J. Mater. Sci. Technol. ›› 2022, Vol. 121: 93-98.DOI: 10.1016/j.jmst.2021.12.061
• Letter • Previous Articles Next Articles
Mingkun Jianga,b, Ying Hana,b,*(), Xiangyi Chena,b, Guoqing Zua,b, Weiwei Zhua,b, Xu Rana,b,*(
)
Received:
2021-10-16
Revised:
2021-12-09
Accepted:
2021-12-19
Published:
2022-09-10
Online:
2022-03-16
Contact:
Ying Han,Xu Ran
About author:
ranxu@ccut.edu.cn (X. Ran)Mingkun Jiang, Ying Han, Xiangyi Chen, Guoqing Zu, Weiwei Zhu, Xu Ran. Cu-rich nanoprecipitates modified using Al to simultaneously enhance the strength and ductility of ferritic stainless steel[J]. J. Mater. Sci. Technol., 2022, 121: 93-98.
Empty Cell | C | Cr | Mn | Si | Ni | Nb | Ti | Cu | Al |
---|---|---|---|---|---|---|---|---|---|
1# | 0.0054 | 17.90 | 0.20 | 0.80 | 0.99 | 0.39 | 0.20 | 1.48 | |
2# | 0.0054 | 18.00 | 0.21 | 0.80 | 1.01 | 0.40 | 0.20 | 1.48 | 1.01 |
Table 1. Chemical compositions of the experimental steel (wt.%).
Empty Cell | C | Cr | Mn | Si | Ni | Nb | Ti | Cu | Al |
---|---|---|---|---|---|---|---|---|---|
1# | 0.0054 | 17.90 | 0.20 | 0.80 | 0.99 | 0.39 | 0.20 | 1.48 | |
2# | 0.0054 | 18.00 | 0.21 | 0.80 | 1.01 | 0.40 | 0.20 | 1.48 | 1.01 |
Fig. 1. Mechanical properties of the various samples, including (a) engineering stress-strain curves; plots of strain hardening rate (ɵ) vs (b) net flow stress and (c) true strain; and the tensile fracture morphologies of samples (d) 1#A and (e) 2#A.
Fig. 2. OM images of samples (a) 1#S and (c) 2#S; distributions of Cu-rich phases in samples (b) 1#A and (d) 2#A; and TEM images of the Nb-rich phases in samples (e) 1#A and (f) 2#A before deformation.
Fig. 3. High-magnification TEM images, fast Fourier transform (FFT), and EDS results of the Cu-rich nanoprecipitates in samples (a) 1#A and (c) 2#A; (b1) high-resolution transmission electron microscopy (HRTEM) image and (b2) IFFT pattern of BCC-Cu in sample 1#A; and (d1) HRTEM image and (d2) IFFT pattern of BCC-Cu in sample 2#A; (b3) and (d3) are GPA plots for the lattice strains in the positive x-direction (εxx), corresponding to (b2) and (d2), respectively. (The compressive strain to tensile strain is depicted by the color from blue to red.).
Fig. 4. TEM images showing the microstructures of samples (a) 1#A and (c) 2#A after deformation; FFT patterns of the (b1) Cu-rich nanoprecipitates and (b3) matrix, HRTEM images of (b2) BCC-Cu and (b4) B2-Cu in sample 1#A; FFT patterns of (d1) BCC-Cu and (d3) the matrix, and IFFT patterns of (d2) BCC-Cu and (d4) the matrix in sample 2#A.
C | Cr | Mn | Si | Ni | Nb | Ti | Cu | Al |
---|---|---|---|---|---|---|---|---|
1103 | 2.6 | 16.9 | 42 | 0.5 | 16 | 18 | 57 | 16.6 |
Table 2. Strengthening coefficients for alloying elements in the α-Fe matrix at room temperature (MPa/at.%) [58], [59], [60].
C | Cr | Mn | Si | Ni | Nb | Ti | Cu | Al |
---|---|---|---|---|---|---|---|---|
1103 | 2.6 | 16.9 | 42 | 0.5 | 16 | 18 | 57 | 16.6 |
[1] |
Z.B. Jiao, J.H. Luan, M.K. Miller, Y.W. Chung, C.T. Liu, Mater. Today 20 (2017) 142-154.
DOI URL |
[2] | B.C. Zhou, T. Yang, G. Zhou, H. Wang, J.H. Luan, Z.B. Jiao, Acta Mater. 205 (2021) |
[3] | Z.P. Xiong, I. Timokhina, E. Pereloma, Prog. Mater. Sci. 118 (2021) |
[4] |
E.V. Pereloma, A.G. Kostryzhev, A. AlShahrani, C. Zhu, J.M. Cairney, C.R. Kill-more, S.P. Ringer, Scr. Mater. 75 (2014) 74-77.
DOI URL |
[5] | C. Zhang, C. Wang, S.L. Zhang, Y.L. Ding, Q.L. Ge, J. Su, Mater. Sci. Eng. A 806 (2021) |
[6] | H.Y. Yang, K.Q. Li, Y.Q. Bu, J.M. Wu, Y.T. Fang, L. Meng, J.B. Liu, H.T. Wang, Scr. Mater. 195 (2021) |
[7] | C.W. Shao, P. Zhang, Y.K. Zhu, Z.J. Zhang, Y.Z. Tian, Z.F. Zhang, Acta Mater. 145 (2018) 413-428. |
[8] | Y.J. Wei, Y.Q. Li, L.C. Zhu, Y. Liu, X.Q. Lei, G. Wang, Y.X. Wu, Z.L. Mi, J.B. Liu, H.T. Wang, H.J. Gao, Nat. Commun. 5 (2014) |
[9] |
Z.B. Jiao, J.H. Luan, M.K. Miller, C.T. Liu, Acta Mater. 97 (2015) 58-67.
DOI URL |
[10] | S.H. Jiang, X.Q. Xu, W. Li, B. Peng, Y. Wu, X.J. Liu, H. Wang, X.Z. Wang, Z.P. Lu, Acta Mater. 213 (2021) |
[11] | S.Y. Peng, Y.J. Wei, H.J. Gao, Proc. Natl. Acad. Sci. 117 (2020) 5204-5209. |
[12] |
S.H. Jiang, H. Wang, Y. Wu, X.J. Liu, H.H. Chen, M.J. Yao, B. Gault, D. Ponge, D. Raabe, A. Hirata, M.W. Chen, Y.D. Wang, Z.P. Lu, Nature 544 (2017) 460-464.
DOI URL |
[13] | A. Zargaran, T.T.T. Trang, G. Park, N.J. Kim, Acta Mater. 220 (2021) |
[14] | B.Z. Long, Y. Zhang, C.H. Guo, Y. Cui, L.X. Sun, D. Chen, F.C. Jiang, T. Zhao, G. Zhao, Z.W. Zhang, Int. J. Plast. 138 (2021) |
[15] | S.S. Xu, X.H. Lu, S.C. Liu, L. Chen, Y. Zhang, X.Z. Li, Z.W. Zhang, Mater. Charact. 182 (2021) |
[16] | A.Y. Ku, A.S. Khan, T. Gnäupel-Herold, Int. J. Plast. 130 (2020) |
[17] | X.Y. Gao, H.Y. Wang, L. Xing, C.V. Ma, Y.M. Li, G. Sha, H.P. Ren, Mater. Sci. Eng. A 805 (2021) |
[18] | X.Y. Gao, H.Y. Wang, C.N. Ma, M. Lv, G. Sha, Y.M. Li, H.P. Ren, Mater. Sci. Eng. A 819 (2021) |
[19] |
J.T. Wang, M. Weyland, I. Bikmukhametov, M.K. Miller, P.D. Hodgson, I. Timo-khina, Scr. Mater. 160 (2019) 53-57.
DOI URL |
[20] | X.Q. Rong, H. Guo, M. Enomoto, C.J. Shang, Mater. Lett. 284 (2021) |
[21] | H.Y. Wang, X.Y. Gao, S.M. Chen, Y.M. Li, Z.W. Wu, H.P. Ren, J. Alloy. Compd. 846 (2020) |
[22] |
M.J. Hÿtch, F. Houdellier, Microelectron. Eng. 84 (2007) 460-463.
DOI URL |
[23] |
H. Mecking, U. Kocks, Acta Metall. 29 (1981) 1865-1875.
DOI URL |
[24] |
B.K. Choudhary, J. Christopher, E.I. Samuel, Mater. Sci. Technol. 28 (2013) 644-650.
DOI URL |
[25] |
M. Vinoth Kumar, V. Balasubramanian, A. Gourav Rao, J. Mater. Res. Technol. 6 (2017) 116-122.
DOI URL |
[26] | J. Peng, L. Li, F. Li, B. Liu, S. Zherebtsov, Q. Fang, J. Li, N. Stepanov, Y. Liu, F. Liu, P.K. Liaw, Int. J. Plast. 145 (2021) |
[27] |
J.M. Park, D.C. Yang, H. Kim, D.G. Kim, S. Lee, H.S. Kim, S.S. Sohn, Mater. Res. Lett. 9 (2021) 315-321.
DOI URL |
[28] |
H. Guo, M. Enomoto, C.J. Shang, Comput. Mater. Sci. 141 (2018) 101-113.
DOI URL |
[29] |
J. Millán, S. Sandlöbes, A. Al-Zubi, T. Hickel, P. Choi, J. Neugebauer, D. Ponge, D. Raabe, Acta Mater. 76 (2014) 94-105.
DOI URL |
[30] |
T. Yang, Y.L. Zhao, Y. Tong, Z.B. Jiao, J. Wei, J.X. Cai, X.D. Han, D. Chen, A. Hu, J.J. Kai, Science 362 (2018) 933-937.
DOI URL PMID |
[31] |
Z.B. Jiao, J.H. Luan, M.K. Miller, C.Y. Yu, Y. Liu, C.T. Liu, Acta Mater. 110 (2016) 31-43.
DOI URL |
[32] |
Z.B. Jiao, J.H. Luan, M.K. Miller, C.Y. Yu, C.T. Liu, Acta Mater. 84 (2015) 283-291.
DOI URL |
[33] | S.L. Liu, Z. Hu, Y.Z. Wu, J.F. Zhang, Y. Zhang, B.H. Cui, C. Liu, S. Hu, N.Q. Zhao, X. P. Han, A.Y. Cao, Y.N. Chen, Y.D. Deng, W.B. Hu, Adv. Mater. 32 (2020) |
[34] | R. Labusch, Phys. Status Solidi 41 (1970) 659-669. |
[35] |
Y.W. Kim, G.S. Hong, Y.H. Huh, C.S. Lee, Mater. Sci. Eng. A 615 (2014) 255-261.
DOI URL |
[36] | H. Fan, Q. Wang, J.A. El-Awady, D. Raabe, M. Zaiser, Nat. Commun. 12 (2021) |
[37] |
S.T. Zhao, R.P. Zhang, Q. Yu, J. Ell, R.O. Ritchie, A.M. Minor, Science 373 (2021) 1363-1368.
DOI URL |
[38] |
M. Kapoor, D. Isheim, G. Ghosh, S. Vaynman, M.E. Fine, Y.W. Chung, Acta Mater. 73 (2014) 56-74.
DOI URL |
[39] |
P.S. De, R.S. Mishra, J.A. Baumann, Acta Mater. 59 (2011) 5946-5960.
DOI URL |
[40] |
T. Dorin, F.D. Geuser, W. Lefebvre, C. Sigli, A. Deschamps, Mater. Sci. Eng. A 605 (2014) 119-126.
DOI URL |
[41] |
D. Isheim, M.S. Gagliano, M.E. Fine, D.N. Seidman, Acta Mater. 54 (2006) 841-849.
DOI URL |
[42] |
A.J. Ardell, Metall. Mater. Trans. A 16 (1985) 2131-2165.
DOI URL |
[43] | Z.Y. Zhang, F. Chai, X.B. Luo, G. Chen, C.F. Yang, H. Su, Acta Metall. Sin. 55 (2019) 783-791. |
[44] |
E. Pereloma, D. Cortie, N. Singh, G. Casillas, F. Niessen, Mater. Res. Lett. 8 (2020) 341-347.
DOI URL |
[45] |
G.S. Ansell, Acta Metall. 9 (1961) 518-519.
DOI URL |
[46] |
Q. Shen, H. Chen, W.Q. Liu, Microsc. Microanal. 23 (2017) 350-359.
DOI PMID |
[47] |
T. Xi, M. Babar Shahzad, D.K. Xu, J.L. Zhao, C.G. Yang, M. Qi, K. Yang, Mater. Sci. Eng. A 675 (2016) 243-252.
DOI URL |
[48] |
J.H. Gao, S.H. Jiang, H.R. Zhang, Y.H. Huang, D.K. Guan, Y.D. Xu, S.K. Guan, L. A. Bendersky, A. V. Davydov, Y. Wu, H.H. Zhu, Y.D. Wang, Z.P. Lu, W.M. Rain-forth, Nature 590 (2021) 262-267.
DOI URL |
[49] |
A. Zafari, K. Xia, Mater. Res. Lett. 9 (2021) 247-254.
DOI URL |
[50] |
Y.L. Bouar, Acta Mater. 49 (2001) 2661-2669.
DOI URL |
[51] |
B. Hwang, T. Lee, S. Kim, Met. Mater. Int. 16 (2010) 905-911.
DOI URL |
[52] |
B. Mouawad, X. Boulnat, D. Fabrègue, M. Perez, Y. de Carlan, J. Nucl. Mater. 465 (2015) 54-62.
DOI URL |
[53] |
J.H. Schneibel, M. Heilmaier, W. Blum, G. Hasemann, T. Shanmugasundaram, Acta Mater. 59 (2011) 1300-1308.
DOI URL |
[54] |
K. Takada, N. Nakada, T. Tsuchiyama, S. Takaki, ISIJ Int. 48 (2008) 1122-1125.
DOI URL |
[55] |
S. Takaki, K. Kawasaki, Y. Futamura, T. Tsuchiyama, Mater. Sci. Forum 503-504 (2006) 317-322.
DOI URL |
[56] |
Y.B. Zhang, D.N. Zou, X.Q. Wang, F.S. Xia, Y. Wang, W. Zhang, Met. Mater. Int.(2021), doi: 10.1007/s12540-021-01053-z.
DOI URL |
[57] | A. Hironaka, N. Nakada, T. Tsuchiyama, S. Takaki, Mater. Sci. Forum> 706-709 (2012) 2130-2133. |
[58] |
Q. Lu, W. Xu, S.V.D. Zwaag, Comput. Mater. Sci. 84 (2014) 198-205.
DOI URL |
[59] |
T. Juuti, L. Rovatti, D. Porter, G. Angella, J. Kömi, Mater. Sci. Eng. A 726 (2018) 45-55.
DOI URL |
[60] | F.B. Pickering, Physical Metallurgy and the Design of Steels, Applied Science Publishers LTD., London, 1978. |
[61] |
F. Abe, Mater. Sci. Eng. A 319-321 (2001) 770-773.
DOI URL |
[1] | Zhen Jiang, Ran Wei, Wenzhou Wang, Mengjia Li, Zhenhua Han, Shuhan Yuan, Kaisheng Zhang, Chen Chen, Tan Wang, Fushan Li. Achieving high strength and ductility in Fe50Mn25Ni10Cr15 medium entropy alloy via Al alloying [J]. J. Mater. Sci. Technol., 2022, 100(0): 20-26. |
[2] | Kaiju Lu, Ankur Chauhan, Dimitri Litvinov, Aditya Srinivasan Tirunilai, Jens Freudenberger, Alexander Kauffmann, Martin Heilmaier, Jarir Aktaa. Micro-mechanical deformation behavior of CoCrFeMnNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 100(0): 237-245. |
[3] | Sensen Chai, Shiyu Zhong, Qingshan Yang, Daliang Yu, Qingwei Dai, Hehe Zhang, Limeng Yin, Gang Wang, Zongxiang Yao. Transformation of Laves phases and its effect on the mechanical properties of TIG welded Mg-Al-Ca-Mn alloys [J]. J. Mater. Sci. Technol., 2022, 120(0): 108-117. |
[4] | Chen Chen, Yanzhou Fan, Wei Wang, Hang Zhang, Jialiang Hou, Ran Wei, Tao Zhang, Tan Wang, Mo Li, Shaokang Guan, Fushan Li. Synthesis of ultrafine dual-phase structure in CrFeCoNiAl0.6 high entropy alloy via solid-state phase transformation during sub-rapid solidification [J]. J. Mater. Sci. Technol., 2022, 113(0): 253-260. |
[5] | Shuaishuai Liu, Han Liu, Xiang Chen, Guangsheng Huang, Qin Zou, Aitao Tang, Bin Jiang, Yuntian Zhu, Fusheng Pan. Effect of texture on deformation behavior of heterogeneous Mg-13Gd alloy with strength-ductility synergy [J]. J. Mater. Sci. Technol., 2022, 113(0): 271-286. |
[6] | Jun Xu, Bin Jiang, Yuehua Kang, Jun Zhao, Weiwen Zhang, Kaihong Zheng, Fusheng Pan. Tailoring microstructure and texture of Mg-3Al-1Zn alloy sheets through curve extrusion process for achieving low planar anisotropy [J]. J. Mater. Sci. Technol., 2022, 113(0): 48-60. |
[7] | Jun Wang, Yao Lu, Fanghui Jia, Wenzhen Xia, Fei Lin, Jian Han, Ruichao Wang, Zengxi Pan, Huijun Li, Zhengyi Jiang. Effects of inter-layer remelting frequency on the microstructure evolution and mechanical properties of equimolar CoCrFeNiMn high entropy alloys during in-situ powder-bed arc additive manufacturing (PBAAM) process [J]. J. Mater. Sci. Technol., 2022, 113(0): 90-104. |
[8] | Young-Kyun Kim, Kee-Ahn Lee. Effect of carrier gas species on the microstructure and compressive deformation behaviors of ultra-strong pure copper manufactured by cold spray additive manufacturing [J]. J. Mater. Sci. Technol., 2022, 97(0): 264-271. |
[9] | J.C. Wang, Y.J. Liu, S.X. Liang, Y.S. Zhang, L.Q. Wang, T.B. Sercombe, L.C. Zhang. Comparison of microstructure and mechanical behavior of Ti-35Nb manufactured by laser powder bed fusion from elemental powder mixture and prealloyed powder [J]. J. Mater. Sci. Technol., 2022, 105(0): 1-16. |
[10] | Xuan Kong, Yang Liu, Minghui Chen, Tao Zhang, Qunchang Wang, Fuhui Wang. Heterostructured NiCr matrix composites with high strength and wear resistance [J]. J. Mater. Sci. Technol., 2022, 105(0): 142-152. |
[11] | Zheng Zhang, Wenming Jiang, Guangyu Li, Junlong Wang, Feng Guan, Guoliang Jie, Zitian Fan. Effect of La on microstructure, mechanical properties and fracture behavior of Al/Mg bimetallic interface manufactured by compound casting [J]. J. Mater. Sci. Technol., 2022, 105(0): 214-225. |
[12] | Peng Gao, Shuo Sun, Heng Li, Ranming Niu, Shuang Han, Hongxiang Zong, Hao Wang, Jianshe Lian, Xiaozhou Liao. Ultra-strong and thermally stable nanocrystalline CrCoNi alloy [J]. J. Mater. Sci. Technol., 2022, 106(0): 1-9. |
[13] | Xiaolin Li, Xiaoxiao Hao, Chi Jin, Qi Wang, Xiangtao Deng, Haifeng Wang, Zhaodong Wang. The determining role of carbon addition on mechanical performance of a non-equiatomic high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 110(0): 167-177. |
[14] | Fei Guo, Weijiu Huang, Xusheng Yang, Haipeng Dong, Hang Yu, Qiuyu Chen, Li Hu, Luyao Jiang. Variation of mechanical properties and microstructure of hot-rolled AA2099 Al-Li alloy induced by the precipitation during preheating process [J]. J. Mater. Sci. Technol., 2022, 110(0): 198-209. |
[15] | Pengfei Ji, Bohan Chen, Shuguang Liu, Bo Li, Chaoqun Xia, Xinyu Zhang, Mingzhen Ma, Riping Liu. Controlling the mechanical properties and corrosion behavior of biomedical TiZrNb alloys by combining recrystallization and spinodal decomposition [J]. J. Mater. Sci. Technol., 2022, 110(0): 227-238. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||