J. Mater. Sci. Technol. ›› 2022, Vol. 120: 129-138.DOI: 10.1016/j.jmst.2021.12.049
• Research Article • Previous Articles Next Articles
Jian Chena,b, Zhen Hua,b, Yang Oua,b, Qinghua Zhangc, Xiaopeng Qia,b,*(), Lin Guc, Tongxiang Lianga,b,*(
)
Received:
2021-08-13
Revised:
2021-10-22
Accepted:
2021-12-06
Published:
2022-09-01
Online:
2022-03-12
Contact:
Xiaopeng Qi,Tongxiang Liang
About author:
liang_tx@126.com (T. Liang).Jian Chen, Zhen Hu, Yang Ou, Qinghua Zhang, Xiaopeng Qi, Lin Gu, Tongxiang Liang. Interfacial engineering regulated by CeOx to boost efficiently alkaline overall water splitting and acidic hydrogen evolution reaction[J]. J. Mater. Sci. Technol., 2022, 120: 129-138.
Fig. 1. (a) Synthesis strategy for the formation of MoO2-CeOx/NF catalyst. SEM image of (b) MoO2-CeOx/NF; (c, d) TEM image of MoO2-CeOx/NF, (e) SAED images, (f, g) HR-TEM image of MoO2-CeOx/NF, (h) electron image and the corresponding elemental mappings of (i) Mo, (j) O, (k) Ce, and (l) Ni for MoO2-CeOx/NF.
Fig. 2. (a) XRD spectra and (b) survey XPS spectra of MoO2-CeOx/NF, MoO2/NF, and CeOx/NF. (c) Mo 3d XPS spectra of MoO2/NF and MoO2-CeOx/NF. (d) O 1 s XPS spectra of MoO2-CeOx/NF, MoO2/NF, and CeOx/NF. (e) Ce 3d XPS spectra of MoO2-CeOx/NF and CeOx/NF. (f) Ni 2p XPS spectra of MoO2-CeOx/NF, MoO2/NF, and CeOx/NF.
Fig. 3. (a) LSV curves and (b) Tafel plots, (c) Nyquist plots conducted at 100.0 mV (V vs. RHE) of MoO2-CeOx/NF, MoO2/NF, CeOx/NF, Pt/C, and NF, (d) Cdl of MoO2-CeOx/NF, MoO2/NF, CeOx/NF, and NF, (e) TOFs of MoO2-CeOx/NF, MoO2/NF, CeOx/NF, Pt/C, and NF, and (f) the stability of MoO2-CeOx/NF and Pt/C at -10.0 mA cm-2 in 1.0 M KOH.
Fig. 4. (a) LSV curves and the (b) corresponding overpotentials at 100 mA cm-2, (c) Tafel plots of MoO2-CeOx/NF, MoO2/NF, CeOx/NF, RuO2 and NF, (d) stability of MoO2-CeOx/NF and RuO2 at 100.0 mA cm-2 during a continuous operation in 1.0 M KOH. (e) LSV curves of Pt/C@NF//RuO2@NF, MoO2/NF//MoO2/NF and MoO2-CeOx/NF//MoO2-CeOx/NF for the overall water splitting process without iR compensation, and (f) stability of MoO2-CeOx/NF//MoO2-CeOx/NF and MoO2/NF//MoO2/NF at 20 mA cm-2 in 1.0 M KOH.
Fig. 5. (a) GC and water splitting device, (b) Quantity of H2 and O2 tested by GC method in 1.0 M KOH. (c) LSV curves and (d) Tafel plots, (e) Nyquist plots conducted at 100.0 mV (V vs. RHE) of MoO2-CeOx/NF, MoO2/NF, CeOx/NF, Pt/C, and NF, and the (f) stability of MoO2-CeOx/NF and Pt/C at -10.0 mA cm-2 in 0.5 M H2SO4.
Fig. 6. Calculation model diagrams of (a) MoO2, (b) Vo-MoO2, (c) CeOx and (d) Vo-MoO2-CeOx, PDOS programs of (e) MoO2, Vo-MoO2, CeOx and Vo-MoO2-CeOx.
[1] |
J. Wang, Z. Liu, C. Zhan, K. Zhang, X. Lai, J. Tu, Y. Cao, J. Mater. Sci. Technol. 39 (2020) 155-160.
DOI URL |
[2] |
D.R. Paudel, U.N. Pan, T.I. Singh, C.C. Gudal, N.H. Kim, J.H. Lee, Appl. Catal. B Environ. 286 (2021) 119897.
DOI URL |
[3] |
B. Zhu, R. Zou, Q. Xu, Adv. Energy Mater. 8 (2018) 1801193.
DOI URL |
[4] |
H. Zhang, A.W. Maijenburg, X. Li, S.L. Schweizer, R.B. Wehrspohn, Adv. Funct. Mater. 30 (2020) 2003261.
DOI URL |
[5] |
Y. Pei, Y. Yang, F. Zhang, P. Dong, R. Baines, Y. Ge, H. Chu, P.M. Ajayan, J. Shen, M. Ye, ACS Appl. Mater. Interfaces 9 (2017) 31887-31896.
DOI URL |
[6] |
J. Yan, L. Li, Y. Ji, P. Li, L. Kong, X. Cai, Y. Li, T. Ma, S. Liu, J. Mater. Chem. A 6 (2018) 12532-12540.
DOI URL |
[7] |
M. Yu, Z. Wang, J. Liu, F. Sun, P. Yang, J. Qiu, Nano Energy 63 (2019) 103880.
DOI URL |
[8] |
F. Yang, T. Xiong, P. Huang, S. Zhou, Q. Tan, H. Yang, Y. Huang, M.S. Balogun, Chem. Eng. J. 423 (2021) 130279.
DOI URL |
[9] |
J. Sun, W. Xu, C. Lv, L. Zhang, M. Shakouri, Y. Peng, Q. Wang, X. Yang, D. Yuan, M. Huang, Y. Hu, D. Yang, L. Zhang, Appl. Catal. B Environ. 286 (2021) 119882.
DOI URL |
[10] |
X..P. Yu, C. Yang, P. Song, J. Peng, Tungsten 2 (2020) 194-202.
DOI URL |
[11] |
F. Wang, J. Chen, X. Qi, H. Yang, H. Jiang, Y. Deng, T. Liang, Appl. Surf. Sci. 481 (2019) 1403-1411.
DOI URL |
[12] |
D. Xiao, D.L. Bao, X. Liang, Y. Wang, J. Shen, C. Cheng, P.K. Chu, Appl. Catal. B Environ. 288 (2021) 119983.
DOI URL |
[13] |
J. Chen, Q. Zeng, X. Qi, B. Peng, L. Xu, C. Liu, T. Liang, Int. J. Hydrog. Energy 45 (2020) 24828-24839.
DOI URL |
[14] |
Y. Jin, H. Wang, J. Li, X. Yue, Y. Han, P.K. Shen, Y. Cui, Adv. Mater. 28 (2016) 3785-3790.
DOI URL |
[15] |
J. Tong, Y. Xue, J. Wang, M. Wang, W. Chen, Q. Tian, F. Yu, Energy Technol. 8 (2020) 1901392.
DOI URL |
[16] |
G. Qian, G. Yu, J. Lu, L. Luo, T. Wang, C. Zhang, R. Ku, S. Yin, W. Chen, S. Mu, J. Mater. Chem. A 8 (2020) 14545-14554.
DOI URL |
[17] |
B.B. Li, Y.Q. Liang, X.J. Yang, Z.D. Cui, S.Z. Qiao, S.L. Zhu, Z.Y. Li, K. Yin, Nanoscale 7 (2015) 16704-16714.
DOI URL PMID |
[18] |
P. Guha, B. Mohanty, R. Thapa, R.M. Kadam, P.V. Satyam, B.K. Jena, ACS Appl. Energy Mater. 3 (2020) 5208-5218.
DOI URL |
[19] |
L. Wang, J. Cao, C. Lei, Q. Dai, B. Yang, Z. Li, X. Zhang, C. Yuan, L. Lei, Y. Hou, ACS Appl. Mater. Interfaces 11 (2019) 27743-27750.
DOI URL |
[20] |
H. Zhao, Z. Li, X. Dai, M. Cui, F. Nie, X. Zhang, Z. Ren, Z. Yang, Y. Gan, X. Yin, Y. Wang, W. Song, J. Mater. Chem. A 8 (2020) 6732-6739.
DOI URL |
[21] |
M. Wang, K. Jian, Z. Lv, D. Li, G. Fan, R. Zhang, J. Dang, J. Mater. Sci. Technol. 79 (2021) 29-34.
DOI URL |
[22] |
Y. Yang, K. Zhang, H. Lin, X. Li, H.C. Chan, L. Yang, Q. Gao, ACS Catal. 7 (2017) 2357-2366.
DOI URL |
[23] |
Z. Zhang, X. Ma, J. Tang, J. Mater. Chem. A 6 (2018) 12361-12369.
DOI URL |
[24] |
Y. Yan, B.Y. Xia, B. Zhao, X. Wang, J. Mater. Chem. A 4 (2016) 17587-17603.
DOI URL |
[25] |
K. Ye, Y. Li, H. Yang, M. Li, Y. Huang, S. Zhang, H. Ji, Appl. Catal. B Environ. 259 (2019) 118085.
DOI URL |
[26] |
J. Chen, S. Shen, P. Wu, L. Guo, Green Chem. 17 (2015) 509-517.
DOI URL |
[27] |
Y. Huang, B. Long, M. Tang, Z. Rui, M.S. Balogun, Y. Tong, H. Ji, Appl. Catal. B Environ. 181 (2016) 779-787.
DOI URL |
[28] |
X. Wang, Y. Yang, L. Diao, Y. Tang, F. He, E. Liu, C. He, C. Shi, J. Li, J. Sha, S. Ji, P. Zhang, L. Ma, N. Zhao, ACS Appl. Mater. Interfaces 10 (2018) 35145-35153.
DOI URL |
[29] |
R. Bhargava, J. Shah, S. Khan, R.K. Kotnala, Energy Fuels 34 (2020) 13067-13078.
DOI URL |
[30] |
S. Mansingh, D. Kandi, K.K. Das, K. Parida, ACS Omega 5 (2020) 9789-9805.
DOI URL PMID |
[31] | Y. Yu, Y. Liu, X. Peng, X. Liu, Y. Xing, S. Xing, Sustain. Energy Fuels 4 (2020) 5156-5164. |
[32] |
J. Chen, X. Qi, C. Liu, J. Zeng, T. Liang, ACS Appl. Mater. Interfaces 12 (2020) 51418-51427.
DOI URL |
[33] | C. Wang, X. Lv, P. Zhou, X. Liang, Z. Wang, Y. Liu, P. Wang, Z. Zheng, Y. Dai, Y. Li, M.H. Whangbo, B. Huang, ACS Appl. Mater. Interfaces 12 (2020) 29153-29161. |
[34] |
T. Zhang, X. Wu, Y. Fan, C. Shan, B. Wang, H. Xu, Y. Tang, ChemNanoMat 6 (2020) 1119-1126.
DOI URL |
[35] |
L. Chen, H. Jang, M.G. Kim, Q. Qin, X. Liu, J. Cho, Inorg. Chem. Front. 7 (2020) 470-476.
DOI URL |
[36] |
G. Yang, Y. Jiao, H. Yan, Y. Xie, A. Wu, X. Dong, D. Guo, C. Tian, H. Fu, Adv. Mater. 32 (2020) 2000455.
DOI URL |
[37] |
Y.Y. Chen, Y. Zhang, X. Zhang, T. Tang, H. Luo, S. Niu, Z.H. Dai, L.J. Wan, J.S. Hu, Adv. Mater. 29 (2017) 1703311.
DOI URL |
[38] |
C. Jian, Q. Cai, W. Hong, J. Li, W. Liu, Small 14 (2018) 1703798.
DOI URL |
[39] |
H. Xu, J. Cao, C. Shan, B. Wang, P. Xi, W. Liu, Y. Tang, Angew. Chem. Int. Ed. 57 (2018) 8654-8658.
DOI URL |
[40] | J. Chen, F. Wang, X. Qi, H. Yang, B. Peng, L. Xu, Z. Xiao, X. Hou, T. Liang, Elec- trochim. Acta 326 (2019) 134979. |
[41] |
L. Zhuang, Y. Jia, T. He, A. Du, X. Yan, L. Ge, Z. Zhu, X. Yao, Nano Res. 11 (2018) 3509-3518.
DOI URL |
[42] |
Y. Liu, C. Ma, Q. Zhang, W. Wang, P. Pan, L. Gu, D. Xu, J. Bao, Z. Dai, Adv. Mater. 31 (2019) 1900062.
DOI URL |
[43] |
X. Lu, K.H. Ye, S. Zhang, J. Zhang, J. Yang, Y. Huang, H. Ji, Chem. Eng. J. 428 (2022) 131027.
DOI URL |
[44] |
G. Zhang, J. Zeng, J. Yin, C. Zuo, P. Wen, H. Chen, Y. Qiu, Appl. Catal. B Environ. 286 (2021) 119902.
DOI URL |
[45] |
L. Zhang, X. Ren, X. Guo, Z. Liu, A.M. Asiri, B. Li, L. Chen, X. Sun, Inorg. Chem. 57 (2018) 548-552.
DOI URL PMID |
[46] |
C.F. Li, J.W. Zhao, L.J. Xie, J.Q. Wu, G.R. Li, Appl. Catal. B Environ. 291 (2021) 119987.
DOI URL |
[47] |
Y. Zhou, M. Luo, W. Zhang, Z. Zhang, X. Meng, X. Shen, H. Liu, M. Zhou, X. Zeng, ACS Appl. Mater. Interfaces 11 (2019) 21998-22004.
DOI URL |
[48] |
L.B. Huang, L. Zhao, Y. Zhang, Y.Y. Chen, Q.H. Zhang, H. Luo, X. Zhang, T. Tang, L. Gu, J.S. Hu, Adv. Energy Mater. 8 (2018) 1800734.
DOI URL |
[49] |
Z. Wang, L. Xu, F. Huang, L. Qu, J. Li, K.A. Owusu, Z. Liu, Z. Lin, B. Xiang, X. Liu, K. Zhao, X. Liao, W. Yang, Y.B. Cheng, L. Mai, Adv. Energy Mater. 9 (2019) 1900390.
DOI URL |
[50] |
J. Li, L. Jiang, S. He, L. Wei, R. Zhou, J. Zhang, D. Yuan, S.P. Jiang, Energy Fuels 33 (2019) 12052-12062.
DOI URL |
[51] |
C. Du, M. Shang, J. Mao, W. Song, J. Mater. Chem. A 5 (2017) 15940-15949.
DOI URL |
[52] |
J.Q. Chi, W.K. Gao, J.H. Lin, B. Dong, J.F. Qin, Z.Z. Liu, B. Liu, Y.M. Chai, C.G. Liu, J. Catal. 360 (2018) 9-19.
DOI URL |
[53] |
Y. Zhu, L. Zhang, B. Zhao, H. Chen, X. Liu, R. Zhao, X. Wang, J. Liu, Y. Chen, M. Liu, Adv. Funct. Mater. 29 (2019) 1901783.
DOI URL |
[54] |
A. Grimaud, O. Diaz-Morales, B. Han, W.T. Hong, Y.L. Lee, L. Giordano, K.A. Sto- erzinger, M.T.M. Koper, Y. Shao-Horn, Nat. Chem. 9 (2017) 457-465.
DOI URL PMID |
[1] | Hua-Jun Chen, Yan-Ling Yang, Xin-Xin Zou, Xiao-Lei Shi, Zhi-Gang Chen. Flexible hollow TiO2@CMS/carbon-fiber van der Waals heterostructures for simulated-solar light photocatalysis and photoelectrocatalysis [J]. J. Mater. Sci. Technol., 2022, 98(0): 143-150. |
[2] | T. Fang X., K. Li Z., F. Wang Y., M. Ruiz, L. Ma X., Y. Wang H., Y. Zhu, R. Schoell, C. Zheng, D. Kaoumi, T. Zhu Y.. Achieving high hetero-deformation induced (HDI) strengthening and hardening in brass by dual heterostructures [J]. J. Mater. Sci. Technol., 2022, 98(0): 244-247. |
[3] | Guiqing Huang, Wanneng Ye, Chunxiao Lv, Denys S. Butenko, Chen Yang, Gaolian Zhang, Ping Lu, Yan Xu, Shuchao Zhang, Hongwei Wang, Yukun Zhu, Dongjiang Yang. Hierarchical red phosphorus incorporated TiO2 hollow sphere heterojunctions toward superior photocatalytic hydrogen production [J]. J. Mater. Sci. Technol., 2022, 108(0): 18-25. |
[4] | Xiaolin Hu, Tongxin Yang, Zuguang Yang, Zongyang Li, Ronghua Wang, Meng Li, Guangsheng Huang, Bin Jiang, Chaohe Xu, Fusheng Pan. Engineering of Co3O4@Ni2P heterostructure as trifunctional electrocatalysts for rechargeable zinc-air battery and self-powered overall water splitting [J]. J. Mater. Sci. Technol., 2022, 115(0): 19-28. |
[5] | Xiang Chen, Baoxuan Zhang, Qin Zou, Guangsheng Huang, Shuaishuai Liu, Junlei Zhang, Aitao Tang, Bin Jiang, Fusheng Pan. Design of pure aluminum laminates with heterostructures for extraordinary strength-ductility synergy [J]. J. Mater. Sci. Technol., 2022, 100(0): 193-205. |
[6] | Dhananjay Mishra, Niraj Kumar, Ajit Kumar, Seung Gi Seo, Sung Hun Jin. Mitigation on self-discharge behaviors via morphological control of hierarchical Ni-sulfides/Ni-oxides electrodes for long-life-supercapacitors [J]. J. Mater. Sci. Technol., 2022, 113(0): 217-228. |
[7] | Meng Cai, Peng Feng, Han Yan, Yuting Li, Shijie Song, Wen Li, Hao Li, Xiaoqiang Fan, Minhao Zhu. Hierarchical Ti3C2Tx@MoS2 heterostructures: A first principles calculation and application in corrosion/wear protection [J]. J. Mater. Sci. Technol., 2022, 116(0): 151-160. |
[8] | Jinfeng Zhang, Junwei Fu, Kai Dai. Graphitic carbon nitride/antimonene van der Waals heterostructure with enhanced photocatalytic CO2 reduction activity [J]. J. Mater. Sci. Technol., 2022, 116(0): 192-198. |
[9] | Xuan Kong, Yang Liu, Minghui Chen, Tao Zhang, Qunchang Wang, Fuhui Wang. Heterostructured NiCr matrix composites with high strength and wear resistance [J]. J. Mater. Sci. Technol., 2022, 105(0): 142-152. |
[10] | Xinqiang Wang, Bin Wang, Yuanfu Chen, Mengya Wang, Qi Wu, Katam Srinivas, Bo Yu, Xiaojuan Zhang, Fei Ma, Wanli Zhang. Fe2P nanoparticles embedded on Ni2P nanosheets as highly efficient and stable bifunctional electrocatalysts for water splitting [J]. J. Mater. Sci. Technol., 2022, 105(0): 266-273. |
[11] | Jie Wang, Sijia Sun, Run Zhou, Yangzi Li, Zetian He, Hao Ding, Daimei Chen, Weihua Ao. A review: Synthesis, modification and photocatalytic applications of ZnIn2S4 [J]. J. Mater. Sci. Technol., 2021, 78(0): 1-19. |
[12] | Mingxing Liang, Yongcong Huang, Yuda Lin, Guisheng Liang, Cihui Huang, Lan Chen, Jiaxin Li, Qian Feng, Chunfu Lin, Zhigao Huang. Micro-nano structured VNb9O25 anode with superior electronic conductivity for high-rate and long-life lithium storage [J]. J. Mater. Sci. Technol., 2021, 83(0): 66-74. |
[13] | Jinming Hu, Shengyi Yang, Zhenheng Zhang, Hailong Li, Chandrasekar Perumal Veeramalai, Muhammad Sulaman, Muhammad Imran Saleem, Yi Tang, Yurong Jiang, Libin Tang, Bingsuo Zou. Solution-processed, flexible and broadband photodetector based on CsPbBr3/PbSe quantum dot heterostructures [J]. J. Mater. Sci. Technol., 2021, 68(0): 216-226. |
[14] | Tao Liu, Aina He, Fengyu Kong, Anding Wang, Yaqiang Dong, Hua Zhang, Xinmin Wang, Hongwei Ni, Yong Yang. Heterostructured crystallization mechanism and its effect on enlarging the processing window of Fe-based nanocrystalline alloys [J]. J. Mater. Sci. Technol., 2021, 68(0): 53-60. |
[15] | Meng Wang, Kailiang Jian, Zepeng Lv, Dong Li, Gangqiang Fan, Run Zhang, Jie Dang. MoS2/Co9S8/MoC heterostructure connected by carbon nanotubes as electrocatalyst for efficient hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 79(0): 29-34. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||