J. Mater. Sci. Technol. ›› 2022, Vol. 121: 99-104.DOI: 10.1016/j.jmst.2021.12.056
• Research Article • Previous Articles Next Articles
Jie Xionga,*(), Tong-Yi Zhangb,c,*(
)
Received:
2021-10-27
Revised:
2021-12-07
Accepted:
2021-12-09
Published:
2022-09-10
Online:
2022-03-15
Contact:
Jie Xiong,Tong-Yi Zhang
About author:
zhangty@shu.edu.cn (T.-Y.Zhang).Jie Xiong, Tong-Yi Zhang. Data-driven glass-forming ability criterion for bulk amorphous metals with data augmentation[J]. J. Mater. Sci. Technol., 2022, 121: 99-104.
Fig. 1. (a) Cross-validation coefficient of determination (R2) and (b) adjusted R2 ($R_{\text{adj}}^{2}$) of XGBoost regressor fed with subsets selected via EFS approach.
Fig. 2. Distribution of maximum casting diameter (Dmax) values in original dataset, and bulk metallic glasses whose Dmax values are greater than 8 mm form rare domain.
Fig. 3. (a) Data distributions of original training data and augmented training data by using the four augmentation techniques of SMOTE, SMOGN, OSIP, and OSGN. (b) Performance of XGBoost regressor model with original training data and the four data augmentation techniques.
Fig. 4. (a) R2 values of XGBR, RFR, ABR, SVR, and KNNR on OSGN data under cross-validation, and on testing data. (b) Grid search procedure of the weight of optimal XGBR (ωXGBR) in VR model, where model performance is assessed by average of CV-R2and testing R2.
Fig. 5. Predicted Dmax values with VR model are plotted against corresponding values (a) on whole OSGN training data, (b) on OSGN training data with ten-fold cross-validation (blue diamonds) and on testing data (green circles). Red diamond represents outlier Sc36Al24Co20Y20 under cross-validation.
Fig. 6. Ranked mean absolute SHAP (|SHAP|) values of six features fed into the voting regressor for predicting Dmax, darker features are more important than lighter ones.
Fig. 7. SHAP values of each OSGN datum of (a) average atomic radius $\bar{r}$, (b) feature Θ, (c) entropy of mixing Smix, and (d) enthalpy of mixing Hmix on predicting Dmax.
[1] |
M.M. Khan, A. Nemati, Z.U. Rahman, U.H. Shah, H. Asgar, W. Haider, Crit. Rev. Solid State Mater. Sci. 43 (3) (2018) 233-268.
DOI URL |
[2] |
M.F. Ashby, A.L. Greer, Scr. Mater. 54 (3) (2006) 321-326.
DOI URL |
[3] | K.C. Chan, J. Sort Metals 1 (2014) 305-385. |
[4] |
M.W. Chen, NPG Asia Mater. 3 (9) (2011) 82-90.
DOI URL |
[5] |
S. Ding, Y. Liu, Y. Li, Z. Liu, S. Sohn, F.J. Walker, J. Schroers, Nat. Mater. 13 (5) (2014) 494-500.
DOI URL |
[6] |
P. Gong, L. Deng, J. Jin, S. Wang, X. Wang, K. Yao, Metals (Basel) 6 (2016) 264.
DOI URL |
[7] |
X.J. Gu, S.J. Poon, G.J. Shiflet, J. Mater. Res. 22 (2) (2007) 344-351.
DOI URL |
[8] | W.H. Wang, Prog. Mater. Sci. 57 (3) (2012) 4 87-4 88. |
[9] |
A. Inoue, Mater. Sci. Eng. A 267 (2) (1999) 171-183.
DOI URL |
[10] |
Z.P. Lu, Y. Li, S.C. Ng, J. Non Cryst. Solids 270 (1-3) (2000) 103-114.
DOI URL |
[11] |
J. Xiong, S.Q. Shi, T.Y. Zhang, Mater. Des. 187 (2020) 108378.
DOI URL |
[12] |
J. Xiong, S.Q. Shi, T.Y. Zhang, Comput. Mater. Sci. 192 (2021) 110362.
DOI URL |
[13] |
J. Xiong, T.Y. Zhang, S.Q. Shi, MRS Commun. 9 (2) (2019) 576-585.
DOI URL |
[14] |
Y.T. Sun, H.Y. Bai, M.Z. Li, W.H. Wang, J. Phys. Chem. Lett. 8 (14) (2017) 3434-3439.
DOI URL PMID |
[15] |
J. Wu, Y. Sun, W. Wang, M. Li, Sci. Sin. Phys. Mech. Astron. 50 (6) (2020) 067002.
DOI URL |
[16] |
F. Ren, L. Ward, T. Williams, K.J. Laws, C. Wolverton, J. Hattrick-Simpers, A. Mehta, Sci. Adv. 4 (4) (2018) eaaq1566.
DOI URL |
[17] |
A.H. Cai, Y. Liu, W.K. An, G.J. Zhou, Y. Luo, T.L. Li, X.S. Li, X.F. Tan, Mater. Des. 52 (2013) 671-676.
DOI URL |
[18] |
L. Ward, A. Agrawal, A. Choudhary, C. Wolverton, NPJ Comput. Mater. 2 (1) (2016) 16028.
DOI URL |
[19] |
L. Ward, S.C. O’Keeffe, J. Stevick, G.R. Jelbert, M. Aykol, C. Wolverton, Acta Mater. 159 (7) (2018) 102-111.
DOI URL |
[20] |
J.H. Zhu X.Y. Zhou, Y. Wu, X.S. Yang, T. Lookman, H.H. Wu, Acta Mater. 224 (2022) 117535.
DOI URL |
[21] | R.J. Deng, Z.L. Long, L. Peng, D.M. Kuang, B.Y. Ren, J. Non Cryst. Solids 533 (2020) 121000. |
[22] |
Z.L. Long, W. Liu, M. Zhong, Y. Zhang, M.S.Z. Zhao, G.K. Liao, Z. Chen, J. Therm. Anal. Calorim. 132 (3) (2018) 1645-1660.
DOI URL |
[23] |
S.F. Zhao, Y. Shao, X. Liu, N. Chen, H.Y. Ding, K.F. Yao, Mater. Des. 87 (2015) 625-631.
DOI URL |
[24] |
A. Inoue, A. Takeuchi, Acta Mater. 59 (6) (2011) 2243-2267.
DOI URL |
[25] |
S. Guo, Mater. Sci. Technol. 31 (10) (2015) 1223-1230.
DOI URL |
[26] |
J. Xiong, S.Q. Shi, T.Y. Zhang, J. Mater. Sci. Technol. 87 (2021) 133-142.
DOI URL |
[27] |
L. Ward, A. Dunn, A. Faghaninia, N.E.R. Zimmermann, S. Bajaj, Q. Wang, J. Mon-toya, J.M. Chen, K. Bystrom, M. Dylla, K. Chard, M. Asta, K.A. Persson, G.J. Sny-der, I. Foster, Jain, Comput. Mater. Sci. 152(2018)60-69.
DOI URL |
[28] |
Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Adv. Eng. Mater. 10 (6) (2008) 534-538.
DOI URL |
[29] |
L. Xia, S.S. Fang, Q. Wang, Y.D. Dong, C.T. Liu, Appl. Phys. Lett. 88 (17) (2006) 171905.
DOI URL |
[30] |
A.R. Miedema, R. Boom, F.R. De Boer, J. Less Common Metals 41 (2) (1975) 283-298.
DOI URL |
[31] | F.R. de Boer, B. Boom, W.C.M. Mattens, A.R. Miedema, A.K. Niessen, Cohesion in Metals:Transition Metal Alloys, Elsevier Science Publishers, Amsterdam, The Netherlands, 1989. |
[32] |
Q.J. Chen, J. Shen, D.L. Zhang, H.B. Fan, J. Sun, D.G. McCartney, Mater. Sci. Eng. A 433 (1-2) (2006) 155-160.
DOI URL |
[33] |
Z.L. Long, H.Q. Wei, Y.H. Ding, P. Zhang, G.Q. Xie, A. Inoue, J. Alloys Compd. 475 (1-2) (2009) 207-219.
DOI URL |
[34] | S. Visalakshi, V. Radha, in: Proceedings of 2014 IEEE International Confer-ence on Computational Intelligence and Computing Research, IEEE, 2014, pp. 966-971. |
[35] |
R. Kohavi, G.H. John, Artif. Intell. 97 (1-2) (1997) 273-324.
DOI URL |
[36] | J. Li, K. Cheng, S. Wang, F. Morstatter, R.P. Trevino, J. Tang, H. Liu, ACM Comput. Surv. 50 (6) (2018) 1-45. |
[37] | T.Q. Chen, C. Guestrin, in:Proceedings of the 22nd ACM SIGKDD Interna-tional Conference on Knowledge Discovery and Data Mining, ACM, 2016, pp. 785-794. |
[38] |
G. Shieh, Organ. Res. Methods 11 (2) (2008) 387-407.
DOI URL |
[39] |
M. Fukuhara, M. Takahashi, Y. Kawazoe, A. Inoue, J. Alloys Compd. 483 (1-2) (2009) 623-626.
DOI URL |
[40] |
Z.Q. Zhou, Q.F. He, X.D. Liu, Q. Wang, J.H. Luan, C.T. Liu, Y. Yang, NPJ Comput. Mater. 7 (1) (2021) 1-10.
DOI URL |
[41] |
N.V. Chawla, K.W. Bowyer, L.O. Hall, W.P. Kegelmeyer, J. Artif. Intell. Res. 16 (2002) 321-357.
DOI URL |
[42] | P. Branco, L. Torgo, R.P. Ribeiro, in: Progress in Artificial Intelligence, Springer, Cham, 2017, pp. 513-524. |
[43] | L.T. Paula Branco, Rita P. Ribeiro, Proc. Mach. Learn. Res. 74 (2017) 36-50. |
[44] |
S.M. Lundberg, S.I. Lee, in: Advances in Neural Information Processing Systems 30, MIT Press, 2017, pp. 4765–4774.
DOI URL |
[45] | S. Raschka, J. Open Source Softw. 3 (24) (2018) 638. |
[46] | A. Klein, S. Falkner, S. Bartels, P. Hennig, F. Hutter, Proc. Mach. Learn. Res. 54 (2017) 528-536. |
[47] |
J.E. Gado, G.T. Beckham, C.M. Payne, J. Chem. Inf. Model. 60 (8) (2020) 4098-4107.
DOI URL |
[48] | F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, J. Mach. Learn. Res. 12 (2011) 2825-2830. |
[1] | Jie Xiong, San-Qiang Shi, Tong-Yi Zhang. Machine learning of phases and mechanical properties in complex concentrated alloys [J]. J. Mater. Sci. Technol., 2021, 87(0): 133-142. |
[2] | S.J. Wu, Z.Q. Liu, R.T. Qu, Z.F. Zhang. Designing metallic glasses with optimal combinations of glass-forming ability and mechanical properties [J]. J. Mater. Sci. Technol., 2021, 67(0): 254-264. |
[3] | Lin Xue, Liliang Shao, Qiang Luo, Lina Hu, Yunbo Zhao, Kuibo Yin, Mingyun Zhu, Litao Sun, Baolong Shen, Xiufang Bian. Liquid dynamics and glass formation of Gd55Co20Al25 metallic glass with minor Si addition [J]. J. Mater. Sci. Technol., 2021, 77(0): 28-37. |
[4] | Qing Du, Xiongjun Liu, Yihuan Cao, Yuren Wen, Dongdong Xiao, Yuan Wu, Hui Wang, Zhaoping Lu. Enhanced crystallization resistance and thermal stability via suppressing the metastable superlattice phase in Ni-(Pd)-P metallic glasses [J]. J. Mater. Sci. Technol., 2020, 42(0): 203-211. |
[5] | W. Zhou, W.P. Weng, J.X. Hou. Glass-forming Ability and Corrosion Resistance of Zr——Cu——Al——Co Bulk Metallic Glass [J]. J. Mater. Sci. Technol., 2016, 32(4): 349-354. |
[6] | Minjie Shi, Zengqian Liu, Tao Zhang. Effects of Metalloid B Addition on the Glass Formation, Magnetic and Mechanical Properties of FePCB Bulk Metallic Glasses [J]. J. Mater. Sci. Technol., 2015, 31(5): 493-497. |
[7] | Muhammad Iqbal, Javed Iqbal Akhter, Haifeng Zhang, Zhuangqi Hu. Effect of Minor Alloying on Crystallization Behavior and Thermal Properties of Zr64.5Ni15.5Al11.5Cu8.5 Bulk Amorphous Alloy [J]. J Mater Sci Technol, 2011, 27(6): 534-538. |
[8] | M. Iqbal J.I. Akhter H.F. Zhang Z.Q. Hu. Synthesis and Characterization of Fe50Cr14Mo14C14B6Gd2 Bulk Amorphous Steel [J]. J Mater Sci Technol, 2010, 26(9): 783-786. |
[9] | Yong SHEN, Evan MA, Jian XU. A Group of Cu(Zr)-based BMGs with Critical Diameter in the Range of 12 to 18 mm [J]. J Mater Sci Technol, 2008, 24(02): 149-152. |
[10] | M.Iqbal, J.I.Akhter, Haifeng ZHANG, Zhuangqi HU. Crystallization Behaviour and Mechanical Properties of Zr65Cu18Ni9Al8 Bulk Metallic Glass [J]. J Mater Sci Technol, 2007, 23(05): 693-696. |
[11] | Fengxiang QIN, Haifeng ZHANG, Aimin WANG, Bingzhe DING, Zhuangqi HU. Effect of Pd on GFA and Thermal Stability of Zr-based Bulk Amorphous Alloy [J]. J Mater Sci Technol, 2004, 20(02): 160-163. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||