 (2022) 110074.
DOI URL |
[83] |
G. Song, A. Atrens, M. Dargusch, Corros. Sci. 41 (1998) 249-273.
DOI URL |
[84] |
A. Atrens, G.L. Song, M. Liu, Z.M. Shi, F.Y. Cao, M.S. Dargusch, Adv. Eng. Mater. 17 (2015) 400-453.
DOI URL |
[1] | Jin Ba, Xu Ji, Bin Wang, Peixin Li, Jinghuang Lin, Jian Cao, Junlei Qi. Microstructure design of C/C composites through electrochemical corrosion for brazing to Nb [J]. J. Mater. Sci. Technol., 2022, 104(0): 33-40. |
[2] | Xiaojia Yang, Ying Yang, Meihui Sun, Jinghuan Jia, Xuequn Cheng, Zibo Pei, Qing Li, Di Xu, Kui Xiao, Xiaogang Li. A new understanding of the effect of Cr on the corrosion resistance evolution of weathering steel based on big data technology [J]. J. Mater. Sci. Technol., 2022, 104(0): 67-80. |
[3] | J.C. Wang, Y.J. Liu, S.X. Liang, Y.S. Zhang, L.Q. Wang, T.B. Sercombe, L.C. Zhang. Comparison of microstructure and mechanical behavior of Ti-35Nb manufactured by laser powder bed fusion from elemental powder mixture and prealloyed powder [J]. J. Mater. Sci. Technol., 2022, 105(0): 1-16. |
[4] | Rui Liu, Li Liu, Fuhui Wang. The role of hydrostatic pressure on the metal corrosion in simulated deep-sea environments — a review [J]. J. Mater. Sci. Technol., 2022, 112(0): 230-238. |
[5] | Sensen Chai, Shiyu Zhong, Qingshan Yang, Daliang Yu, Qingwei Dai, Hehe Zhang, Limeng Yin, Gang Wang, Zongxiang Yao. Transformation of Laves phases and its effect on the mechanical properties of TIG welded Mg-Al-Ca-Mn alloys [J]. J. Mater. Sci. Technol., 2022, 120(0): 108-117. |
[6] | Da-Hai Xia, Cheng-Man Deng, Digby Macdonald, Sina Jamali, Douglas Mills, Jing-Li Luo, Michael G. Strebl, Mehdi Amiri, Weixian Jin, Shizhe Song, Wenbin Hu. Electrochemical measurements used for assessment of corrosion and protection of metallic materials in the field: A critical review [J]. J. Mater. Sci. Technol., 2022, 112(0): 151-183. |
[7] | Suyun Liu, Xuewan Wang, Qi Yin, Xiongzhi Xiang, Xian-Zhu Fu, Xian-Zong Wang, Jing-Li Luo. A facile approach to fabricating graphene/waterborne epoxy coatings with dual functionalities of barrier and corrosion inhibitor [J]. J. Mater. Sci. Technol., 2022, 112(0): 263-276. |
[8] | Yu Liao, Junhua Bai, Fuwen Chen, Guanglong Xu, Yuwen Cui. Microstructural strengthening and toughening mechanisms in Fe-containing Ti-6Al-4V: A comparison between homogenization and aging treated states [J]. J. Mater. Sci. Technol., 2022, 99(0): 114-126. |
[9] | Haibo Zhang, Metin Örnek, Simanta Lahkar, Shuangxi Song, Xiaodong Wang, Richard A. Haber, Kolan Madhav Reddy. Enhanced densification and mechanical properties of β-boron by in-situ formed boron-rich oxide [J]. J. Mater. Sci. Technol., 2022, 99(0): 148-160. |
[10] | Heng Duan, Bin Liu, Ao Fu, Junyang He, Tao Yang, C.T. Liu, Yong Liu. Segregation enabled outstanding combination of mechanical and corrosion properties in a FeCrNi medium entropy alloy manufactured by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 99(0): 207-214. |
[11] | Taiqian Mo, Zejun Chen, Dayu Zhou, Guangming Lu, Yongmeng Huang, Qing Liu. Effect of lamellar structural parameters on the bending fracture behavior of AA1100/AA7075 laminated metal composites [J]. J. Mater. Sci. Technol., 2022, 99(0): 28-38. |
[12] | Tianbing He, Tiwen Lu, Daniel Şopu, Xiaoliang Han, Haizhou Lu, Kornelius Nielsch, Jürgen Eckert, Nevaf Ciftci, Volker Uhlenwinkel, Konrad Kosiba, Sergio Scudino. Mechanical behavior and deformation mechanism of shape memory bulk metallic glass composites synthesized by powder metallurgy [J]. J. Mater. Sci. Technol., 2022, 114(0): 42-54. |
[13] | Tao Liang, Huanhuan Zhang, Haobo Pan, Ying Zhao. Insight into microbiologically induced corrosion performance of magnesium in tryptic soy broth with S. aureus and E. coli [J]. J. Mater. Sci. Technol., 2022, 115(0): 221-231. |
[14] | Hongge Li, Wenjie Zhao, Tian Chen, Yongjiang Huang, Jianfei Sun, Ping Zhu, Yunzhuo Lu, Alfonso H.W. Ngan, Daqing Wei, Qing Du, Yongchun Zou. Beneficial effects of deep cryogenic treatment on mechanical properties of additively manufactured high entropy alloy: cyclic vs single cryogenic cooling [J]. J. Mater. Sci. Technol., 2022, 115(0): 40-51. |
[15] | Qimin Shi, Shoufeng Yang, Yi Sun, Yifei Gu, Ben Mercelis, Shengping Zhong, Bart Van Meerbeek, Constantinus Politis. In-situ formation of Ti-Mo biomaterials by selective laser melting of Ti/Mo and Ti/Mo2C powder mixtures: A comparative study on microstructure, mechanical and wear performance, and thermal mechanisms [J]. J. Mater. Sci. Technol., 2022, 115(0): 81-96. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||