J. Mater. Sci. Technol. ›› 2022, Vol. 121: 80-92.DOI: 10.1016/j.jmst.2021.12.017
• Invited Review • Previous Articles Next Articles
Yifan Donga,*(), Shuolei Denga, Ziting Maa, Ge Yina, Changgang Lia, Xunlong Yuana, Huiyun Tana, Jing Pana, Liqiang Maib, Fan Xiaa,*(
)
Received:
2021-09-30
Revised:
2021-11-16
Accepted:
2021-12-04
Published:
2022-09-10
Online:
2022-02-22
Contact:
Yifan Dong,Fan Xia
About author:
xiafan@cug.edu.cn (F. Xia).Yifan Dong, Shuolei Deng, Ziting Ma, Ge Yin, Changgang Li, Xunlong Yuan, Huiyun Tan, Jing Pan, Liqiang Mai, Fan Xia. Sodium vanadium oxides: From nanostructured design to high-performance energy storage materials[J]. J. Mater. Sci. Technol., 2022, 121: 80-92.
Fig. 2. (a) Crystal structure of β-NVO [46]. (b) Phase inversion process for the current collector-free flexible β-Na0.33V2O5 cathode. (c) Constant current cycling at 0.1 C. (d) Preparation of the flexible β-NVO-lithium metal battery. (e) Photographs of the flexible lithium metal battery in flat and highly bent states [50]. (f) FESEM image of the β-NVO nanowire. (g) Cycling performance at 1.0 A g-1. (h) Schematic illustration of the zinc-storage mechanism in the β-NVO electrode [48]. (i) SEM image of the top view of NVO-thermally reduced graphene (TRG) hybrids. (j) Cycling performance of NVO-TRG and β-NVO electrodes at different current densities [46].
Sample | Method | Microstructure (Nanostructure) | Voltage window (V) | Initial Specific Capacity (mAh g-1) | Specific Capacity after Cycles (mAh g-1) | Cycles | Current Density (mA g-1) | Battery | Refs. |
---|---|---|---|---|---|---|---|---|---|
β-NVO | Solvothermal | Microspheres | 1.5-4.0 | 157 | 111 | 35 | 1000 | LIB | [ |
β-NVO | Hydrothermal | Mesoporous flake-like fffFlake-like | 1.5-4.0 | 339 | 168 | 35 | 20 | LIB | [ |
β-NVO | Chemical Switch | Micro-rods | 1.5-4.0 | 504 | 500 | 50 | 0.1 C | LIB | [ |
β-NVO | Phase Inversion | Rod-like | 2.0-4.0 | 228 | 205 | 100 | 23.46 | LIB | [ |
β-NVO | Sol-gel | Nanorods | 2.0-4.0 | 221 | 212 | 200 | 125 | LIB | [ |
β-NVO | Hydrothermal | Nanowires | 0.2-1.6 | 232 | 218.4 | 1000 | 1000 | ZIB | [ |
β-NVO@rGO | Hydrothermal &Freeze-drying | Sandwich-like | 1.5-4.0 | 195 | 162.4 | 100 | 50 | SIB | [ |
β-NVO@rGO | Hydrothermal &Freeze-drying | Sandwich-like | 1.5-4.0 | — | 199 | 400 | 4500 | LIB | [ |
β-NVO@PPy | Hydrothermal | Nanowires | 2.0-4.0 | — | 219.4 | 100 | 50 | LIB | [ |
Table 1. The morphologies and electrochemical performance of β-Na0.33V2O5 (β-NVO) based on different methods.
Sample | Method | Microstructure (Nanostructure) | Voltage window (V) | Initial Specific Capacity (mAh g-1) | Specific Capacity after Cycles (mAh g-1) | Cycles | Current Density (mA g-1) | Battery | Refs. |
---|---|---|---|---|---|---|---|---|---|
β-NVO | Solvothermal | Microspheres | 1.5-4.0 | 157 | 111 | 35 | 1000 | LIB | [ |
β-NVO | Hydrothermal | Mesoporous flake-like fffFlake-like | 1.5-4.0 | 339 | 168 | 35 | 20 | LIB | [ |
β-NVO | Chemical Switch | Micro-rods | 1.5-4.0 | 504 | 500 | 50 | 0.1 C | LIB | [ |
β-NVO | Phase Inversion | Rod-like | 2.0-4.0 | 228 | 205 | 100 | 23.46 | LIB | [ |
β-NVO | Sol-gel | Nanorods | 2.0-4.0 | 221 | 212 | 200 | 125 | LIB | [ |
β-NVO | Hydrothermal | Nanowires | 0.2-1.6 | 232 | 218.4 | 1000 | 1000 | ZIB | [ |
β-NVO@rGO | Hydrothermal &Freeze-drying | Sandwich-like | 1.5-4.0 | 195 | 162.4 | 100 | 50 | SIB | [ |
β-NVO@rGO | Hydrothermal &Freeze-drying | Sandwich-like | 1.5-4.0 | — | 199 | 400 | 4500 | LIB | [ |
β-NVO@PPy | Hydrothermal | Nanowires | 2.0-4.0 | — | 219.4 | 100 | 50 | LIB | [ |
Fig. 3. (a) Illustration of the crystal structure of typical NaV6O15. (b) Schematic of the formation process of NaV6O15 nanoflower through hydrothermal combine with calcination method. (c) SEM image of NaV6O15. (d) Cycling performances of NaV6O15-NC, NaV6O15/C-MC, NaV6O15/C-HC, respectively. (e) Ultra-long-term cycling performance of the NaV6O15/C-MC under the current densities of 5 A g-1 [41]. (f) Schematic illustration of the formation process of the Na-VBNT@C sample. (g) Rate capabilities of the VONT, Na-VBNT, and Na-VBNT@C samples. (h) All charge-discharge tests were carried out at room temperature over the voltage range of 1.5-4.0 V using the assembled button-type cells [59]. (i) SEM image of NVO/MWCNTs and the photograph of the NVO/MWCNT composite film electrode (the inset). (j) TEM image of the NVO/MWCNT composite showing the NVO uniformly covered by the interconnected and complex network of conductive MWCNTs. (k) Long cycle life performance of NVO/MWCNTs at 5.0 A g-1 [58].
Sample | Method | Microstructure (Nanostructure) | Voltage window (V) | Initial specific capacity (mAh g-1) | Specific capacity after cycles (mAh g-1) | Cycles | Current density (mA g-1) | Battery | Refs. |
---|---|---|---|---|---|---|---|---|---|
NaV6O15 | Sol-gel | Nanorods | 0.4-1.4 | 394 | 321 | 150 | 100 | ZIB | [ |
NaV6O15 | Hydrothermal & Calcinations | Rod-like | -1.0-1.0 | 162 | 127 | 50 | 1000 | LIB | [ |
NaV6O15 | Hydrothermal | Nanotube | 1.5-4.0 | 131.5 | 126.2 | 500 | 5000 | SIB | [ |
NaV6O15 | Hydrothermal & Thermal annealing | Flower-like | 1.5-4.0 | 100 | 87 | 2000 | 5000 | SIB | [ |
NaV6O15 | Hydrothermal& Solid-state reaction | Nanoflakes | 1.5-4.0 | 147.7 | 136 | 30 | 15 | SIB | [ |
NaV6O15 | PVP-modulated hydrothermal | Nanorods | 1.5-3.8 | 110 | 97.88 | 50 | 20 | SIB | [ |
NaV6O15 | Thermal oxidizing treatment process | Nanorods | 0.01-3.0 | 130 | 120 | 200 | 1000 | LIB | [ |
NaV6O15 @C | Sol-gel & Hydrothermal | Nanotubes | 1.5-4.0 | 125 | 117.5 | 3000 | 1250 | SIB | [ |
NaV6O15 nH2O @rGO | Hydrothermal | Nanowires | 1.5-3.8 | 150 | 108 | 50 | 100 | SIB | [ |
Table 2. The morphologies and electrochemical performance of NaV6O15 based on different methods.
Sample | Method | Microstructure (Nanostructure) | Voltage window (V) | Initial specific capacity (mAh g-1) | Specific capacity after cycles (mAh g-1) | Cycles | Current density (mA g-1) | Battery | Refs. |
---|---|---|---|---|---|---|---|---|---|
NaV6O15 | Sol-gel | Nanorods | 0.4-1.4 | 394 | 321 | 150 | 100 | ZIB | [ |
NaV6O15 | Hydrothermal & Calcinations | Rod-like | -1.0-1.0 | 162 | 127 | 50 | 1000 | LIB | [ |
NaV6O15 | Hydrothermal | Nanotube | 1.5-4.0 | 131.5 | 126.2 | 500 | 5000 | SIB | [ |
NaV6O15 | Hydrothermal & Thermal annealing | Flower-like | 1.5-4.0 | 100 | 87 | 2000 | 5000 | SIB | [ |
NaV6O15 | Hydrothermal& Solid-state reaction | Nanoflakes | 1.5-4.0 | 147.7 | 136 | 30 | 15 | SIB | [ |
NaV6O15 | PVP-modulated hydrothermal | Nanorods | 1.5-3.8 | 110 | 97.88 | 50 | 20 | SIB | [ |
NaV6O15 | Thermal oxidizing treatment process | Nanorods | 0.01-3.0 | 130 | 120 | 200 | 1000 | LIB | [ |
NaV6O15 @C | Sol-gel & Hydrothermal | Nanotubes | 1.5-4.0 | 125 | 117.5 | 3000 | 1250 | SIB | [ |
NaV6O15 nH2O @rGO | Hydrothermal | Nanowires | 1.5-3.8 | 150 | 108 | 50 | 100 | SIB | [ |
Fig. 4. (a) Crystal structure of typical Na2V6O16·2H2O [71]. (b) Rate performance of the H-NVO at various current densities. (c) Cycling performances of the H-NVO at 5000 mA g-1. (d) Schematic illustrations of water intercalation accompanying Zn2+ intercalation into H-NVO at the first discharge process and Zn2+ deintercalation and intercalation upon electrochemical charge and discharge processes. Here, x< y and m> n [68]. (e) TEM image of Na2V6O16·163H2O. (f) Cyclic performance of Na2V6O16·163H2O and Na2V6O16 at a current density of 50 mA g-1. (g) Schematic illustration of Mg2+ deintercalation and intercalation into Na2V6O16·163H2O during electrochemical processes [67]. (h) Schematic illustration of the preparation procedure of Na2V6O16 nanobelts. (i) Cycling performance of layered Na2V6O16 nanobelts and Na2V6O16 powder at 50 and 100 mA g-1 [70]. (j) Illustration of NaVO||C-Ni battery. (k) Cycle performance of NaVO||C-Ni cell at 200 mA g-1 [71].
Fig. 5. (a) Crystal structure of NaV3O8 nanobelts. (b) SEM image of rod-like NaV3O8. (c) Cycling performance and coulombic efficiency of rod-like NaV3O8 electrode at 2000 mA g-1 between 1.5 and 4.0 V [74]. (d) Schematic illustration of NaV3O8 nanobelts growth steps starting from commercial V2O5 bulk powders. (e) Rate capability and for NVO||1 M LiCl-0.4 M APC||Mg cell at various current densities. (f) SEM image of Na1.25V3O8 nanosheets [75]. (g) Long-cycling stability of Na1.25V3O8 at 5 A g-1. (h) Illustration of synthesis procedure of pilotaxitic Na1.1V3O7.9 nanoribbons/graphene [76]. (i) The long-cycling performance of Na1.1V3O7.9 nanoribbons/graphene at 1000 mAg-1. (j) Schematic illustration of the synthesis procedure of the Na5V12O32@PPy nanocomposites [77]. (k) SEM image of the Na5V12O32@PPy nanocomposites. (l) Discharge-charge capacities of the Na5V12O32@PPy at various current densities, from 30 to 480 mA g-1 [78].
Sample | Method | Microstructure (Nanostructure) | Voltage window (V) | Initial Specific capacity (mAh g-1) | Specific capacityafter cycles (mAh g-1) | Cycles | Current density (mA g-1) | Battery | Refs. |
---|---|---|---|---|---|---|---|---|---|
σ-NVO @rGO | Hydrothermal | NVO-nanobelts grown on crumpled rGO nanosheets | 0.2-1.6 | — | 264.8 | 4000 | 2000 | ZIB | [ |
σ-NVO @rGO | Hydrothermal | — | 0.2-1.6 | 303.7 | 214.2 | 1000 | 2000 | ZIB | [ |
NVO@KB | Hydrothermal | Nanocomposite | 1.3-4.0 | 239 | 167 | 30 | 20 | SIB | [ |
NaVO3 | Solid-state Reaction | Irregular shape | 0.01-3.0 | 220 | 200 | 200 | 44 | LIB | [ |
NaVO3 | Solid-state Reaction | — | 1.2-4.7 | 200 | 190 | 50 | 10 | SIB | [ |
Na1.08V6O15 | Sol-gel | Rice-shape | 1.5-4.0 | 300 | 205 | 100 | 30 | LIB | [ |
Na4V2O7 | Solid-state Reaction | — | 1.2-4.4 | 165 | 153.4 | 50 | 10 | SIB | [ |
Na1.25V3O8 | Sol-gel | Nanosheets | 0.2-1.8 | 179 | 157.9 | 2000 | 5000 | ZIB | [ |
Na1.25V3O8 | Topotactic Intercalation Method | Zigzag Nanowires | 1.5-4.0 | 105.9 | 92.2 | 1000 | 1000 | SIB | [ |
NVO @rGO | Hydrothermal | Nanoribbons | 1.5-4.0 | 91.6 | 84.8 | 500 | 1000 | SIB | [ |
Na1.1V3O7.9 | — | Nanorods | 0.4-1.4 | — | 134 | 1000 | 5000 | ZIB | [ |
Na1.1V3O7.9 | Calcinations | Nanobelts | 1.5-3.8 | 125 | 82 | 190 | 50 | SIB | [ |
Na0.282V2O5 | Hydrothermal & Calcinations | Nanorods | 1.5-4.0 | 191 | 134 | 400 | 1000 | LIB | [ |
Na0.282V2O5 | Hydrothermal & Calcinations | Nanorods | 1.5-4.0 | 89 | 82 | 1000 | 300 | SIB | [ |
Na0.76V6O15 | Hydrothermal & Annealing | Nanobelts | 1.5-4.0 | 191 | 177 | 140 | 1000 | LIB | [ |
Na0.76V6O15 | Hydrothermal & Calcinations | Nanobelts | 1.5-4.0 | 70.3 | 56.4 | 5000 | 1000 | LIB | [ |
Table 3. The morphologies and electrochemical performance of other sodium vanadium oxides based on different methods. (σ-NVO @rGO refers to σ-NaxV2O5·nH2O @rGO, NVO@KB refers to NaxV2O5·nH2O @KB, NVO @rGO refers to Na1.1V3O7.9 @rGO).
Sample | Method | Microstructure (Nanostructure) | Voltage window (V) | Initial Specific capacity (mAh g-1) | Specific capacityafter cycles (mAh g-1) | Cycles | Current density (mA g-1) | Battery | Refs. |
---|---|---|---|---|---|---|---|---|---|
σ-NVO @rGO | Hydrothermal | NVO-nanobelts grown on crumpled rGO nanosheets | 0.2-1.6 | — | 264.8 | 4000 | 2000 | ZIB | [ |
σ-NVO @rGO | Hydrothermal | — | 0.2-1.6 | 303.7 | 214.2 | 1000 | 2000 | ZIB | [ |
NVO@KB | Hydrothermal | Nanocomposite | 1.3-4.0 | 239 | 167 | 30 | 20 | SIB | [ |
NaVO3 | Solid-state Reaction | Irregular shape | 0.01-3.0 | 220 | 200 | 200 | 44 | LIB | [ |
NaVO3 | Solid-state Reaction | — | 1.2-4.7 | 200 | 190 | 50 | 10 | SIB | [ |
Na1.08V6O15 | Sol-gel | Rice-shape | 1.5-4.0 | 300 | 205 | 100 | 30 | LIB | [ |
Na4V2O7 | Solid-state Reaction | — | 1.2-4.4 | 165 | 153.4 | 50 | 10 | SIB | [ |
Na1.25V3O8 | Sol-gel | Nanosheets | 0.2-1.8 | 179 | 157.9 | 2000 | 5000 | ZIB | [ |
Na1.25V3O8 | Topotactic Intercalation Method | Zigzag Nanowires | 1.5-4.0 | 105.9 | 92.2 | 1000 | 1000 | SIB | [ |
NVO @rGO | Hydrothermal | Nanoribbons | 1.5-4.0 | 91.6 | 84.8 | 500 | 1000 | SIB | [ |
Na1.1V3O7.9 | — | Nanorods | 0.4-1.4 | — | 134 | 1000 | 5000 | ZIB | [ |
Na1.1V3O7.9 | Calcinations | Nanobelts | 1.5-3.8 | 125 | 82 | 190 | 50 | SIB | [ |
Na0.282V2O5 | Hydrothermal & Calcinations | Nanorods | 1.5-4.0 | 191 | 134 | 400 | 1000 | LIB | [ |
Na0.282V2O5 | Hydrothermal & Calcinations | Nanorods | 1.5-4.0 | 89 | 82 | 1000 | 300 | SIB | [ |
Na0.76V6O15 | Hydrothermal & Annealing | Nanobelts | 1.5-4.0 | 191 | 177 | 140 | 1000 | LIB | [ |
Na0.76V6O15 | Hydrothermal & Calcinations | Nanobelts | 1.5-4.0 | 70.3 | 56.4 | 5000 | 1000 | LIB | [ |
Fig. 6. (a) The structural framework of Na0.282V2O5. (b) SEM image of Na0.282V2O5. (c) The cycling performance and corresponding coulombic efficiency of Na0.282V2O5 at the current density of 300 mA g-1 [80]. (d) High magnification SEM image of the Na0.76V6O15 [82]. (e) Rate performance of the Na0.76V6O15 hybrids at various current densities [81]. (f) The cycling performance of the Na0.76V6O15 at a high current density of 2000^#x00A0;mAh g-1. (g) Schematic illustrations of NaVO3. (h) Rate performance of NaVO3 [83]. (i) TEM image of the NaV8O20·nH2O. (j) Long-term cycling performance of the NaV8O20·nH2O electrode at 10 A g-1. (k) Schematic illustration of Na+/Zn2+/H+ storage mechanism upon electrochemical charge and discharge processes [84].
Fig. 8. (a) Average discharge potential (V vs Na+/Na) as a function of specific capacity (mAh g-1) of representative cathodes materials for SIBs. (b) Specific capacity of various cathode materials for ZIB.
[1] | Y.J. Guo, P.F. Wang, Y.B. Niu, X.D. Zhang, Q.H. Li, X.Q. Yu, M. Fan, W.P. Chen, Y. Yu, X.F. Liu, Q.H. Meng, S. Xin, Y.X. Yin, Y.G. Guo, Nat. Commun. 12 (2021) |
[2] |
G.Z. Zhu, X. Tian, H.C. Tai, Y.Y. Li, J.C. Li, H. Sun, P. Liang, M. Angell, C.L. Huang, C.S. Ku, W.H. Hung, S.K. Jiang, Y.T. Meng, H. Chen, M.C. Lin, B.J. Hwang, H.J. Dai, Nature 596 (2021) 525-530.
DOI URL |
[3] | D.Y. Wang, C.Y. Wei, M.C. Lin, C.J. Pan, H.L. Chou, H.A. Chen, M. Gong, Y.P. Wu, C.Z. Yuan, M. Angell, Y.J. Hsieh, Y.H. Chen, C.Y. Wen, C.W. Chen, B.J. Hwang, C.C. Chen, H.J. Dai, Nat. Commun. 8 (2017) |
[4] | H. Hafiz, K. Suzuki, B. Barbiellini, N. Tsuji, N. Yabuuchi, K. Yamamoto, Y. Orikasa, Y. Uchimoto, Y. Sakurai, H. Sakurai, A. Bansil, V. Viswanathan, Na-ture 594 (2021) 213-216. |
[5] | H.G. Jung, M.W. Jang, J. Hassoun, Y.K. Sun, B. Scrosati, Nat. Commun. 2 (2011) |
[6] | W. Guo, W.Y. Zhang, Y.B. Si, D.H. Wang, Y.Z. Fu, A. Manthiram, Nat. Commun. 12 (2021) |
[7] |
V. Giordani, D. Tozier, J. Uddin, H.J. Tan, B.M. Gallant, B.D. McCloskey, J.R. Greer, G.V. Chase, D. Addison, Nat. Chem. 11 (2019) 1133-1138.
DOI URL PMID |
[8] |
L.S. Cao, D. Li, T. Pollard, T. Deng, B. Zhang, C.Y. Yang, L. Chen, J. Vatamanu, E. Hu, M.J. Hourwitz, L. Ma, M. Ding, Q. Li, S. Hou, K. Gaskell, J.T. Fourkas, X.Q. Yang, K. Xu, O. Borodin, C.S. Wang, Nat. Nanotechnol. 16 (2021) 902-910.
DOI URL |
[9] |
X.W. Chi, M.L. Li, J.C. Di, P. Bai, L.N. Song, X.X. Wang, F. Li, S. Liang, J.J. Xu, J.H. Yu, Nature 592 (2021) 551-557.
DOI URL |
[10] |
Y. Chen, S.A. Freunberger, Z. Peng, O. Fontaine, P.G. Bruce, Nat. Chem. 5 (2013) 4 89-4 94.
DOI URL |
[11] |
K. Xu, Nat. Energy 6 (2021) 763-763.
DOI URL |
[12] |
H.G. Jung, J. Hassoun, J.B. Park, Y.K. Sun, B. Scrosati, Nat. Chem. 4 (2012) 579-585.
DOI URL |
[13] |
G.J. Liang, C.Y. Zhi, Nat. Nanotechnol. 16 (2021) 854-855.
DOI URL |
[14] |
Z.R. Wang, Q.B. Gao, P. Lv, X.W. Li, X.H. Wang, B.H. Qu, J. Mater. Sci. Technol. 38 (2020) 119-124.
DOI URL |
[15] |
S.H. Yin, Q. Ji, X.X. Zuo, S. Xie, K. Fang, Y.G. Xia, J.L. Li, B. Qiu, M.M. Wang, J.Z. Ban, X.Y. Wang, Y. Zhang, Y. Xiao, L.Y. Zheng, S.Z. Liang, Z.P. Liu, C.D. Wang, Y.J. Cheng, J. Mater. Sci. Technol. 34 (2018) 1902-1911.
DOI URL |
[16] |
Y.N. Mei, Y.Y. Li, F.Y. Li, Y.J. Li, Y.J. Jiang, X.W. Lan, S.T. Guo, X.L. Hu, J. Mater. Sci. Technol. 57 (2020) 18-25.
DOI URL |
[17] | C.S. Cao, D.D. Ma, Q. Xu, X.T. Wu, Q.L. Zhu, Adv. Funct. Maters. 29 (2019) |
[18] |
H. Du, S.H. Feng, W. Luo, L. Zhou, L.Q. Mai, J. Mater. Sci. Technol. 55 (2020) 1-15.
DOI URL |
[19] |
X. Hua, A.S. Eggeman, E. Castillo-Martínez, R. Robert, H.S. Geddes, Z. Lu, C.J. Pickard, W. Meng, K.M. Wiaderek, N. Pereira, G.G. Amatucci, P.A. Midg-ley, K.W. Chapman, U. Steiner, A.L. Goodwin, C.P. Grey, Nat. Mater. 20 (2021) 841-850.
DOI URL |
[20] |
N.W. Li, Y.X. Yin, C.P. Yang, Y.G. Guo, Adv. Mater. 28 (2016) 1853-1858.
DOI URL |
[21] | J. Wang, J. Yang, Q.B. Xiao, J. Zhang, T. Li, L.J. Jia, Z.L. Wang, S. Cheng, L.G. Li, M.N. Liu, H.T. Liu, H.Z. Lin, Y.G. Zhang, Adv. Funct. Mater. 31 (2021) |
[22] |
J.S. Meng, Z. Liu, X. Liu, W. Yang, L.Z. Wang, Y. Li, Y.C. Cao, X.C. Zhang, L.Q. Mai, J. Mater. Sci. Technol. 66 (2021) 186-192.
DOI URL |
[23] | Y. Xu, C.L. Zhang, M. Zhou, Q. Fu, C.X. Zhao, M.H. Wu, Y. Lei, Nat. Commun. 9 (2018) |
[24] |
L.W. Jiang, Y.X. Lu, C.L. Zhao, L.L. Liu, J.N. Zhang, Q.Q. Zhang, X. Shen, J.M. Zhao, X.Q. Yu, H. Li, X.J. Huang, L.Q. Chen, Y.S. Hu, Nat. Energy 4 (2019) 495-503.
DOI URL |
[25] | P.K. Nayak, L. Yang, W. Brehm, P. Adelhelm, Angew. Chem.-Int. Editi. 57 (2018) 102-120. |
[26] | Y.F. Dong, X.L. Yuan, S. Zhou, H.Y. Tan, Z.T. Ma, X.W. Wang, F. Xia, C.P. Wong, J. Power Sources 513 (2021) |
[27] | F. Bella, S. De Luca, L. Fagiolari, D. Versaci, J. Amici, C. Francia, S. Bodoardo, Nanomaterials 11 (2021) |
[28] |
F. Wang, O. Borodin, T. Gao, X.L. Fan, W. Sun, F.D. Han, A. Faraone, J.A. Dura, K. Xu, C.S. Wang, Nat. Mater. 17 (2018) 543-549.
DOI URL PMID |
[29] | G.Z. Fang, C.Y. Zhu, M.H. Chen, J. Zhou, B.Y. Tang, X.X. Cao, X.S. Zheng, A.Q. Pan, S.Q. Liang, Adv. Funct. Mater. 29 (2019) |
[30] | Y.Q. Fu, Q.L. Wei, G.X. Zhang, X.M. Wang, J.H. Zhang, Y.F. Hu, D.N. Wang, L. Zuin, T. Zhou, Y.C. Wu, S.H. Sun, Adv. Energy Mater. 8 (2018) |
[31] |
J.H. Hao, J. Mou, J.W. Zhang, L.B. Dong, W.B. Liu, C.J. Xu, F.Y. Kang, Electrochim. Acta 259 (2018) 170-178.
DOI URL |
[32] | C. Wu, S.S. Gu, Q.H. Zhang, Y. Bai, M. Li, Y.F. Yuan, H.L. Wang, X.Y. Liu, Y.X. Yuan, N. Zhu, F. Wu, H. Li, L. Gu, J. Lu, Nat. Commun. 10 (2019) |
[33] |
Y.R. Zhang, A.B. Chen, J. Sun, J. Energy Chem. 54 (2021) 655-667.
DOI URL |
[34] |
F. Wan, Z.Q. Niu, Angew. Chem.-Int. Edit. 58 (2019) 16358-16367.
DOI URL |
[35] |
J. Zhao, H. Ren, Q.H. Liang, D. Yuan, S.B. Xi, C. Wu, W. Manalastas, J.M. Ma, W. Fang, Y. Zheng, C.F. Du, M. Srinivasan, Q. Yan, Nano Energy 62 (2019) 94-102.
DOI URL |
[36] | J.H. Lee, G. Ali, D.H. Kim, K.Y. Chung, Adv. Energy Mater. 7 (2017) |
[37] | J.F. Qian, C. Wu, Y.L. Cao, Z.F. Ma, Y.H. Huang, X.P. Ai, H.X. Yang, Adv. Energy Mater. 8 (2018) |
[38] | P.C. Liu, K.J. Zhu, Y.F. Gao, H.J. Luo, L. Lu, Adv. Energy Mater. 7 (2017) |
[39] | S. Yuan, Y.B. Liu, D. Xu, D.L. Ma, S. Wang, X.H. Yang, Z.Y. Cao, X.B. Zhang, Adv Sci 2 (2015) 1400018. |
[40] | E. Adamczyk, M. Gnanavel, V. Pralong, Materials (Basel) 11 (2018) |
[41] | Y.F. Dong, J.L. Xu, M.Y. Chen, Y.W. Guo, G.D. Zhou, N. Li, S. Zhou, C.P. Wong, Nano Energy 68 (2020) |
[42] |
V. Soundharrajan, B. Sambandam, S. Kim, M.H. Alfaruqi, D.Y. Putro, J. Jo, S. Kim, V. Mathew, Y.K. Sun, J. Kim, Nano Lett 18 (2018) 2402-2410.
DOI URL PMID |
[43] |
P.C. Liu, D.H. Zhou, K.J. Zhu, Q.L. Wu, Y.F. Wang, G.A. Tai, W. Zhang, Q.L. Gu, Nanoscale 8 (2016) 1975-1985.
DOI URL |
[44] | F. Wan, L.L. Zhang, X. Dai, X.Y. Wang, Z.Q. Niu, J. Chen, Nat. Commun. 9 (2018) |
[45] |
J.K. Kim, B. Senthilkumar, S.H. Sahgong, J.H. Kim, M.F. Chi, Y. Kim, ACS Appl. Mater. Interfaces 7 (2015) 7025-7032.
DOI URL |
[46] |
Y.K. Lu, J. Wu, J. Liu, M. Lei, S. Tang, P.J. Lu, L.Y. Yang, H.R. Yang, Q. Yang, ACS Appl. Mater. Interfaces 7 (2015) 17433-17440.
DOI URL |
[47] |
S.L. Zheng, X.R. Wang, H. Yan, H. Du, Y. Zhang, Mater. Res. Bull. 81 (2016) 10-15.
DOI URL |
[48] | P. He, G.B. Zhang, X.B. Liao, M.Y. Yan, X. Xu, Q.Y. An, J. Liu, L.Q. Mai, Adv. Energy Mater. 8 (2018) |
[49] |
I. Seo, G.C. Hwang, J.K. Kim, Y. Kim, Electrochim. Acta 193 (2016) 160-165.
DOI URL |
[50] | X.X. Song, F. Xiao, X.F. Li, Z.H. Li, Nanotechnology 31 (2019) |
[51] | J. He, A. Bhargav, A. Manthiram, Adv. Energy Mater. 12 (2022) |
[52] |
J.S. Han, G.C. Hwang, H. Yu, D.H. Lim, J.S. Cho, M. Kuenzel, J.K. Kim, J.H. Ahn, J. Ind. Eng. Chem. 94 (2021) 368-375.
DOI URL |
[53] |
X.R. Wang, H. Du, Y. Zhang, S.L. Zheng, Ceram. Int. 41 (2015) 6127-6131.
DOI URL |
[54] |
S.Q. Liang, J. Zhou, G.Z. Fang, C. Zhang, J. Wu, Y. Tang, A.Q. Pan, Electrochim. Acta. 130 (2014) 119-126.
DOI URL |
[55] |
Y.K. Lu, N. Su, L.Z. Cheng, J. Liu, L.Y. Yang, H.R. Yang, Q. Yang, S.T. Li, J. Min, M. Lei, Mater. Lett. 183 (2016) 346-350.
DOI URL |
[56] |
K. Hua, X.J. Li, D. Fang, J.H. Yi, X.W. Wu, Z.P. Luo, M. Jiang, Z.Q. Cai, W.L. Xu, S. Wang, Mater. Sci. Eng. B 238-239 (2018) 26-35.
DOI URL |
[57] |
X.Y. Wang, Q. Liu, H. Wang, D.L. Jiang, Y.J. Chang, T. Zhang, B. Zhang, H.H. Mou, Y. Jiang, J. Mater. Sci. 51 (2016) 8986-8994.
DOI URL |
[58] |
S. Osman, S.Y. Zuo, X.J. Xu, J.D. Shen, Z.B. Liu, F.H. Li, P.H. Li, X.Y. Wang, J. Liu, ACS Appl. Mater. Interfaces 13 (2021) 816-826.
DOI URL |
[59] |
X.X. Song, J.C. Li, Z.H. Li, Q.Z. Xiao, G.T. Lei, Z.L. Hu, Y.H. Ding, H.M. Kheimeh Sari, X.F. Li, ACS Appl. Mater. Interfaces 11 (2019) 10631-10641.
DOI URL |
[60] | J. Chen, H.Y. Xu, J.H. Ruan, Y.M. Xin, Y. Li, D.C. Li, A.G. Wang, D.S. Sun, Mater. Chem. Phys. 249 (2020) |
[61] |
S. Islam, M.H. Alfaruqi, B. Sambandam, D.Y. Putro, S. Kim, J. Jo, S. Kim, V. Mathew, J. Kim, Chem. Commun. 55 (2019) 3793-3796.
DOI URL |
[62] |
M.S. Zhao, W.G. Zhang, F. Qu, F. Wang, X.P. Song, Electrochim. Acta 138 (2014) 187-192.
DOI URL |
[63] | H.N. He, X.G. Zeng, H.Y. Wang, N. Chen, D. Sun, Y.G. Tang, X.B. Huang, Y.F. Pan, J. Electrochem. Soc. 162 (2014) |
[64] |
H. Zhang, L.B. Wang, C.J. Shen, G. Qin, Q.K. Hu, A.G. Zhou, Electrochim. Acta 248 (2017) 178-187.
DOI URL |
[65] |
C.Q. Shang, L. Hu, Q. Lin, X.L. Fu, X. Wang, G.F. Zhou, Appl. Surf. Sci. 494 (2019) 458-464.
DOI URL |
[66] |
T.T. Ding, J. Xu, C. Chen, Z.W. Luo, J.N. Dai, Y. Tian, C.Q. Chen, J. Mater. Sci. Technol. 33 (2017) 271-275.
DOI URL |
[67] | R.M. Sun, X. Ji, C. Luo, S. Hou, P. Hu, X.J. Pu, L.S. Cao, L.Q. Mai, C.S. Wang, Small 16 (2020) e2000741. |
[68] |
P. Hu, T. Zhu, X.P. Wang, X.J. Wei, M.Y. Yan, J.T. Li, W. Luo, W. Yang, W.C. Zhang, L. Zhou, Z.Q. Zhou, L.Q. Mai, Nano Lett 18 (2018) 1758-1763.
DOI URL |
[69] |
S.J. Kim, C.R. Tang, G. Singh, L.M. Housel, S. Yang, K.J. Takeuchi, A.C. Marschilok, E.S. Takeuchi, Y.M. Zhu, Chem. Mater. 32 (2020) 2053-2060.
DOI URL |
[70] |
S. Yuan, Y. Zhao, Q. Wang, J. Alloy. Compd. 688 (2016) 55-60.
DOI URL |
[71] | S.Y. Li, X. Yang, X. Li, Z.X. Wei, M.L. Li, F. Hu, Y. Xie, X. Meng, C.Z. Wang, G. Chen, F. Du, Chem. Eng. J. 413 (2021) |
[72] |
X.Q. Shan, S. Kim, A.M.M. Abeykoon, G. Kwon, D. Olds, X.W. Teng, ACS Appl. Mater. Interfaces 12 (2020) 54627-54636.
DOI URL |
[73] | J.H. Jo, Y. Aniskevich, J. Kim, J.U. Choi, H.J. Kim, Y.H. Jung, D. Ahn, T.Y. Jeon, K.S. Lee, S.H. Song, H. Kim, G. Ragoisha, A. Mazanik, E. Streltsov, S.T. Myung, Adv. Energy Mater. 10 (2020) |
[74] |
L.M. Zhu, W.X. Li, L.L. Xie, Q. Yang, X.Y. Cao, Chem. Eng. J. 372 (2019) 1056-1065.
DOI URL |
[75] |
M. Rashad, X.F. Li, H.M. Zhang, ACS Appl. Mater. Interfaces 10 (2018) 21313-21320.
DOI URL |
[76] |
D. Xie, F. Hu, X. Yu, F.H. Cui, G.H. Song, K. Zhu, Chin. Chem. Lett. 31 (2020) 2268-2274.
DOI URL |
[77] | Y.S. Cai, F. Liu, Z.G. Luo, G.Z. Fang, J. Zhou, A.Q. Pan, S.Q. Liang, Energy Storage Mater 13 (2018) 168-174. |
[78] | Y.H. Cao, D. Fang, X.Q. Liu, Z.P. Luo, G.Z. Li, W.L. Xu, M. Jiang, C.X. Xiong, Com-pos. Sci. Technol. 137 (2016) 130-137. |
[79] |
M. Rashad, H. Zhang, M. Asif, K. Feng, X.F. Li, H.M. Zhang, ACS Appl. Mater. Interfaces 10 (2018) 4757-4766.
DOI URL |
[80] |
Y.S. Cai, J. Zhou, G.Z. Fang, G.M. Cai, A. Pan, S.Q. Liang, J. Power Sources 328 (2016) 241-249.
DOI URL |
[81] |
K.W. Yang, G.Z. Fang, J. Zhou, M.L. Qin, Y. Tang, A.Q. Pan, S.Q. Liang, J. Power Sources 325 (2016) 383-390.
DOI URL |
[82] | R.W. Lu, X.L. Ren, C. Wang, C.Z. Zhan, D. Nan, R.T. Lv, W.C. Shen, F.Y. Kang, Z.H. Huang, Materials 14 (2021) |
[83] |
B.Z. Su, S.L. Wu, H.Q. Liang, W.C. Zhou, J.N. Liu, D. Goonetilleke, N. Sharma, P.H.L. Sit, W.J. Zhang, D.Y.W. Yu, Chem. Mater. 32 (2020) 8836-8844.
DOI URL |
[84] |
N. Qiu, Z.M. Yang, Y. Wang, Y.M. Zhu, W. Liu, Chem. Commun. 56 (2020) 9174-9177.
DOI URL |
[85] | F.J. Tang, W.J. Zhou, M.F. Chen, J.Z. Chen, J.L. Xu, Electrochim. Acta 328 (2019) |
[86] | W.J. Zhou, J.Z. Chen, C.L. He, M.F. Chen, X.W. Xu, Q.H. Tian, J.L. Xu, C.P. Wong, Electrochim. Acta 321 (2019) |
[87] |
J.J. Feng, Z.M. Xiong, L. Zhao, C.M. Huang, H.T. Liu, S.Y. Chen, Z. Wang, Q. Kuang, Y.Z. Dong, Q.H. Fan, Y.M. Zhao, J. Power Sources 396 (2018) 230-237.
DOI URL |
[88] | M. Chandra, T.S. Khan, R. Shukla, S. Ahamad, A. Gupta, S. Basu, M.A. Haider, R.S. Dhaka, Electrochim. Acta 331 (2020) |
[89] |
B.Z. Su, H.Q. Liang, J.N. Liu, J. Wu, N. Sharma, Q. Gu, B. Johannessen, D.Y.W. Yu, Chem. Commun. 56 (2020) 8245-8248.
DOI URL |
[90] |
Y.F. Dong, S. Li, K.N. Zhao, C.H. Han, W. Chen, B.L. Wang, L. Wang, B.A. Xu, Q.L. Wei, L. Zhang, X. Xu, L.Q. Mai, Energy Environ. Sci. 8 (2015) 1267-1275.
DOI URL |
[91] |
B.H. She, L.T. Shan, H.J. Chen, J. Zhou, X. Guo, G.Z. Fang, X.X. Cao, S.Q. Liang, J. Energy Chem. 37 (2019) 172-175.
DOI URL |
[92] |
S.P. Zhang, H.T. Tan, X.H. Rui, Y. Yu, Accounts Chem. Res. 53 (2020) 1660-1671.
DOI URL |
[93] |
D. Chen, M.J. Lu, D. Cai, H. Yang, W. Han, J. Energy Chem. 54 (2021) 712-726.
DOI URL |
[94] | N. Bensalah, Y. De Luna, Energy Technol 9 (2021) 20210 0 011. |
[95] |
W. Shi, W.S.V. Lee, J.M. Xue, ChemSusChem 14 (2021) 1634-1658.
DOI URL |
[96] | Z.X. Fan, W. He, M. Ni, P.G. Zhang, W.B. Tian, W. Zhang, L. Pan, Z.M. Sun, Energy Technol. 9 (2020) 20 0 0829. |
[97] |
Q.H. Wang, J.T. Xu, W.C. Zhang, M.L. Mao, Z.X. Wei, L. Wang, C.Y. Cui, Y.X. Zhu, J.M. Ma, J. Mater. Chem. A 6 (2018) 8815-8838.
DOI URL |
[98] | X.M. Xu, F.Y. Xiong, J.S. Meng, X.P. Wang, C.J. Niu, Q.Y. An, L.Q. Mai, Adv. Funct. Mater. 30 (2020) |
[99] | Q.H. Zhao, A.Y. Song, S.X. Ding, R.Z. Qin, Y.H. Cui, S.N. Li, F. Pan, Adv. Mater. 32 (2020) |
[100] |
L.P. Wang, Z.N. Wu, J. Zou, P. Gao, X.B. Niu, H. Li, L.Q. Chen, Joule 3 (2019) 2086-2102.
DOI URL |
[101] |
E. Fan, L. Li, Z.P. Wang, J. Lin, Y.X. Huang, Y. Yao, R.J. Chen, F. Wu, Chem. Rev. 120 (2020) 7020-7063.
DOI URL |
[1] | P.-C. Zhao, B. Guan, Y.-G. Tong, R.-Z. Wang, X. Li, X.-C. Zhang, S.-T Tu. A quasi-in-situ EBSD study of the thermal stability and grain growth mechanisms of CoCrNi medium entropy alloy with gradient-nanograined structure [J]. J. Mater. Sci. Technol., 2022, 109(0): 54-63. |
[2] | Opra Denis P., Gnedenkov Sergey V., Sinebryukhov Sergey L., Voit Elena I., Sokolov AlexanderA., Modin Evgeny B., Podgorbunsky Anatoly B., Sushkov Yury V., Zheleznov Veniamin V.. Characterization and Electrochemical Properties of Nanostructured Zr-Doped Anatase TiO2 Tubes Synthesized by Sol-Gel Template Route [J]. J. Mater. Sci. Technol., 2017, 33(6): 527-534. |
[3] | V.M. Nadutov, A.I. Ustinov, S.A. Demchenkov, Ye.O. Svystunov, V.S. Skorodzievski. Structure and Properties of Nanostructured Vacuum-Deposited Foils of Invar Fe-(35-38 wt%)Ni Alloys [J]. J. Mater. Sci. Technol., 2015, 31(11): 1079-1086. |
[4] | S.N. Hosseini, T. Mousavi, F. Karimzadehy and M.H. Enayati. Thermodynamic Aspects of Nanostructured CoAl Intermetallic Compound during Mechanical Alloying [J]. J Mater Sci Technol, 2011, 27(7): 601-606. |
[5] | X. He, Z.H. Wang, D.Y. Geng, Z.D. Zhang. Structure and Magnetic Properties of S-doped Mn3O4/S Composited Nanoparticles and Mn3O4 Nanoparticles [J]. J Mater Sci Technol, 2011, 27(6): 503-506. |
[6] | Xiao Si,Bining Lu,Zhenbo Wang. Aluminizing Low Carbon Steel at Lower Temperatures [J]. J Mater Sci Technol, 2009, 25(04): 433-436. |
[7] | G.X.Wang, Steve Bewlay, L.Yang, J.Z.Wang, Y.Chen, Jane Yao, H.K.Liu, S.X.Dou. Nanostructured Electrode Materials for Rechargeable Lithium-ion Battery Applications [J]. J Mater Sci Technol, 2005, 21(Supl.1): 17-19. |
[8] | Wenge CHEN, Zhanying KANG, Bingjun DING. Preparation and Arc Breakdown Behavior of Nanocrystalline W-Cu Electrical Contact Materials [J]. J Mater Sci Technol, 2005, 21(06): 875-878. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||