J. Mater. Sci. Technol. ›› 2022, Vol. 125: 67-80.DOI: 10.1016/j.jmst.2022.02.037
• Research Article • Previous Articles Next Articles
Shan Chena,b, Zhongyu Huanga,b, Mingzhe Yuanb, Guang Huanga,b, Honglei Guoa,*(), Guozhe Menga,*(
), Zhiyuan Fenga,*(
), Ping Zhangb,*(
)
Received:
2021-11-09
Revised:
2022-01-22
Accepted:
2022-02-13
Published:
2022-04-14
Online:
2022-04-14
Contact:
Honglei Guo,Guozhe Meng,Zhiyuan Feng,Ping Zhang
About author:
pzhang@um.edu.mo (P. Zhang).Shan Chen, Zhongyu Huang, Mingzhe Yuan, Guang Huang, Honglei Guo, Guozhe Meng, Zhiyuan Feng, Ping Zhang. Trigger and response mechanisms for controlled release of corrosion inhibitors from micro/nanocontainers interpreted using endogenous and exogenous stimuli: A review[J]. J. Mater. Sci. Technol., 2022, 125: 67-80.
Metal | Anodic reactions | Cathodic reactions |
---|---|---|
Zn | Zn → Zn2+ + 2e-Zn2+ + mH2O → [Zn(OH)m](2-m)+ + mH+ (m = 1-2) | Neutral or alkaline solution:2H2O + 2e- → 2OH- +H2↑O2 + 2H2O + 4e- → 4OH-Acidic solution:2H+ + 2e- → H2↑O2 + 4H+ + 4e- = 2H2O |
Al | Al → Al3+ + 3e-Al3+ + nH2O → [Al(OH)n](3-n)+ + nH+ (n = 1-3) | |
Mg | Mg → Mg2+ + 2e-Mg2+ + 2H2O → Mg(OH)2 + 2H+ | |
Fe | Fe → Fe2+ + 2e-Fe2+ → Fe3+ + e-xFe2+ + yO2 + H2O → Fe3O4, Fe2O3, Fe(OH)3, Fe(OH)3·3H2OFe3+ + nH2O → [Fe(OH)n](3-n)+ + nH+ (n = 1-3) |
Table 1. Anodic and cathodic reactions of common metals.
Metal | Anodic reactions | Cathodic reactions |
---|---|---|
Zn | Zn → Zn2+ + 2e-Zn2+ + mH2O → [Zn(OH)m](2-m)+ + mH+ (m = 1-2) | Neutral or alkaline solution:2H2O + 2e- → 2OH- +H2↑O2 + 2H2O + 4e- → 4OH-Acidic solution:2H+ + 2e- → H2↑O2 + 4H+ + 4e- = 2H2O |
Al | Al → Al3+ + 3e-Al3+ + nH2O → [Al(OH)n](3-n)+ + nH+ (n = 1-3) | |
Mg | Mg → Mg2+ + 2e-Mg2+ + 2H2O → Mg(OH)2 + 2H+ | |
Fe | Fe → Fe2+ + 2e-Fe2+ → Fe3+ + e-xFe2+ + yO2 + H2O → Fe3O4, Fe2O3, Fe(OH)3, Fe(OH)3·3H2OFe3+ + nH2O → [Fe(OH)n](3-n)+ + nH+ (n = 1-3) |
Stimuli | Micro/nanocontainer | Container type | Inhibitor | Coating | Substrate | Refs. |
---|---|---|---|---|---|---|
alkali | SiO2/PEI/PSS/BTA/PSS/BTA | Hybrid | BTA | ZrO2/SiO2 | Al alloy AA2024 | [ |
alkali | SiO2/PEI/PSS/PEI/PSS | Hybrid | 2-(benzothiazol-2-ylsulfanyl)-succinic acid | SiOx-ZrOx | Al alloy AA2024 | [ |
alkali | PSS-BTA/PEI | Organic | BTA | SiOx/ZrOy | carbon steel | [ |
alkali,or acid | HMSNs with CB[ | Hybrid | BTA | ZrO2-SiO2 | Al alloy AA2024 | [ |
acid | CaCO3 microbeads | Inorganic | Ce3+, Sal, DMTD | epoxy | Al alloy AA2024-T3 | [ |
acid | HAP microparticles | Inorganic | Ce3+, La3+, Sal, 8-HQ | SiO2-ZrO2 | Al alloy AA2024-T3 | [ |
alkali | MSNs | Inorganic | NaF | Ni | Mg alloy AZ31 | [ |
redox | PANI,PPy | Organic | PDMS-DE, PDMS-DC | PVA, acrylate | / | [ |
redox | RTSNs 1 | Organic | CA | Ce4+-doped and RTSNs 1 incorporated bi-layered ZrO2-SiO2 coating | Al alloy AA2024 | [ |
redox | TESPT-based SiO2 nanocapsules | Hybrid | MBT | / | / | [ |
redox | PANI shell with AuNPs | Hybrid | 3-NisA | PVB | Zn plates | [ |
ion-exchange | Zn-Al LDHs | Inorganic | VOx, HxPO4, MBT | epoxy | Al alloy AA2024 | [ |
ion-exchange | Na+-MMT | Inorganic | BIA+, Zn2+ | epoxy ester | mild steel panels | [ |
ion-exchange | Mg2Al6 LDH,CeMo | Inorganic | MBT | epoxy | galvanized steel | [ |
ion-exchange | Zn2Al LDH | Inorganic | MoO42- | epoxy | galvanized steel | [ |
ion-exchange | MgAl LDH | Inorganic | MBT | / | Mg alloy AZ31 | [ |
temperature,alkali,or redox | SiO2/polymer double-walled hybrid nanotubes | Hybrid | BTA | SiOx/ZrOy | carbon steel | [ |
magnetic field | MWCNTs/BTA-poly(urea-formaldehyde) | Hybrid | BTA | epoxy resin | Cu | [ |
light | TiO2/PEI/PSS/8-HQ/PSS/PEI | Hybrid | 8-HQ | / | Al alloy AA6061-T6 | [ |
light | TiO2/PEI/PSS/PEI/PSS | Hybrid | BTA | SiOx-ZrOx | Al alloy AA2024 | [ |
light | TiO2 core with AgNPs/PEI/PSS/PEI/PSS | Hybrid | BTA | SiOx-ZrOx | Al alloy AA2024 | [ |
light | TiN NPs/mesoporous SiO2 | Inorganic | BTA | epoxy | Al alloy AA2024-T3 | [ |
light | HMSNs with Azo | Hybrid | BTA | alkyd | Al alloy AA2024 | [ |
alkali,Mg2+ | MSNPs | Hybrid | HMAP | SNAP | Mg alloy AZ31B | [ |
acid,alkali,reduction potential | TSR-SNs | Hybrid | BTA | SiO2-ZrO2 | Al alloy AA2024 | [ |
acid,alkali,reduction potential | QSR-MSNPs | Hybrid | BTA | sol-gel | Al alloy AA2024 | [ |
alkali,reduction potential | PANI shell with AuNPs | Hybrid | 3-NisA, MBT | / | / | [ |
Table 2. List of micro/nanocontainers controlled release inhibitors with different stimuli-responsive types for corrosion protection of metals.
Stimuli | Micro/nanocontainer | Container type | Inhibitor | Coating | Substrate | Refs. |
---|---|---|---|---|---|---|
alkali | SiO2/PEI/PSS/BTA/PSS/BTA | Hybrid | BTA | ZrO2/SiO2 | Al alloy AA2024 | [ |
alkali | SiO2/PEI/PSS/PEI/PSS | Hybrid | 2-(benzothiazol-2-ylsulfanyl)-succinic acid | SiOx-ZrOx | Al alloy AA2024 | [ |
alkali | PSS-BTA/PEI | Organic | BTA | SiOx/ZrOy | carbon steel | [ |
alkali,or acid | HMSNs with CB[ | Hybrid | BTA | ZrO2-SiO2 | Al alloy AA2024 | [ |
acid | CaCO3 microbeads | Inorganic | Ce3+, Sal, DMTD | epoxy | Al alloy AA2024-T3 | [ |
acid | HAP microparticles | Inorganic | Ce3+, La3+, Sal, 8-HQ | SiO2-ZrO2 | Al alloy AA2024-T3 | [ |
alkali | MSNs | Inorganic | NaF | Ni | Mg alloy AZ31 | [ |
redox | PANI,PPy | Organic | PDMS-DE, PDMS-DC | PVA, acrylate | / | [ |
redox | RTSNs 1 | Organic | CA | Ce4+-doped and RTSNs 1 incorporated bi-layered ZrO2-SiO2 coating | Al alloy AA2024 | [ |
redox | TESPT-based SiO2 nanocapsules | Hybrid | MBT | / | / | [ |
redox | PANI shell with AuNPs | Hybrid | 3-NisA | PVB | Zn plates | [ |
ion-exchange | Zn-Al LDHs | Inorganic | VOx, HxPO4, MBT | epoxy | Al alloy AA2024 | [ |
ion-exchange | Na+-MMT | Inorganic | BIA+, Zn2+ | epoxy ester | mild steel panels | [ |
ion-exchange | Mg2Al6 LDH,CeMo | Inorganic | MBT | epoxy | galvanized steel | [ |
ion-exchange | Zn2Al LDH | Inorganic | MoO42- | epoxy | galvanized steel | [ |
ion-exchange | MgAl LDH | Inorganic | MBT | / | Mg alloy AZ31 | [ |
temperature,alkali,or redox | SiO2/polymer double-walled hybrid nanotubes | Hybrid | BTA | SiOx/ZrOy | carbon steel | [ |
magnetic field | MWCNTs/BTA-poly(urea-formaldehyde) | Hybrid | BTA | epoxy resin | Cu | [ |
light | TiO2/PEI/PSS/8-HQ/PSS/PEI | Hybrid | 8-HQ | / | Al alloy AA6061-T6 | [ |
light | TiO2/PEI/PSS/PEI/PSS | Hybrid | BTA | SiOx-ZrOx | Al alloy AA2024 | [ |
light | TiO2 core with AgNPs/PEI/PSS/PEI/PSS | Hybrid | BTA | SiOx-ZrOx | Al alloy AA2024 | [ |
light | TiN NPs/mesoporous SiO2 | Inorganic | BTA | epoxy | Al alloy AA2024-T3 | [ |
light | HMSNs with Azo | Hybrid | BTA | alkyd | Al alloy AA2024 | [ |
alkali,Mg2+ | MSNPs | Hybrid | HMAP | SNAP | Mg alloy AZ31B | [ |
acid,alkali,reduction potential | TSR-SNs | Hybrid | BTA | SiO2-ZrO2 | Al alloy AA2024 | [ |
acid,alkali,reduction potential | QSR-MSNPs | Hybrid | BTA | sol-gel | Al alloy AA2024 | [ |
alkali,reduction potential | PANI shell with AuNPs | Hybrid | 3-NisA, MBT | / | / | [ |
Fig. 1. Schematic illustration of CISC composition and pH-responsive CISCs releasing BTA. Reprinted with permission from Ref. [104]. Copyright 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fig. 2. (A) Schematic representations of CISC synthesis and alkali-responsive CISCs releasing BTA. (B) Schematic representations of CISC synthesis and acid-responsive CISCs releasing BTA. Reprinted with permission from Ref. [102]. Copyright 2012 IOP Publishing Ltd.
Fig. 3. Schematic mechanism of CaCO3 microbeads releasing corrosion inhibitors at different fractions of Ca2+ containing ions and pH value in solution. Reprinted with permission from Ref. [107]. Copyright 2012 Elsevier.
Fig. 4. Schematic diagram of the MBT release mechanism from CISCs upon reduction and oxidation. Reprinted with permission from ref. [113]. Copyright 2016 Royal Society of Chemistry.
Fig. 5. (A) Schematic preparation of RTSNs 1. (B) Schematic depicting of the release mechanism of redox-responsive CISCs. Reprinted with permission from Ref. [109]. Copyright 2017 Royal Society of Chemistry.
Fig. 6. (A) Cumulative release of PDMS-DE from PANI capsules under different oxidized and/or reduced conditions and schematic representation of the release mechanism. (B) Cumulative release of 3-NisA from PANI capsules under reduced (gray-shaded area, b and d) and oxidized conditions (white background, a and c) and schematic representation of the release mechanism. Reprinted with permission from Refs. [117] and [11], respectively. Copyright 2013 American Chemical Society and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, respectively.
Fig. 7. Schematic release mechanism of LDHs for entrapping aggressive species (Cl-) from the environment and releasing anionic inhibitors (Inh-) onto metallic substrate surfaces to achieve self-healing. Reprinted with permission from Ref. [127]. Copyright 2010 American Chemical Society.
Fig. 8. Schematic representation of the temperature-responsive SiO2/PNIPAM hybrid nanotubes. Reprinted with permission from Ref. [95]. Copyright 2013 American Chemical Society.
Fig. 9. Schematic self-healing acceleration mechanism of the scratched coating containing MWCNTs as functional additives. Reprinted with permission from Ref. [28]. Copyright 2017 Elsevier.
Fig. 10. Schematic cross-sectional diagram of the smart coating loaded with TiO2/PEI/PSS/8-HQ/PSS/PEI layers. Reprinted with permission from Ref. [143]. Copyright 2013 Elsevier.
Fig. 11. Schematic self-healing mechanism of the smart coating with incorporated photothermo-responsive TiN-BTA@mSiO2 CISCs. Reprinted with permission from Ref. [135]. Copyright 2020 Elsevier.
Fig. 12. Schematic self-healing mechanism of the smart coating immobilized with alkali/Mg2+ dual stimuli-responsive CISCs. Reprinted with permission from Ref. [30]. Copyright 2016 Royal Society of Chemistry.
Fig. 13. (A) Reduction potential-triggered release profiles of BTA from CISCs. (B) Alkali-triggered release profiles of BTA from CISCs under different alkalinity values. (C) Acid-triggered release profiles of BTA from CISCs under different acidity values. Reprinted with permission from Ref. [150]. Copyright 2019 American Chemical Society.
Fig. 14. Schematic illustration of the selective release mechanism of 3-NisA or MBT in the dual-responsive CISCs upon pH change or reduction. Reprinted with permission from Ref. [152]. Copyright 2014 American Chemical Society.
[1] |
S.M. Lashgari, H. Yari, M. Mahdavian, B. Ramezanzadeh, G. Bahlakeh, M. Ramezanzadeh, Corros. Sci. 178 (2021) 109099.
DOI URL |
[2] |
A. Dehghani, G. Bahlakeh, B. Ramezanzadeh, A. hossein Mostafatabar, M. Ramezanzadeh, Constr. Build. Mater. 261 (2020) 119923.
DOI URL |
[3] |
G. Wu, J. An, D. Sun, X. Tang, Y. Xiang, J. Yang, J. Mater. Chem. A 2 (2014) 11614-11620.
DOI URL |
[4] | H. Akhavan, M. Izadi, I. Mohammadi, T. Shahrabi, B. Ramezanzadeh, J. Electrochem. Soc. 165 (2018) C670-C680. |
[5] | G.H. Koch, M.P. Brongers, N.G. Thompson, Y.P. Virmani, J.H. Payer, FHWA-RD-01-156 (2002). |
[6] |
B. Hou, X. Li, X. Ma, C. Du, D. Zhang, M. Zheng, W. Xu, D. Lu, F. Ma, NPJ Mater. Degrad. 1 (2017) 1-10.
DOI URL |
[7] |
Y. Liang, M. Wang, C. Wang, J. Feng, J. Li, L. Wang, J. Fu, Nanoscale Res. Lett. 11 (2016) 231.
DOI PMID |
[8] |
N. Parhizkar, B. Ramezanzadeh, T. Shahrabi, Appl. Surf. Sci. 439 (2018) 45-59.
DOI URL |
[9] |
D.G. Shchukin, M. Zheludkevich, K. Yasakau, S. Lamaka, M.G.S. Ferreira, H. Möhwald, Adv. Mater. 18 (2006) 1672-1678.
DOI URL |
[10] |
A.H.J. Mofidabadi, G. Bahlakeh, B. Ramezanzadeh, Colloid. Surf. A-Physicochem. Eng. Asp. 609 (2021) 125689.
DOI URL |
[11] |
A. Vimalanandan, L.P. Lv, T.H. Tran, K. Landfester, D. Crespy, M. Rohwerder, Adv. Mater. 25 (2013) 6980-6984.
DOI URL |
[12] |
M.F. Montemor, D.V. Snihirova, M.G. Taryba, S.V. Lamaka, I.A. Kartsonakis, A.C. Balaskas, G.C. Kordas, J. Tedim, A. Kuznetsova, M.L. Zheludkevich, M. G.S. Ferreira, Electrochim. Acta 60 (2012) 31-40.
DOI URL |
[13] |
S.V. Lamaka, D.G. Shchukin, D.V. Andreeva, M.L. Zheludkevich, H. Möhwald, M. G.S. Ferreira, Adv. Funct. Mater. 18 (2008) 3137-3147.
DOI URL |
[14] |
J.M. Gaidis, Cem. Concr. Compos. 26 (2004) 181-189.
DOI URL |
[15] |
S.A. Haddadi, E. Alibakhshi, G. Bahlakeh, B. Ramezanzadeh, M. Mahdavian, J. Mol. Liq. 284 (2019) 682-699.
DOI |
[16] |
D.-H. Xia, C.-M. Deng, D. Macdonald, S. Jamali, D. Mills, J.-L. Luo, M.G. Strebl, M. Amiri, W. Jin, S. Song, W. Hu, J. Mater. Sci. Technol. 112 (2022) 151-183.
DOI URL |
[17] |
L. Kaghazchi, R. Naderi, B. Ramezanzadeh, J. Mol. Liq. 323 (2021) 114589.
DOI URL |
[18] |
M. Kasaeian, E. Ghasemi, B. Ramezanzadeh, M. Mahdavian, G. Bahlakeh, Corros. Sci. 145 (2018) 119-134.
DOI URL |
[19] |
N. Alipanah, H. Yari, M. Mahdavian, B. Ramezanzadeh, G. Bahlakeh, J. Ind. Eng. Chem. 97 (2021) 200-215.
DOI URL |
[20] |
A. Habibiyan, B. Ramezanzadeh, M. Mahdavian, G. Bahlakeh, M. Kasaeian, Chem. Eng. J. 391 (2020) 123630.
DOI URL |
[21] |
A. Dehghani, G. Bahlakeh, B. Ramezanzadeh, J. Hazard. Mater. 398 (2020) 122962.
DOI URL |
[22] |
S.A. Haddadi, S. Ghaderi, M. Sadeghi, B. Gorji, F. Ahmadijokani, A. Ramazani S. A, M. Mahdavian, M. Arjmand, J. Mol. Liq. 323 (2021) 114584.
DOI URL |
[23] |
G. Bahlakeh, M. Ramezanzadeh, B. Ramezanzadeh, J. Mol. Liq. 248 (2017) 854-870.
DOI URL |
[24] |
M. Mahdavian, M.M. Attar, Prog. Org. Coat. 66 (2009) 137-140.
DOI URL |
[25] |
M. Amini, R. Naderi, M. Mahdavian, A. Badiei, Micropor. Mesopor,. Mater. 315 (2021) 110908.
DOI URL |
[26] |
F. Bahremand, T. Shahrabi, B. Ramezanzadeh, J. Hazard. Mater. 403 (2021) 123722.
DOI URL |
[27] |
J.V. Custódio, S.M.L. Agostinho, A.M.P. Simões, Electrochim. Acta 55 (2010) 5523-5531.
DOI URL |
[28] |
W. Wang, W. Li, W. Fan, X. Zhang, L. Song, C. Xiong, X. Gao, X. Liu, Chem. Eng. J. 332 (2018) 658-670.
DOI URL |
[29] |
M. Toorani, M. Aliofkhazraei, M. Mahdavian, R. Naderi, Corros. Sci. 178 (2021) 109065.
DOI URL |
[30] |
C. Ding, Y. Liu, M. Wang, T. Wang, J. Fu, J. Mater. Chem A 4 (2016) 8041-8052.
DOI URL |
[31] |
W.-C. Changjean, L.-Y. Huang, P.-Y. Liu, T.-C. Tsai, Micropor. Mesopor. Mater 192 (2014) 82-88.
DOI URL |
[32] |
Z. Li, B. Qin, X. Zhang, K. Wang, Y. Wei, Y. Ji, RSC Adv. 5 (2015) 104451-104457.
DOI URL |
[33] |
S. Akbarzadeh, B. Ramezanzadeh, G. Bahlakeh, M. Ramezanzadeh, J. Mol. Liq. 296 (2019) 111809.
DOI URL |
[34] |
D. Fix, D.V. Andreeva, Y.M. Lvov, D.G. Shchukin, H. Möhwald, Adv. Funct. Mater. 19 (2009) 1720-1727.
DOI URL |
[35] | M. Yeganeh, M. Omidi, S.H.H. Mortazavi, A. Etemad, M.H. Nazari, S. M. Marashi, S. Rajendran, T.A.N.H. Nguyen, S. Kakooei, M. Yeganeh, Y. Li, Corrosion Protection at the Nanoscale (Eds.), 2020, pp. 275-294. 9780128193594. |
[36] |
L. Li, C. Dong, L. Liu, J. Li, K. Xiao, D. Zhang, X. Li, Mater. Lett. 116 (2014) 318-321.
DOI URL |
[37] | T. Stimpfling, P. Vialat, H. Hintze-Bruening, P. Keil, V. Shkirskiy, P. Volovitch, K. Ogle, F. Leroux, Eur. J. Inorg. Chem (2016) 2006-2016 2016. |
[38] |
A. Nejman, M. Cie´ slak, B. Gajdzicki, B. Goetzendorf-Grabowska, A. Karaszewska, Thermochim. Acta 589 (2014) 158-163.
DOI URL |
[39] |
R. Kulˇ car, M. Friškovec, N. Hauptman, A. Vesel, M.K. Gunde, Dyes Pigm 86 (2010) 271-277.
DOI URL |
[40] |
C. Fan, J. Tang, X. Zhou, Iran. Polym. J 22 (2013) 665-675.
DOI URL |
[41] |
J. Wei, X.-J. Ju, X.-Y. Zou, R. Xie, W. Wang, Y.-M. Liu, L.-Y. Chu, Adv. Funct. Mater. 24 (2014) 3312-3323.
DOI URL |
[42] |
N.Y. Abu-Thabit, A.S. Hamdy, Surf. Coat. Technol 303 (2016) 406-424.
DOI URL |
[43] |
C. Ding, J. Xu, L. Tong, G. Gong, W. Jiang, J. Fu, ACS Appl. Mater. Interface. 9 (2017) 21034-21047.
DOI URL |
[44] |
D. Borisova, H. Möhwald, D.G. Shchukin, ACS Nano 5 (2011) 1939-1946.
DOI URL |
[45] |
E.V. Skorb, A.G. Skirtach, D.V. Sviridov, D.G. Shchukin, H. Möhwald, ACS Nano 3 (2009) 1753-1760.
DOI URL |
[46] | E.V. Skorb, D.V. Sviridov, H. Möhwald, D.G. Shchukin, Chem. Commun. (2009) 6041-6043. |
[47] | E. Shchukina, D. Grigoriev, T. Sviridova, D. Shchukin, Prog. Org. Coat. 108 (2017) 84-89. |
[48] |
P. Vijayan P, Y.M. Hany El-Gawady, M.A.S.A. Al-Maadeed, Ind. Eng. Chem. Res. 55 (2016) 11186-11192.
DOI URL |
[49] |
M.L. Zheludkevich, S.K. Poznyak, L.M. Rodrigues, D. Raps, T. Hack, L.F. Dick, T. Nunes, M.G.S. Ferreira, Corros. Sci. 52 (2010) 602-611.
DOI URL |
[50] |
F. Zhong, Y. He, P. Wang, C. Chen, P. Xie, H. Li, J. Chen, React. Funct. Polym. 145 (2019) 104380.
DOI URL |
[51] |
Y. Cao, D. Zheng, X. Li, J. Lin, C. Wang, S. Dong, C. Lin, ACS Appl. Mater. Interface. 10 (2018) 15150-15162.
DOI URL |
[52] |
A. Ghazi, E. Ghasemi, M. Mahdavian, B. Ramezanzadeh, M. Rostami, Corros. Sci. 94 (2015) 207-217.
DOI URL |
[53] |
G. Williams, H.N. McMurray, M.J. Loveridge, Electrochim. Acta 55 (2010) 1740-1748.
DOI URL |
[54] |
S.A.S. Dias, S.V. Lamaka, C.A. Nogueira, T.C. Diamantino, M.G.S. Ferreira, Corros. Sci. 62 (2012) 153-162.
DOI URL |
[55] |
D. Snihirova, S.V. Lamaka, M. Taryba, A.N. Salak, S. Kallip, M.L. Zheludkevich, M.G.S. Ferreira, M.F. Montemor, ACS Appl. Mater. Interface. 2 (2010) 3011-3022.
DOI URL |
[56] |
M. Wang, M. Liu, J. Fu, J. Mater. Chem. A 3 (2015) 6423-6431.
DOI URL |
[57] |
I.A. Kartsonakis, A.C. Balaskas, G.C. Kordas, Corros. Sci. 53 (2011) 3771-3779.
DOI URL |
[58] |
W. Sun, L. Wang, T. Wu, G. Liu, Corros. Sci. 82 (2014) 1-6.
DOI URL |
[59] |
M.F. Montemor, M.G.S. Ferreira, Surf. Coat. Technol. 202 (2008) 4766-4774.
DOI URL |
[60] |
G. Lanzara, Y. Yoon, H. Liu, S. Peng, W.-I. Lee, Nanotechnology 20 (2009) 335704.
DOI URL |
[61] |
B. Nikpour, B. Ramezanzadeh, G. Bahlakeh, M. Mahdavian, Corros. Sci. 127 (2017) 240-259.
DOI URL |
[62] |
M. Kasaeian, E. Ghasemi, B. Ramezanzadeh, M. Mahdavian, G. Bahlakeh, Appl. Surf. Sci. 462 (2018) 963-979.
DOI URL |
[63] |
I. Recloux, M. Mouanga, M.-E. Druart, Y. Paint, M.-G. Olivier, Appl. Surf. Sci. 346 (2015) 124-133.
DOI URL |
[64] |
X.-F. Zhang, R.-J. Chen, Y.-H. Liu, J.-M. Hu, J. Mater. Chem. A 4 (2016) 649-656.
DOI URL |
[65] |
Y.-H. Liu, J.-B. Xu, J.-T. Zhang, J.-M. Hu, Corros. Sci. 120 (2017) 61-74.
DOI URL |
[66] |
S.V. Lamaka, M.L. Zheludkevich, K.A. Yasakau, R. Serra, S.K. Poznyak, M. G.S. Ferreira, Prog. Org. Coat. 58 (2007) 127-135.
DOI URL |
[67] |
S.V. Lamaka, M.L. Zheludkevich, K.A. Yasakau, M.F. Montemor, P. Cecílio, M. G.S. Ferreira, Electrochem. Commun. 8 (2006) 421-428.
DOI URL |
[68] | S.M. Bleay, C.B. Loader, V.J. Hawyes, L. Humberstone, P.T. Curtis, Compos. Prt. A 32 (2001) 1767-1776. |
[69] |
M.L. Zheludkevich, R. Serra, M.F. Montemor, M.G.S. Ferreira, Electrochem. Commun. 7 (2005) 836-840.
DOI URL |
[70] | C. Li, X. Guo, G.S. Frankel, Prog. Org. Coat. 146 (2020) 105719. |
[71] |
A.N. Khramov, N.N. Voevodin, V.N. Balbyshev, M.S. Donley, Thin Solid Film. 4 47-4 48 (2004) 549-557.
DOI URL |
[72] |
D.A. Leal, I.C. Riegel-Vidotti, M.G.S. Ferreira, C.E.B. Marino, Corros. Sci. 130 (2018) 56-63.
DOI URL |
[73] |
N. Pirhady Tavandashti, M. Ghorbani, A. Shojaei, J.M.C. Mol, H. Terryn, K. Baert, Y. Gonzalez-Garcia, Corros. Sci. 112 (2016) 138-149.
DOI URL |
[74] |
A. Latnikova, D.O. Grigoriev, J. Hartmann, H. Möhwald, D.G. Shchukin, Soft Matter 7 (2011) 369-372.
DOI URL |
[75] |
A. Yabuki, T. Shiraiwa, I.W. Fathona, Corros. Sci. 103 (2016) 117-123.
DOI URL |
[76] |
A. Yabuki, A. Kawashima, I.W. Fathona, Corros. Sci. 85 (2014) 141-146.
DOI URL |
[77] | J. Li, B. Hurley, R. Buchheit, J. Electrochem. Soc. 162 (2015) C219-C227. |
[78] |
A. Yabuki, T. Nishisaka, Corros. Sci. 53 (2011) 4118-4123.
DOI URL |
[79] | M.L. Zheludkevich, J. Tedim, C.S.R. Freire, S.C.M. Fernandes, S. Kallip, A. Lisenkov, A. Gandini, M.G.S. Ferreira, J. Mater. Chem. 21 (2011) 4 805-4 812. |
[80] |
J. Soto Puelles, M. Ghorbani, R. Yunis, L.L. Machuca, H. Terryn, M. Forsyth, A.E. Somers, ACS Omega 6 (2021) 1941-1952.
DOI URL |
[81] |
M. Taghavikish, S. Subianto, N.K. Dutta, L. de Campo, J.P. Mata, C. Rehm, N.R. Choudhury, ACS Omega 1 (2016) 29-40.
DOI PMID |
[82] |
J. Wen, J. Lei, J. Chen, J. Gou, Y. Li, L. Li, Chem. Eng. J. 392 (2020) 123742.
DOI URL |
[83] |
T. Gu, X. Liu, W. Chai, B. Li, H. Sun, J. Pet. Sci. Eng. 122 (2014) 453-457.
DOI URL |
[84] |
D. Klinger, K. Landfester, Soft Matter 7 (2011) 1426-1440.
DOI URL |
[85] |
S. Bhattacharya, F. Eckert, V. Boyko, A. Pich, Small 3 (2007) 650-657.
PMID |
[86] |
F. Cotting, I.V. Aoki, Surf. Coat. Technol. 303 (2016) 310-318.
DOI URL |
[87] |
W. Fan, W. Li, Y. Zhang, W. Wang, X. Zhang, L. Song, X. Liu, RSC Adv. 7 (2017) 46778-46787.
DOI URL |
[88] |
C. Pitakchatwong, I. Schlegel, K. Landfester, D. Crespy, S. Chirachanchai, Part. Part. Syst. Charact. 35 (2018) 1800086.
DOI URL |
[89] |
S.M. Lashgari, H. Yari, M. Mahdavian, B. Ramezanzadeh, G. Bahlakeh, M. Ramezanzadeh, J. Hazard. Mater. 404 (2021) 124068.
DOI URL |
[90] |
M. Ramezanzadeh, B. Ramezanzadeh, G. Bahlakeh, A. Tati, M. Mahdavian, Chem. Eng. J. 408 (2021) 127361.
DOI URL |
[91] |
D.G. Shchukin, H. Möhwald, Adv. Funct. Mater. 17 (2007) 1451-1458.
DOI URL |
[92] |
M.L. Zheludkevich, D.G. Shchukin, K.A. Yasakau, H. Möhwald, M.G.S. Ferreira, Chem. Mater. 19 (2007) 402-411.
DOI URL |
[93] |
Y. He, C. Zhang, F. Wu, Z. Xu, Synth. Met. 212 (2016) 186-194.
DOI URL |
[94] |
I.A. Kartsonakis, G. Kordas, J. Am. Ceram. Soc. 93 (2010) 65-73.
DOI URL |
[95] |
G.L. Li, Z. Zheng, H. Möhwald, D.G. Shchukin, ACS Nano 7 (2013) 2470-2478.
DOI URL |
[96] |
M. Rui, Y. Jiang, A. Zhu, Chem. Eng. J. 385 (2020) 123396.
DOI URL |
[97] |
P. Najmi, N. Keshmiri, M. Ramezanzadeh, B. Ramezanzadeh, Chem. Eng. J. 412 (2021) 128637.
DOI URL |
[98] |
W. Wang, H. Wang, J. Zhao, X. Wang, C. Xiong, L. Song, R. Ding, P. Han, W. Li, Chem. Eng. J. 361 (2019) 792-804.
DOI |
[99] | F. Kazemi, S.M. Naghib, S. Rajendran, T.A.N.H. Nguyen, S. Kakooei, M. Yeganeh, Y. Li, Corrosion Protection at the Nanoscale (Eds.), 2020, pp. 161-179. |
[100] |
C. Zhou, X. Xie, H. Yang, S. Zhang, Y. Li, C. Kuang, S. Fu, L. Cui, M. Liang, C. Gao, Y. Yang, C. Gao, C. Yang, Mol. Pharmaceut. 16 (2019) 2956-2965.
DOI URL |
[101] |
H. Cai, P. Wang, D. Zhang, J. Oceanol. Limnol. 38 (2020) 1045-1063.
DOI URL |
[102] |
T. Chen, J. Fu, Nanotechnology 23 (2012) 505705.
DOI URL |
[103] |
E.V. Skorb, D. Fix, D.V. Andreeva, H. Möhwald, D.G. Shchukin, Adv. Funct. Mater. 19 (2009) 2373-2379.
DOI URL |
[104] |
G.L. Li, M. Schenderlein, Y. Men, H. Möhwald, D.G. Shchukin, Adv. Mater. Interface. 1 (2014) 1300019.
DOI URL |
[105] | N.M. Khashab, A. Trabolsi, Y.A. Lau, M.W. Ambrogio, D.C. Friedman, H.A. Khatib, J.I. Zink, J.F. Stoddart, Eur. J. Org. Chem. (2009) 1669-1673. |
[106] |
T. Wang, M. Wang, C. Ding, J. Fu, Chem. Commun. 50 (2014) 12469-12472.
DOI URL |
[107] |
D. Snihirova, S.V. Lamaka, M.F. Montemor, Electrochim. Acta 83 (2012) 439-447.
DOI URL |
[108] |
Z.-H. Xie, D. Li, Z. Skeete, A. Sharma, C.-J. Zhong, ACS Appl. Mater. Interface. 9 (2017) 36247-36260.
DOI URL |
[109] |
T. Wang, L. Tan, C. Ding, M. Wang, J. Xu, J. Fu, J. Mater. Chem. A 5 (2017) 1756-1768.
DOI URL |
[110] |
H. Cho, J. Bae, V.K. Garripelli, J.M. Anderson, H.W. Jun, S. Jo, Chem. Commun. 48 (2012) 6043-6045.
DOI URL |
[111] |
S. Iamsaard, F. Seidi, N. Dararatana, D. Crespy, Macromol. Rapid Commun. 39 (2018) 1800071.
DOI URL |
[112] |
A. Rehor, J.A. Hubbell, N. Tirelli, Langmuir 21 (2005) 411-417.
DOI URL |
[113] |
S. Jiang, L. Lv, Q. Li, J. Wang, K. Landfester, D. Crespy, Nanoscale 8 (2016) 11511-11517.
DOI URL |
[114] |
M. Nakahata, Y. Takashima, H. Yamaguchi, A. Harada, Nat. Commun. 2 (2011) 511.
DOI PMID |
[115] |
J.A. Syed, S. Tang, X. Meng, Appl. Surf. Sci. 383 (2016) 177-190.
DOI URL |
[116] | N. Pirhady Tavandashti, M. Ghorbani, A. Shojaei, Y. Gonzalez-Garcia, H. Terryn, J. M.C. Mol, Prog. Org. Coat. 99 (2016) 197-209. |
[117] |
L.P. Lv, Y. Zhao, N. Vilbrandt, M. Gallei, A. Vimalanandan, M. Rohwerder, K. Landfester, D. Crespy, J. Am. Chem. Soc. 135 (2013) 14198-14205.
DOI URL |
[118] | E. Alibakhshi, E. Ghasemi, M. Mahdavian, B. Ramezanzadeh, Prog. Color. Color. Coat. 9 (2016) 233-248. |
[119] |
I. Mohammadi, T. Shahrabi, M. Mahdavian, M. Izadi, J. Ind. Eng. Chem. 95 (2021) 134-147.
DOI URL |
[120] |
I. Mohammadi, T. Shahrabi, M. Mahdavian, M. Izadi, Surf. Coat. Technol. 409 (2021) 126882.
DOI URL |
[121] | S.A. Haddadi, M. Amini, S. Ghaderi, A. Ramazani, S. A, Mater. Today Proc. 5 (2018) 15573-15579. |
[122] |
S. Bohm, H.N. McMurray, S.M. Powell, D.A. Worsley, Mater. Corros. 52 (2001) 896-903.
DOI URL |
[123] |
H.N. McMurray, D. Williams, G. Williams, D. Worsley, Corros. Eng. Sci. Technol. 38 (2013) 112-118.
DOI URL |
[124] |
J. Tedim, A. Kuznetsova, A.N. Salak, F. Montemor, D. Snihirova, M. Pilz, M. L. Zheludkevich, M.G.S. Ferreira, Corros. Sci. 55 (2012) 1-4.
DOI URL |
[125] |
J.M. Vega, N. Granizo, D. de la Fuente, J. Simancas, M. Morcillo, Prog. Org. Coat. 70 (2011) 213-219.
DOI URL |
[126] |
D. Li, F. Wang, X. Yu, J. Wang, Q. Liu, P. Yang, Y. He, Y. Wang, M. Zhang, Prog. Org. Coat. 71 (2011) 302-309.
DOI URL |
[127] |
J. Tedim, S.K. Poznyak, A. Kuznetsova, D. Raps, T. Hack, M.L. Zheludkevich, M. G.S. Ferreira, ACS Appl. Mater. Interface. 2 (2010) 1528-1535.
DOI URL |
[128] |
V. Shkirskiy, P. Keil, H. Hintze-Bruening, F. Leroux, P. Vialat, G. Lefevre, K. Ogle, P. Volovitch, ACS Appl. Mater. Interface. 7 (2015) 25180-25192.
DOI PMID |
[129] |
L.-X. Li, Z.-H. Xie, C. Fernandez, L. Wu, D. Cheng, X.-H. Jiang, C.-J. Zhong, Electrochim. Acta 330 (2020) 135186.
DOI URL |
[130] |
X. Wang, L. Li, Z.-H. Xie, G. Yu, Electrochim. Acta 283 (2018) 1845-1857.
DOI URL |
[131] |
Y. Li, Y. Ouyang, R. Fang, X. Jiang, Z.-H. Xie, L. Wu, J. Long, C.-J. Zhong, Chem. Eng. J. 430 (2022) 132776.
DOI URL |
[132] |
T. Hu, Y. Ouyang, Z.-H. Xie, L. Wu, J. Mater. Sci. Technol. 92 (2021) 225-235.
DOI URL |
[133] |
L.L. del Mercato, M.M. Ferraro, F. Baldassarre, S. Mancarella, V. Greco, R. Rinaldi, S. Leporatti, Adv. Colloid Interface Sci. 207 (2014) 139-154.
DOI URL |
[134] |
G. Cavallaro, G. Lazzara, M. Massaro, S. Milioto, R. Noto, F. Parisi, S. Riela, J. Phys. Chem. C 119 (2015) 8944-8951.
DOI URL |
[135] |
L. Ma, J. Wang, D. Zhang, Y. Huang, L. Huang, P. Wang, H. Qian, X. Li, H.A. Terryn, J.M.C. Mol, Chem. Eng. J. 404 (2021) 127118.
DOI URL |
[136] |
M. Huang, J. Yang, J. Mater. Chem. 21 (2011) 11123-11130.
DOI URL |
[137] |
X.-Z. Gao, H.-J. Liu, F. Cheng, Y. Chen, Chem. Eng. J. 283 (2016) 682-691.
DOI URL |
[138] |
K. Kulbaba, A. Cheng, A. Bartole, S. Greenberg, R. Resendes, N. Coombs, A. Safa-Sefat, J.E. Greedan, H.D.H. Stöver, G.A. Ozin, I. Manners, J. Am. Chem. Soc. 124 (2002) 12522-12534.
PMID |
[139] |
E.V. Skorb, D.V. Andreeva, Polym. Int. 64 (2015) 713-723.
DOI URL |
[140] | E.V. Skorb, D.G. Shchukin, H. Möhwald, D.V. Sviridov, J. Mater. Chem. 19 (2009) 4 931-4 937. |
[141] |
E.V. Skorb, A.G. Skirtach, D.V. Sviridov, D.G. Shchukin, M. Helmuth, ACS Nano 3 (2009) 1753-1760.
DOI URL |
[142] |
N.N. Taheri, B. Ramezanzadeh, M. Mahdavian, J. Alloys Compd. 800 (2019) 532-549.
DOI URL |
[143] |
X. He, C. Chiu, M.J. Esmacher, H. Liang, Surf. Coat. Technol. 237 (2013) 320-327.
DOI URL |
[144] |
Y. Zou, L. Fang, T. Chen, M. Sun, C. Lu, Z. Xu, Polymers 10 (2018) 474.
DOI URL |
[145] |
Y.H. Zhao, D. Vuluga, L. Lecamp, F. Burel, RSC Adv. 6 (2016) 32098-32105.
DOI URL |
[146] |
T. Chen, R. Chen, Z. Jin, J. Liu, J. Mater. Chem. A 3 (2015) 9510-9516.
DOI URL |
[147] |
T. Chen, N. Yang, J. Fu, Chem. Commun. 49 (2013) 6555-6557.
DOI URL |
[148] |
M. Wang, G. Gong, J. Feng, T. Wang, C. Ding, B. Zhou, W. Jiang, J. Fu, ACS Appl. Mater. Interface. 8 (2016) 23289-23301.
DOI URL |
[149] |
J. Fu, T. Chen, M. Wang, N. Yang, S. Li, Y. Wang, X. Liu, ACS Nano 7 (2013) 11397-11408.
DOI URL |
[150] | T. Wang, J. Du, S. Ye, L. Tan, J. Fu, ACS Appl. Mater. Interface. 11 (2019) 4 425-4 438. |
[151] |
C. Ding, L. Tong, J. Fu, Chem. Eur. J. 23 (2017) 15041-15045.
DOI URL |
[1] | Gang Zhou, Yan Yang, Hanzhu Zhang, Faping Hu, Xueping Zhang, Chen Wen, Weidong Xie, Bin Jiang, Xiaodong Peng, Fusheng Pan. Microstructure and strengthening mechanism of hot-extruded ultralight Mg-Li-Al-Sn alloys with high strength [J]. J. Mater. Sci. Technol., 2022, 103(0): 186-196. |
[2] | Yali Zhang, Yi Yan, Hua Qiu, Zhonglei Ma, Kunpeng Ruan, Junwei Gu. A mini-review of MXene porous films: Preparation, mechanism and application [J]. J. Mater. Sci. Technol., 2022, 103(0): 42-49. |
[3] | Lin Hao, Gang He, Shanshan Jiang, Zhenxiang Dai, Ganhong Zheng, Jinyu Lu, Lesheng Qiao, Jingbiao Cui. Fermi level unpinning achievement and transport modification in Hf1-xYbxOy/Al2O3/GaSb laminated stacks by doping engineering [J]. J. Mater. Sci. Technol., 2022, 121(0): 130-139. |
[4] | Yifan Dong, Shuolei Deng, Ziting Ma, Ge Yin, Changgang Li, Xunlong Yuan, Huiyun Tan, Jing Pan, Liqiang Mai, Fan Xia. Sodium vanadium oxides: From nanostructured design to high-performance energy storage materials [J]. J. Mater. Sci. Technol., 2022, 121(0): 80-92. |
[5] | Chenglong Hu, Rida Zhao, Sajjad Ali, Yuanhong Wang, Shengyang Pang, Jian Li, Sufang Tang. Deposition kinetics and mechanism of pyrocarbon for electromagnetic-coupling chemical vapor infiltration process [J]. J. Mater. Sci. Technol., 2022, 101(0): 118-127. |
[6] | Chenhao Ren, Yao Huang, Wenkui Hao, Dawei Zhang, Xiejing Luo, Lingwei Ma, Jinke Wang, Thee Chowwanonthapunya, Chaofang Dong, Xiaogang Li. Multi-action self-healing coatings with simultaneous recovery of corrosion resistance and adhesion strength [J]. J. Mater. Sci. Technol., 2022, 101(0): 18-27. |
[7] | Y.W. Qi, Z.P. Luo, X.Y. Li, K. Lu. Transition of deformation mechanisms from twinning to dislocation slip in nanograined pure cobalt [J]. J. Mater. Sci. Technol., 2022, 121(0): 124-129. |
[8] | Yanhui Cao, Dajiang Zheng, Fan Zhang, Jinshan Pan, Changjian Lin. Layered double hydroxide (LDH) for multi-functionalized corrosion protection of metals: A review [J]. J. Mater. Sci. Technol., 2022, 102(0): 232-263. |
[9] | Zhaoxin Du, Qiwei He, Ruirun Chen, Fei Liu, Jingyong Zhang, Fei Yang, Xueping Zhao, Xiaoming Cui, Jun Cheng. Rolling reduction -dependent deformation mechanisms and tensile properties in a β titanium alloy [J]. J. Mater. Sci. Technol., 2022, 104(0): 183-193. |
[10] | Inime Ime Udoh, Hongwei Shi, Enobong Felix Daniel, Jianyang Li, Songhua Gu, Fuchun Liu, En-Hou Han. Active anticorrosion and self-healing coatings: A review with focus on multi-action smart coating strategies [J]. J. Mater. Sci. Technol., 2022, 116(0): 224-237. |
[11] | S.-H. Joo, Y.B. Jeong, T. Wada, I.V. Okulov, H. Kato. Inhomogeneous dealloying kinetics along grain boundaries during liquid metal dealloying [J]. J. Mater. Sci. Technol., 2022, 106(0): 41-48. |
[12] | Xi. Rao, L. Du, J.J. Zhao, X.D. Tan, Y.X. Fang, L.Q. Xu, Y.P. Zhang. Hybrid TiO2/AgNPs/g-C3N4 nanocomposite coatings on TC4 titanium alloy for enhanced synergistic antibacterial effect under full spectrum light [J]. J. Mater. Sci. Technol., 2022, 118(0): 35-43. |
[13] | C.L. Jia, L.H. Wu, P. Xue, H. Zhang, D.R. Ni, B.L. Xiao, Z.Y. Ma. Static spheroidization and its effect on superplasticity of fine lamellae in nugget of a friction stir welded Ti-6Al-4V joint [J]. J. Mater. Sci. Technol., 2022, 119(0): 1-10. |
[14] | Jiahui Li, Yvonne Durandet, Xiaodong Huang, Guangyong Sun, Dong Ruan. Additively manufactured fiber-reinforced composites: A review of mechanical behavior and opportunities [J]. J. Mater. Sci. Technol., 2022, 119(0): 219-244. |
[15] | Shan Fu, Yuan Zhang, Yi Yang, Xiaomeng Liu, Xinxin Zhang, Lei Yang, Dake Xu, Fuhui Wang, Gaowu Qin, Erlin Zhang. An antibacterial mechanism of titanium alloy based on micro-area potential difference induced reactive oxygen species [J]. J. Mater. Sci. Technol., 2022, 119(0): 75-86. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||