J. Mater. Sci. Technol. ›› 2022, Vol. 125: 59-66.DOI: 10.1016/j.jmst.2022.02.034
• Research Article • Previous Articles Next Articles
Chen Yanga,1, Yukun Zhua,1, Yiming Liub,*(), Hongwei Wanga,*(
), Dongjiang Yanga
Received:
2021-10-21
Revised:
2022-02-08
Accepted:
2022-02-08
Published:
2022-10-20
Online:
2022-04-14
Contact:
Yiming Liu,Hongwei Wang
About author:
hwwang6688@qdu.edu.cn (H. Wang).1 These authors contributed equally to this work.
Chen Yang, Yukun Zhu, Yiming Liu, Hongwei Wang, Dongjiang Yang. Ternary red phosphorus/CoP2/SiO2 microsphere boosts visible-light-driven photocatalytic hydrogen evolution from pure water splitting[J]. J. Mater. Sci. Technol., 2022, 125: 59-66.
Fig. 1. (a) Schematic illustration of synthetic procedure of RP/CoP2/SiO2. SEM images of (b) SiO2, (c) SiO2/Co3O4 and (d) RP/CoP2(6)/SiO2. (e) HRTEM image of SiO2/Co3O4. (f) TEM of (g) HRTEM images of RP/CoP2(6)/SiO2. (h) STEM image and corresponding EDS mapping of RP/CoP2(6)/SiO2.
Fig. 5. Photocatalytic HER activities from pure water splitting. Comparison with (a) different co-catalyst loaded RP/SiO2 and (b) RP/CoP2(x)/SiO2 under visible light (λ ≥ 420 nm) irradiation. (c) Wavelength-dependent HER over RP/CoP2(6)/SiO2 under Xe lamp equipped with different band-pass filters (centered at 400, 420, 450, 500, 550, 600, 650, 700 and 740 nm, respectively).
Fig. 6. (a) Linear sweep voltammetry curves and (b) open circuit potential curves of different cocatalyst loaded RP/SiO2. (c) Photocurrent-time curves and (d) Nyquist plots of RP/SiO2, RP/Pt/SiO2 and RP/CoP2(x)/SiO2.
[1] |
T. Hisatomi, K. Domen, Nat. Catal. 2 (2019) 387-399.
DOI |
[2] |
Q. Xu, L. Zhang, B. Cheng, J. Fan, J. Yu, Chem 6 (2020) 1543-1559.
DOI URL |
[3] | Y. Xia, M. Sayed, L. Zhang, B. Cheng, J. Yu, Chem Catal. 1 (2021) 1173-1214. |
[4] |
A. Fujishima, K. Honda, Nature 238 (1972) 37-38.
DOI URL |
[5] |
B. Zhu, L. Zhang, B. Cheng, Y. Yu, J. Yu, Chin. J. Catal. 42 (2021) 115-122.
DOI URL |
[6] | Y. Yang, H. Tan, B. Cheng, J. Fan, J. Yu, W. Ho, Small Methods 11 (2021) 2001042. |
[7] |
C. Zhao, Z. Chen, J. Xu, Q. Liu, H. Xu, H. Tang, G. Li, Y. Jiang, F. Qu, Z. Lin, X. Yang, Appl. Catal. B Environ. 256 (2019) 117867.
DOI URL |
[8] | J. Jing, J. Yang, Z. Zhang, Y. Zhu, Adv. Energy Mater. (2021) 2101392. |
[9] |
P.L. Cheung, S.C. Kapper, T. Zeng, M.E. Thompson, C.P. Kubiak, J. Am. Chem. Soc. 141 (2019) 14 961-14 965.
DOI URL |
[10] |
L. Yin, Y. Zhao, Y. Xing, H. Tan, Z. Lang, W. Ho, Y. Wang, Y. Li, Chem. Eng. J. 419 (2021) 129984.
DOI URL |
[11] |
C. Mo, M. Yang, F. Sun, J. Jian, L. Zhong, Z. Fang, J. Feng, D. Yu, Adv. Sci. 7 (2020) 1902988.
DOI URL |
[12] |
Y. Zhu, J. Ren, X. Zhang, D. Yang, Nanoscale 12 (2020) 13297-13310.
DOI URL |
[13] |
J. Liu, Y. Zhu, J. Chen, D.S. Butenko, J. Ren, X. Yang, P. Lu, P. Meng, Y. Xu, D. Yang, S. Zhang, J. Hazard. Mater. 413 (2021) 125462.
DOI URL |
[14] |
Z. Hu, W. Guo, Small 17 (2021) 2008004.
DOI URL |
[15] | F. Wang, W. Ng, J. Yu, H. Zhu, C. Li, L. Zhang, Z. Liu, Q. Li, Appl. Catal. B Environ. 111- 112 (2021) 409-414. |
[16] |
S. Li, Y. Ng, R. Zhu, S. Lv, C. Wu, Y. Liu, L. Jing, J. Deng, H. Dai, Appl. Catal. B Environ. 297 (2021) 120412.
DOI URL |
[17] |
Y. Xia, L. Zhang, B. Hu, J. Yu, A. Al-Ghamdi, S. Wageh, Chem. Eng. J. 421 (2021) 127732.
DOI URL |
[18] |
F. Liu, R. Shi, Z. Wang, Y. Weng, C. Che, Y. Chen, Angew. Chem. Int. Ed. 58 (2019) 11791-11795.
DOI URL |
[19] |
M. Wang, Z. Qin, Z. Diao, R. Li, J. Zhong, D. Ma, Y. Chen, ACS Sustain. Chem. Eng. 8 (2020) 13459-13466.
DOI URL |
[20] |
Z. Hu, L. Yuan, Z. Liu, Z. Shen, J. Yu, Angew. Chem. Int. Ed. 55 (2016) 9580-9585.
DOI URL |
[21] |
Y. Liu, Z. Hu, J. Yu, Appl. Catal. B Environ. 247 (2019) 100-106.
DOI URL |
[22] |
L. Jing, R. Zhu, Y. Ng, Z. Hu, W. Teoh, D. Phillips, J. Yu, J. Chem. Phys. 153 (2020) 024707.
DOI URL |
[23] |
Y. Zhu, C. Lv, Z. Yin, J. Ren, X. Yang, C. Dong, H. Liu, R. Cai, Y. Huang, W. Theis, S. Shen, D. Yang, Angew. Chem. Int. Ed. 59 (2020) 868-873.
DOI URL |
[24] |
Z. Liang, X. Dong, Y. Han, J. Geng, Appl. Surf. Sci. 484 (2019) 293-299.
DOI URL |
[25] | C. Bie, B. Cheng, J. Fan, W. Ho, J. Yu, EnergyChem 3 (2021) 100051. |
[26] |
X. Hong, X. Yu, L. Wang, Q. Liu, J. Sun, H. Tang, Inorg. Chem. 60 (2021) 12506-12516.
DOI URL |
[27] | X. Yang, W. Liu, C. Han, C. Zhao, H. Tang, Q. Liu, J. Xu, Mater. Today Phys. 15 (2020) 100261. |
[28] |
X. Liu, Y. Zhao, X. Yang, Q. Liu, X. Yu, Y. Li, H. Tang, T. Zhang, Appl. Catal. B Environ. 275 (2020) 119144.
DOI URL |
[29] |
Q. Liu, J. Huang, H. Tang, X. Yu, J. Shen, J. Mater. Sci. Technol. 56 (2020) 196-205.
DOI URL |
[30] |
C. Li, M. Fu, Y. Wang, E. Liu, J. Fan, X. Hu, Catal. Sci. Technol. 10 (2020) 2221-2230.
DOI URL |
[31] |
E. Liu, L. Qi, J. Chen, J. Fan, X. Hu, Mater. Res. Bull. 115 (2019) 27-36.
DOI URL |
[32] |
W. Stöber, A. Fink, E. Bohn, J. Colloid Interface Sci. 26 (1968) 62-69.
DOI URL |
[33] |
J. Piao, X. Liu, J. Wu, W. Yang, Z. Wei, J. Ma, S. Duan, X. Lin, Y. Xu, A. Cao, L. Wan, ACS Appl. Mater. Interfaces 10 (2018) 22896-22901.
DOI URL |
[34] |
Y. Zhu, J. Li, C. Dong, J. Ren, Y. Huang, D. Zhao, R. Cai, D. Wei, X. Yang, C. Lv, W. Theis, Y. Bu, W. Han, S. Shen, D. Yang, Appl. Catal. B Environ. 255 (2019) 117764.
DOI URL |
[35] |
S. Jiang, J. Cao, M. Guo, D. Cao, X. Jia, H. Lin, S. Chen, Appl. Surf. Sci. 558 (2021) 149882.
DOI URL |
[36] |
L. Jing, R. Zhu, D. Phillips, J. Yu, Adv. Funct. Mater. 27 (2017) 1703484.
DOI URL |
[37] |
Y. Zhang, L. Gao, E. Hensen, J. Hofmann, ACS Energy Lett. 3 (2018) 1360-1365.
DOI PMID |
[38] |
J. Wang, L. Zhu, G. Dharan, G. Ho, J. Mater. Chem. A 5 (2017) 16580-16584.
DOI URL |
[39] |
H. Li, X. Zhao, H. Liu, S. Chen, X. Yang, C. Lv, H. Zhang, X. She, D. Yang, Small 14 (2018) 1802824.
DOI URL |
[40] |
J. Wang, W. Yang, J. Liu, J. Mater. Chem. A 4 (2016) 4686-4690.
DOI URL |
[41] |
D. Zhao, Y. Wang, C. Dong, Y. Huang, J. Chen, F. Xue, S. Shen, L. Guo, Nat. Energy 6 (2021) 388-397.
DOI URL |
[42] |
Y. Sun, F. Zeng, Y. Zhu, P. Lu, D. Yang, J. Energy Chem. 61 (2021) 531-552.
DOI URL |
[43] |
W. Zhao, T. She, J. Zhang, G. Wang, S. Zhang, W. Wei, G. Yang, L. Zhang, D. Xia, Z. Cheng, H. Huang, D. Leung, J. Mater. Sci. Technol. 85 (2021) 18-29.
DOI |
[44] |
T. Di, L. Zhang, B. Cheng, J. Yu, J. Fan, J. Mater. Sci. Technol. 56 (2020) 170-178.
DOI URL |
[45] |
W. Xue, W. Chang, X. Hu, J. Fan, E. Liu, Chin. J. Catal. 42 (2021) 152-163.
DOI URL |
[46] |
G. Moon, W. Kim, A. Bokare, N. Sung, W. Choi, Energy Environ. Sci. 7 (2014) 4023-4028.
DOI URL |
[47] |
B. He, C. Bie, X. Fei, B. Cheng, J. Yu, W. Ho, A. Al-Ghamdi, S. Wageh, Appl. Catal. B Environ. 288 (2021) 119994.
DOI URL |
[48] |
R. Wang, M. Shi, F. Xu, Y. Qiu, P. Zhang, K. Shen, Q. Zhao, J. Yu, Y. Zhang, Nat. Commun. 11 (2020) 4465.
DOI PMID |
[49] |
X. Zhang, F. Tian, M. Gao, W. Yang, Y. Yu, Chem. Eng. J. 428 (2022) 132628.
DOI URL |
[50] |
G. Huang, W. Ye, C. Lv, D. Butenko, C. Yang, G. Zhang, P. Lu, Y. Xu, S. Zhang, H. Wang, Y. Zhu, D. Yang, J. Mater. Sci. Technol. 108 (2022) 18-25.
DOI URL |
[51] |
C. Jin, C. Xu, W. Chang, X. Ma, X. Hu, E. Liu, J. Fan, J. Alloy. Compd. 803 (2019) 205-215.
DOI URL |
[52] |
L. Peng, X. Duan, Y. Shang, B. Gao, X. Xu, Appl. Catal. B Environ. 287 (2021) 119963.
DOI URL |
[53] |
W. Zhao, Q. Dong, C. Sun, D. Xia, H. Huang, G. Yang, G. Wang, D. Leung, Chem. Eng. J. 409 (2021) 128185.
DOI URL |
[54] |
X. Zhang, F. Tian, X. Lan, Y. Liu, W. Yang, J. Zhang, Y. Yu, Chem. Eng. J. 429 (2022) 132588.
DOI URL |
[55] |
F. Mu, B. Dai, W. Zhao, S. Zhou, H. Huang, G. Yang, D. Xia, Y. Kong, D. Leung, J. Mater. Sci. Technol. 101 (2022) 37-48.
DOI URL |
[56] |
W. Zhao, X. Tu, X. Wang, B. Dai, L. Zhang, J. Xu, Y. Feng, N. Sheng, F. Zhu, Chem. Eng. J. 361 (2019) 1173-1181.
DOI |
[57] |
X. Wang, M. Wang, G. Liu, Y. Zhang, G. Han, A. Vomiero, H. Zhao, Nano Energy 86 (2021) 106122.
DOI URL |
[58] |
C. Feng, Z. Chen, J. Jing, M. Sun, J. Tian, G. Lu, L. Ma, X. Li, J. Hou, J. Mater. Sci. Technol. 80 (2021) 75-83.
DOI URL |
[1] | Hua-Jun Chen, Yan-Ling Yang, Xin-Xin Zou, Xiao-Lei Shi, Zhi-Gang Chen. Flexible hollow TiO2@CMS/carbon-fiber van der Waals heterostructures for simulated-solar light photocatalysis and photoelectrocatalysis [J]. J. Mater. Sci. Technol., 2022, 98(0): 143-150. |
[2] | T. Fang X., K. Li Z., F. Wang Y., M. Ruiz, L. Ma X., Y. Wang H., Y. Zhu, R. Schoell, C. Zheng, D. Kaoumi, T. Zhu Y.. Achieving high hetero-deformation induced (HDI) strengthening and hardening in brass by dual heterostructures [J]. J. Mater. Sci. Technol., 2022, 98(0): 244-247. |
[3] | Xuan Kong, Yang Liu, Minghui Chen, Tao Zhang, Qunchang Wang, Fuhui Wang. Heterostructured NiCr matrix composites with high strength and wear resistance [J]. J. Mater. Sci. Technol., 2022, 105(0): 142-152. |
[4] | Xinqiang Wang, Bin Wang, Yuanfu Chen, Mengya Wang, Qi Wu, Katam Srinivas, Bo Yu, Xiaojuan Zhang, Fei Ma, Wanli Zhang. Fe2P nanoparticles embedded on Ni2P nanosheets as highly efficient and stable bifunctional electrocatalysts for water splitting [J]. J. Mater. Sci. Technol., 2022, 105(0): 266-273. |
[5] | Chao Liu, Yulong Zhang, Jiaxin Wu, Hailu Dai, Chengjian Ma, Qinfang Zhang, Zhigang Zou. Ag-Pd alloy decorated ZnIn2S4 microspheres with optimal Schottky barrier height for boosting visible-light-driven hydrogen evolution [J]. J. Mater. Sci. Technol., 2022, 114(0): 81-89. |
[6] | Xiaolin Hu, Tongxin Yang, Zuguang Yang, Zongyang Li, Ronghua Wang, Meng Li, Guangsheng Huang, Bin Jiang, Chaohe Xu, Fusheng Pan. Engineering of Co3O4@Ni2P heterostructure as trifunctional electrocatalysts for rechargeable zinc-air battery and self-powered overall water splitting [J]. J. Mater. Sci. Technol., 2022, 115(0): 19-28. |
[7] | Weijie Zhang, Xizhong Zhou, Jinzhao Huang, Shouwei Zhang, Xijin Xu. Noble metal-free core-shell CdS/iron phthalocyanine Z-scheme photocatalyst for enhancing photocatalytic hydrogen evolution [J]. J. Mater. Sci. Technol., 2022, 115(0): 199-207. |
[8] | Xiang Chen, Baoxuan Zhang, Qin Zou, Guangsheng Huang, Shuaishuai Liu, Junlei Zhang, Aitao Tang, Bin Jiang, Fusheng Pan. Design of pure aluminum laminates with heterostructures for extraordinary strength-ductility synergy [J]. J. Mater. Sci. Technol., 2022, 100(0): 193-205. |
[9] | Junxian Bai, Weilin Chen, Rongchen Shen, Zhimin Jiang, Peng Zhang, Wei Liu, Xin Li. Regulating interfacial morphology and charge-carrier utilization of Ti3C2 modified all-sulfide CdS/ZnIn2S4 S-scheme heterojunctions for effective photocatalytic H2 evolution [J]. J. Mater. Sci. Technol., 2022, 112(0): 85-95. |
[10] | Dhananjay Mishra, Niraj Kumar, Ajit Kumar, Seung Gi Seo, Sung Hun Jin. Mitigation on self-discharge behaviors via morphological control of hierarchical Ni-sulfides/Ni-oxides electrodes for long-life-supercapacitors [J]. J. Mater. Sci. Technol., 2022, 113(0): 217-228. |
[11] | Meng Cai, Peng Feng, Han Yan, Yuting Li, Shijie Song, Wen Li, Hao Li, Xiaoqiang Fan, Minhao Zhu. Hierarchical Ti3C2Tx@MoS2 heterostructures: A first principles calculation and application in corrosion/wear protection [J]. J. Mater. Sci. Technol., 2022, 116(0): 151-160. |
[12] | Jinfeng Zhang, Junwei Fu, Kai Dai. Graphitic carbon nitride/antimonene van der Waals heterostructure with enhanced photocatalytic CO2 reduction activity [J]. J. Mater. Sci. Technol., 2022, 116(0): 192-198. |
[13] | Jian Chen, Zhen Hu, Yang Ou, Qinghua Zhang, Xiaopeng Qi, Lin Gu, Tongxiang Liang. Interfacial engineering regulated by CeOx to boost efficiently alkaline overall water splitting and acidic hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2022, 120(0): 129-138. |
[14] | Bo Su, Haowei Huang, Zhengxin Ding, Maarten B.J. Roeffaers, Sibo Wang, Jinlin Long. S-scheme CoTiO3/Cd9.51Zn0.49S10 heterostructures for visible-light driven photocatalytic CO2 reduction [J]. J. Mater. Sci. Technol., 2022, 124(0): 164-170. |
[15] | Lufang Ning, Jing Xu, Yang Lou, Chengsi Pan, Zhouping Wang, Yongfa Zhu. A 3D/0D cobalt-embedded nitrogen-doped porous carbon/supramolecular porphyrin magnetic-separation photocatalyst with highly efficient pollutant degradation and water oxidation performance [J]. J. Mater. Sci. Technol., 2022, 124(0): 53-64. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||