J. Mater. Sci. Technol. ›› 2022, Vol. 117: 215-224.DOI: 10.1016/j.jmst.2022.01.002
• Research Article • Previous Articles Next Articles
Menglong Xua,b,c, Linfeng Weib, Li Mab, Jiawei Lua, Tao Liua,*(), Ling Zhangc, Ling Zhaoa, Chul B. Parkb,*(
)
Received:
2021-11-10
Revised:
2022-01-05
Accepted:
2022-01-05
Published:
2022-02-18
Online:
2022-08-01
Contact:
Tao Liu,Chul B. Park
About author:
park@mie.utoronto.ca (C.B. Park).Menglong Xu, Linfeng Wei, Li Ma, Jiawei Lu, Tao Liu, Ling Zhang, Ling Zhao, Chul B. Park. Microcellular foamed polyamide 6/carbon nanotube composites with superior electromagnetic wave absorption[J]. J. Mater. Sci. Technol., 2022, 117: 215-224.
Fig. 2. (a) Lightweight property of PA6/CNT composites foam; (b) Flexibility of PA6/CNT composites foam; (c) Raman shift of CNT; (d) XRD pattern of CNT, unfoamed PA6 (Solid-PA6) and unfoamed PA6/CNT nanocomposites (Solid-PA6C); TEM micrographs of (e) unfoamed PA6/CNT composites (Solid-PA6C), (f) enlarged square in (e), (g) PA6/CNT composites foam (Foam-257.5C) and (h) enlarged square in (g).
Fig. 3. SEM micrographs of various PA6/CNT nanocomposite foams-(a) Foam-225C, (b) Foam-232.5C, (c) Foam-242.5C and (d) Foam-257.5C, (e) cell size and (f) void fraction of various PA6/CNT nanocomposite foams at different foaming temperatures.
Fig. 5. Electromagnetic parameters of the solid and foamed PA6/CNT nanocomposites in the frequency range of 12.4-18 GHz-(a) real part of the permittivity ε′, (b) imaginary part of the permittivity ε", (c) dielectric loss tangent tan δ and (d) attenuation constant α.
Fig. 6. (a-c) Three-dimensional (3D) reflection loss (RL) values, (d-f) RL values at particular thicknesses, (g-i) corresponding impedance matching at particular thicknesses of the unfoamed and foamed PA6/CNT nanocomposites.
Fig. 7. (a) Direct comparison of wave absorbing properties of the Foam-257.5C in this work with those of representative polymer composites foams-polyurethane (PU) foams [53], [54], [55], [56], poly(vinylidene fluoride) (PVDF) foams [15,57], polypropylene (PP) foams [24,58], polymethyl methacrylate (PMMA) foams [59], polymethacrylimide (PMI) foams [60]; (b) Schematic illustration of the EM wave absorption mechanisms of PA6/CNT nanocomposite foams.
[1] |
Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan, W. She, Y. Yang, R. Che, Adv. Mater. 28 (2016) 486-490.
DOI URL |
[2] |
X. Qiu, L. Wang, H. Zhu, Y. Guan, Q. Zhang, Nanoscale 9 (2017) 7408-7418.
DOI PMID |
[3] | C. Liang, Z. Wang, L. Wu, X. Zhang, H. Wang, Z. Wang, ACS Appl. Mater. Inter- face 9 (2017) 29950-29957. |
[4] |
Z. Li, X. Han, Y. Ma, D. Liu, Y. Wang, P. Xu, C. Li, Y. Du, ACS Sustain. Chem. Eng. 6 (2018) 8904-8913.
DOI URL |
[5] |
R. Guo, Q. Zheng, L. Wang, J. Mater. Sci. Technol. 106 (2022) 108-117.
DOI URL |
[6] |
G. Wang, L. Wang, L.H. Mark, V. Shaayegan, G. Wang, H. Li, G. Zhao, C.B. Park, ACS Appl. Mater. Interface 10 (2018) 1195-1203.
DOI URL |
[7] |
H. Zhang, Q. Yan, W. Zheng, Z. He, Z. Yu, ACS Appl. Mater. Interface 3 (2011) 918-924.
DOI URL |
[8] |
F. Meng, Z. Fang, Z. Li, W. Xu, M. Wang, Y. Liu, J. Zhang, W. Wang, D. Zhao, X. Guo, J. Mater. Chem. A 1 (2013) 7235-7241.
DOI URL |
[9] |
Z. Zeng, F. Jiang, Y. Yue, D. Han, L. Lin, S. Zhao, Y.B. Zhao, Z. Pan, C. Li, G. Nys-tröm, Adv. Mater. 32 (2020) 1908496-1908502.
DOI URL |
[10] | A. Ameli, M. Nofar, C. Park, P. Pötschke, G.Rizvi, Carbon71(2014)206-217. |
[11] |
X. Zhi, H. Zhang, Y. Liao, Q. Hu, C. Gui, Z. Yu, Carbon 82 (2015) 195-204.
DOI URL |
[12] |
Y. Wu, Z. Wang, X. Liu, X. Shen, Q. Zheng, Q. Xue, J.K. Kim, ACS Appl. Mater. Interface 9 (2017) 9059-9069.
DOI URL |
[13] |
H. Huang, C. Liu, D. Zhou, X. Jiang, G. Zhong, D. Yan, Z. Li, J. Mater. Chem. A 3 (2015) 4983-4991.
DOI URL |
[14] |
W. Song, M. Cao, L. Fan, M. Lu, Y. Li, C. Wang, H. Ju, Carbon 77 (2014) 130-142.
DOI URL |
[15] |
B. Zhao, J. Deng, C. Zhao, C. Wang, Y.G. Chen, M. Hamidinejad, R. Li, C.B. Park, J. Mater. Chem. C 8 (2020) 58-70.
DOI URL |
[16] |
H. Sun, R. Che, X. You, Y. Jiang, Z. Yang, J. Deng, L. Qiu, H. Peng, Adv. Mater. 26 (2014) 8120-8125.
DOI URL |
[17] |
M. Antunes, M. Mudarra, J.Ignacio Velasco, Carbon 49 (2011) 708-717.
DOI URL |
[18] |
S. Mondal, S. Ganguly, P. Das, D. Khastgir, N.C. Das, Compos. B Eng. 119 (2017) 41-56.
DOI URL |
[19] |
Y. Zhang, S. Li, X. Tang, W. Fan, Q. Lan, L. Li, P. Ma, W. Dong, Z. Wang, T. Liu, J. Mater. Sci. Technol. 102 (2022) 97-104.
DOI URL |
[20] |
N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen, P.C. Eklund, Nano Lett. 6 (2006) 1141-1145.
DOI URL |
[21] |
B. Wen, M. Cao, Z. Hou, W. Song, L. Zhang, M. Lu, H. Jin, X. Fang, W. Wang, J. Yuan, Carbon 65 (2013) 124-139.
DOI URL |
[22] |
B. Zhao, M. Hamidinejad, S. Wang, P. Bai, R. Che, R. Zhang, C.B. Park, J. Mater. Chem. A 9 (2021) 8896-8949.
DOI URL |
[23] |
D. Zhou, H. Yuan, Y. Xiong, G. Luo, Q. Shen, Compos. Sci. Technol. 203 (2021) 108614-108622.
DOI URL |
[24] |
F. Wu, Y. Li, X. Lan, P. Huang, Y. Chong, H. Luo, B. Shen, W. Zheng, Compos. Commun. 20 (2020) 100358-100364.
DOI URL |
[25] |
M. Hamidinejad, B. Zhao, A. Zandieh, N. Moghimian, T. Filleter, C.B. Park, ACS Appl. Mater. Interface 10 (2018) 30752-30761.
DOI PMID |
[26] |
M. Xu, J. Lu, Y. Qiao, L. Wei, T. Liu, P.C. Lee, L. Zhao, C.B. Park, Mater. Des. 196 (2020) 109173-109180.
DOI URL |
[27] |
J. Zhao, G. Wang, C. Wang, C.B. Park, Compos. Sci. Technol. 191 (2020) 108084-108095.
DOI URL |
[28] |
T. Xia, Z. Xi, X. Yi, T. Liu, L. Zhao, Ind. Eng. Chem. Res. 54 (2015) 6922-6931.
DOI URL |
[29] |
D. Li, T. Liu, L. Zhao, X. Lian, W. Yuan, Ind. Eng. Chem. Res. 50 (2011) 1997-2007.
DOI URL |
[30] | A.K. Geim, K.S. Novoselov, in:The Rise of Graphene, Nanoscience and Tech- nology-A Collection of Reviews from Nature Journals, World Scientific, 2010, pp. 11-19. |
[31] |
T. Liu, X. Xie, Y. Pang, S. Kobayashi, J. Mater. Chem. C 4 (2016) 1727-1735.
DOI URL |
[32] |
X. Yan, Y. Imai, D. Shimamoto, Y. Hotta, Polymer 55 (2014) 6186-6194.
DOI URL |
[33] | V. Shaayegan, A. Ameli, S. Wang, C.B. Park, Ind. Eng. Chem. Res. 88 (2016) 67-74. |
[34] |
H.E. Naguib, C.B. Park, N. Reichelt, J. Appl. Polym. Sci. 91 (2004) 2661-2668.
DOI URL |
[35] |
S. Wang, Y. Huang, E. Chang, C. Zhao, A. Ameli, H.E. Naguib, C.B. Park, Chem. Eng. J. 411 (2021) 128382-128392.
DOI URL |
[36] |
R. Che, L. Peng, X. Duan, Q. Chen, X. Liang, Adv. Mater. 16 (2004) 401-405.
DOI URL |
[37] | B. Zhao, Y. Li, Q. Zeng, L. Wang, J. Ding, R. Zhang, R. Che, Small 16 (2020) 2003502-2003513. |
[38] |
I. Abdalla, J. Yu, Z. Li, B. Ding, Compos. B Eng. 155 (2018) 397-404.
DOI URL |
[39] |
R. Purushothaman, J. Porous Mater. 22 (2015) 585-594.
DOI URL |
[40] |
O. Levy, D. Stroud, Phys. Rev. B 56 (1997) 8035.
DOI URL |
[41] |
X. Liu, D. Geng, H. Meng, P. Shang, Z. Zhang, Appl. Phys. Lett. 92 (2008) 173117.
DOI URL |
[42] |
A. Ameli, Y. Kazemi, S. Wang, C. Park, P. Pötschke, Compos. A Appl. Sci. Manuf. 96 (2017) 28-36.
DOI URL |
[43] |
X. Ding, Y. Huang, S. Li, N. Zhang, J. Wang, Compos. A Appl. Sci. Manuf. 90 (2016) 424-432.
DOI URL |
[44] |
B. Zhao, C. Zhao, M. Hamidinejad, C. Wang, R. Li, S. Wang, K. Yasamin, C.B. Park, J. Mater. Chem. C 6 (2018) 10292-10300.
DOI URL |
[45] |
Z. Xiang, Y. Song, J. Xiong, Z. Pan, X. Wang, L. Liu, R. Liu, H. Yang, W. Lu, Carbon 142 (2019) 20-31.
DOI |
[46] |
T. Hou, Z. Jia, A. Feng, Z. Zhou, X. Liu, H. Lv, G. Wu, J. Mater. Sci. Technol. 68 (2021) 61-69.
DOI URL |
[47] |
D. Ding, Y. Wang, X. Li, R. Qiang, P. Xu, W. Chu, X. Han, Y. Du, Carbon 111 (2017) 722-732.
DOI URL |
[48] |
X. Liu, Y. Huang, L. Ding, X. Zhao, P. Liu, T. Li, J. Mater. Sci. Technol. 72 (2021) 93-103.
DOI URL |
[49] |
J. Liu, R. Che, H. Chen, F. Zhang, F. Xia, Q. Wu, M. Wang, Small 8 (2012) 1214-1221.
DOI URL |
[50] |
B. Zhao, X. Guo, W. Zhao, J. Deng, B. Fan, G. Shao, Z. Bai, R. Zhang, Nano Res. 10 (2017) 331-343.
DOI URL |
[51] |
A. Ameli, M. Nofar, S. Wang, C.B. Park, ACS Appl. Mater. Interface 6 (2014) 11091-11100.
DOI URL |
[52] |
X. Wang, F. Pan, Z. Xiang, Q. Zeng, K. Pei, R. Che, W. Lu, Carbon 157 (2020) 130-139.
DOI URL |
[53] |
B. Zhao, X. Li, S. Zeng, R. Wang, L. Wang, R. Che, R. Zhang, C.B. Park, ACS Appl. Mater. Interface 12 (2020) 50793-50802.
DOI URL |
[54] |
C. Zhang, H. Li, Z. Zhuo, R. Dugnani, C. Sun, Y. Chen, H. Liu, RSC Adv. 7 (2017) 41321-41329.
DOI URL |
[55] |
S. Wang, X. Huang, W. Zhang, Appl. Phys. A Mater. Sci. Process. 127 (2021) 742-752.
DOI URL |
[56] |
Y. Gao, C. Wang, J. Li, S. Guo, Compos. A Appl. Sci. Manuf. 117 (2019) 65-75.
DOI URL |
[57] |
F. Liu, C. Li, G.I. Waterhouse, X. Jiang, Z. Zhang, L. Yu, J. Alloys Compd. 876 (2021) 159983-159992.
DOI URL |
[58] |
D. Fan, R. Tan, B. Wei, P. Chen, J. Zhou, Polymer 234 (2021) 124262-124271.
DOI URL |
[59] |
H. Yuan, Y. Xiong, Q. Shen, G. Luo, D. Zhou, L. Liu, Compos. A Appl. Sci. Manuf. 107 (2018) 334-341.
DOI URL |
[60] |
W. Chen, Z. Yao, H. Lin, J. Zhou, A.A. Haidry, Y. Qian, X. Guo, K. Qian, J. Mater. Sci. Mater. Electron. 30 (2019) 16991-17002.
DOI URL |
[1] | Fan Wang, Weihua Gu, Jiabin Chen, Qianqian Huang, Mingyang Han, Gehuan Wang, Guangbin Ji. Improved electromagnetic dissipation of Fe doping LaCoO3 toward broadband microwave absorption [J]. J. Mater. Sci. Technol., 2022, 105(0): 92-100. |
[2] | Rui Guo, Qi Zheng, Lianjun Wang, Yuchi Fan, Wan Jiang. Porous N-doped Ni@SiO2/graphene network: Three-dimensional hierarchical architecture for strong and broad electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 106(0): 108-117. |
[3] | Yue Liu, Xuehua Liu, Xinyu E, Bingbing Wang, Zirui Jia, Qingguo Chi, Guanglei Wu. Synthesis of MnxOy@C hybrid composites for optimal electromagnetic wave absorption capacity and wideband absorption [J]. J. Mater. Sci. Technol., 2022, 103(0): 157-164. |
[4] | Fei Pan, Lei Cai, Yanyan Dong, Xiaojie Zhu, Yuyang Shi, Wei Lu. Mixed-dimensional hierarchical configuration of 2D Ni2P nanosheets anchored on 1D silk-derived carbon fiber for extraordinary electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 101(0): 85-94. |
[5] | Siyao Guo, Yunfeng Bao, Ying Li, Hailong Guan, Dongyi Lei, Tiejun Zhao, Baomin Zhong, Zhihong Li. Super broadband absorbing hierarchical CoFe alloy/porous carbon@carbon nanotubes nanocomposites derived from metal-organic frameworks [J]. J. Mater. Sci. Technol., 2022, 118(0): 218-228. |
[6] | Yingzhi Jiao, Siyao Cheng, Fan Wu, Jiaoyan Shi, Aming Xie, Xufei Zhu, Wei Dong. Microporous polythiophene (MPT)-guest complex derived magnetic metal sulfides/carbon nanocomposites for broadband electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 100(0): 206-215. |
[7] | Rui Liu, Xiang He, Miao Miao, Shaomei Cao, Xin Feng. In-situ growth of porous Cu3(BTC)2 on cellulose nanofibrils for ultra-low dielectric films with high flexibility [J]. J. Mater. Sci. Technol., 2022, 112(0): 202-211. |
[8] | Ting-Ting Liu, Mao-Qing Cao, Yong-Sheng Fang, Yu-Hang Zhu, Mao-Sheng Cao. Green building materials lit up by electromagnetic absorption function: A review [J]. J. Mater. Sci. Technol., 2022, 112(0): 329-344. |
[9] | Chunhua Sun, Zirui Jia, Shuang Xu, Dongqi Hu, Chuanhui Zhang, Guanglei Wu. Synergistic regulation of dielectric-magnetic dual-loss and triple heterointerface polarization via magnetic MXene for high-performance electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 113(0): 128-137. |
[10] | Zibao Jiao, Wenjun Huyan, Junru Yao, Zhengjun Yao, Jintang Zhou, Peijiang Liu. Heterogeneous ZnO@CF structures and their excellent microwave absorbing properties with thin thickness and low filling [J]. J. Mater. Sci. Technol., 2022, 113(0): 166-174. |
[11] | Fenghui Cao, Jia Xu, Minjie Liu, Feng Yan, Qiuyun Ouyang, Xitian Zhang, Xiaoli Zhang, Yujin Chen. Regulation of impedance matching feature and electronic structure of nitrogen-doped carbon nanotubes for high-performance electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 108(0): 1-9. |
[12] | Chenxi Wang, Zirui Jia, Shuangqiao He, Jixi Zhou, Shuo Zhang, Mengli Tian, Bingbing Wang, Guanglei Wu. Metal-organic framework-derived CoSn/NC nanocubes as absorbers for electromagnetic wave attenuation [J]. J. Mater. Sci. Technol., 2022, 108(0): 236-243. |
[13] | Hua Jian, Qinrui Du, Qiaoqiao Men, Li Guan, Ruosong Li, Bingbing Fan, Xin Zhang, Xiaoqin Guo, Biao Zhao, Rui Zhang. Structure-dependent electromagnetic wave absorbing properties of bowl-like and honeycomb TiO2/CNT composites [J]. J. Mater. Sci. Technol., 2022, 109(0): 105-113. |
[14] | Jun He, Shengtao Gao, Yuanchun Zhang, Xingzhao Zhang, Hanxu Li. N-doped residual carbon from coal gasification fine slag decorated with Fe3O4 nanoparticles for electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 104(0): 98-108. |
[15] | Zhen Yu, Rui Zhou, Mingwei Ma, Runqiu Zhu, Peng Miao, Pei Liu, Jie Kong. ZnO/nitrogen-doped carbon nanocomplex with controlled morphology for highly efficient electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 114(0): 206-214. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||