J. Mater. Sci. Technol. ›› 2022, Vol. 117: 207-214.DOI: 10.1016/j.jmst.2022.02.002
• Research Article • Previous Articles Next Articles
Yingchun Liua, Hongjun Zhanga,*(), Wenming Shia, Qian Wanga, Guicheng jianga, Bin Yanga, Wenwu Caoa,b, Jiubin Tanc
Received:
2022-01-04
Revised:
2022-02-10
Accepted:
2022-02-11
Published:
2022-02-19
Online:
2022-08-01
Contact:
Hongjun Zhang
About author:
∗E-mail address: zhanghj@hit.edu.cn (H. Zhang).Yingchun Liu, Hongjun Zhang, Wenming Shi, Qian Wang, Guicheng jiang, Bin Yang, Wenwu Cao, Jiubin Tan. Ultrahigh strain in textured BCZT-based lead-free ceramics with CuO sintering agent[J]. J. Mater. Sci. Technol., 2022, 117: 207-214.
Fig. 1. (a) XRD patterns of randomly oriented BCZT-R and BT templated BCZT ceramics with various CuO contents (BCZT-x, x = 0.25, 0.5, 1.0 and 2.5), showing different texture fractions f00l. The peaks are indexed using pseudocubic Miller indices; (b) main (002)c peaks of BCZT between 44° and 46°; (c) changes of texture fraction f00l of BCZT-x with sintering temperature.
Fig. 2. SEM images of (a) randomly oriented BCZT-R; (b-e) textured BCZT-x ceramics with various CuO contents (x = 0.25, 0.5, 1.0 and 2.5); (f) average grain sizes of BCZT-x ceramics.
Fig. 3. Texture evolution of BCZT-1.0 with the sintering temperature: (a) 1300 °C, (b) 1350 °C, (c) 1400 °C, (d) 1450 °C, experiencing no soaking stage.
Fig. 4. (a) Temperature dependence of the dielectric constant εr measured at 1 kHz; (b) plots of ln(1/εr- 1/εm) vs. ln(T - Tm) for BCZT-R and BCZT-x ceramics.
Fig. 5. (a) Unipolar S-E curves measured at 20 kV/cm; (b) effective piezoelectric coefficient d33* and strain hysteresis Hs; (c) piezoelectric coefficient d33 and the electromechanical coupling coefficient kt, as a function of CuO content; (d) P-E hysteresis loops measured at 20 kV/cm, for BCZT-R and BCZT-x ceramics.
Fig. 6. (a) Electric field induced unipolar strain S of textured BCZT-1.0 and other well-known Pb-based piezoelectric ceramics, including textured PMN-PZT ceramic, commercial PZT-5H and PZT-4. (b) Piezoelectric coefficient d33 as a function of strain hysteresis Hs for modified BT-based ceramics [[58], [59], [60], [61], [62], [63], [64], [65], [66], [67], [68], [69], [70], [71], [72], [73], [74], [75], [76], [77], [78], [79], [80], [81], [82], [83]]. Both high piezoelectric coefficient and low strain hysteresis at 20 kV/cm was observed in the textured BCZT-1.0 ceramic (this work).
Fig. 7. (a) EBSD map (inverse pole figures, IPFz) and its corresponding (001)c (inverse) pole figures; and (b) grain orientation distributions obtained by fitting (001)c pole figure data to the March-Dollase function of the textured BCZT-1.0 ceramic. PFM amplitude and phase images for unpoled (c) randomly oriented BCZT-R ceramic and (d) textured BCZT-1.0 ceramic.
[1] |
S. Mohith, A.R. Upadhya, K.P. Navin, S.M. Kulkarni, M. Rao, Smart Mater. Struct. 30 (2021) 013002.
DOI URL |
[2] | W.R. Ali, M. Prasad, Sensor Actuat.A-Phys 301 (2020) 111756. |
[3] |
S. Wang, W. Rong, L. Wang, Z. Pei, L. Sun, Precis. Eng. 51 (2018) 545-551.
DOI URL |
[4] |
S. Song, S. Shao, M. Xu, Y. Shao, Z. Tian, B. Feng, Sensor Actuat. A-Phys. 282 (2018) 174-182.
DOI URL |
[5] |
J. Gao, D. Xue, W. Liu, C. Zhou, X. Ren, Actuators 6 (2017) 24.
DOI URL |
[6] |
T.E. Hooper, J.I. Roscow, A. Mathieson, H. Khanbareh, A.J. Goetzee-Barral, A.J. Bell, J. Eur. Ceram. Soc. 41 (2021) 6115-6129.
DOI URL |
[7] | A. Presas, Y. Luo, Z. Wang, D. Valentin, M. Egusquiza, Seneors 18 (2018) 2251. |
[8] |
Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature 432 (2004) 84-87.
DOI URL |
[9] |
A.J. Bell, O. Deubzer, MRS Bull 43 (2018) 581-587.
DOI URL |
[10] |
W. Liu, X. Ren, Phys. Rev. Lett. 103 (2009) 257602.
DOI URL |
[11] |
D.S. Keeble, F. Benabdallah, P.A. Thomas, M. Maglione, J. Kreisel, Appl. Phys. Lett. 102 (2013) 092903.
DOI URL |
[12] |
L. Zhang, M. Zhang, L. Wang, C. Zhou, Z. Zhang, Y. Yao, L. Zhang, D. Xue, X. Lou, X. Ren, Appl. Phys. Lett. 105 (2014) 162908.
DOI URL |
[13] |
Y. Tian, X. Chao, L. Jin, L. Wei, P. Liang, Z. Yang, Appl. Phys. Lett. 104 (2014) 112901.
DOI URL |
[14] |
C. Zhao, H. Wu, F. Li, Y. Cai, Y. Zhang, D. Song, J. Wu, X. Lyu, J. Yin, D. Xiao, J. Zhu, S.J. Pennycook, J. Am. Chem. Soc. 140 (2018) 15252-15260.
DOI URL |
[15] |
G. Tutuncu, B. Li, K. Bowman, J.L. Jones, J. Appl. Phys. 115 (2014) 144104.
DOI URL |
[16] |
C. Zhao, H. Wang, J. Xiong, J. Wu, Dalton. Trans. 45 (2016) 6466-6480.
DOI URL |
[17] |
L.F. Zhu, B.P. Zhang, L. Zhao, J.F. Li, J. Mater. Chem. C 2 (2014) 4764.
DOI URL |
[18] | N. Chaiyo, D.P. Cann, N. Vittayakorn, Mater. Design. 133 (2017) 109-121. |
[19] |
P. Li, J. Zhai, B. Shen, S. Zhang, X. Li, F. Zhu, X. Zhang, Adv. Mater. 30 (2018) 1705171.
DOI URL |
[20] |
G.L. Messing, S. Trolier-McKinstry, E.M. Sabolsky, C. Duran, S. Kwon, B. Brah-maroutu, P. Park, H. Yilmaz, P.W. Rehrig, K.B. Eitel, E. Suvaci, M. Seabaugh, K.S. Oh, Crit. Rev. Solid. State. 29 (2004) 45-96.
DOI URL |
[21] |
Y. Chang, J. Wu, Z. Liu, E. Sun, L. Liu, Q. Kou, F. Li, B. Yang, W. Cao, ACS Appl. Mater. Inter. 12 (2020) 38415-38424.
DOI URL |
[22] |
S.K. Ye, J.Y.H. Fuh, L. Lu, Appl. Phys. Lett. 100 (2012) 252906.
DOI URL |
[23] |
S. Zhukov, Y.A. Genenko, J. Koruza, J. Schultheiß, H. Von Seggern, W. Sakamoto, H. Ichikawa, T. Murata, K. Hayashi, T. Yogo, Appl. Phys. Lett. 108 (2016) 012907.
DOI URL |
[24] |
W. Bai, D. Chen, P. Li, B. Shen, J. Zhai, Z. Ji, Ceram. Int. 42 (2016) 3429-3436.
DOI URL |
[25] |
D. Vriami, D. Damjanovic, J. Vleugels, O. Van der Biest, J. Mater. Sci. 50 (2015) 7896-7907.
DOI URL |
[26] |
G.L. Messing, S. Poterala, Y. Chang, T. Frueh, E.R. Kupp, B.H. Watson, R.L. Wal-ton, M.J. Brova, A.K. Hofer, R. Bermejo, R.J. Meyer, J. Mater. Res. 32 (2017) 3219-3241.
DOI URL |
[27] |
Y.C. Liu, Y.F. Chang, F. Li, B. Yang, Y. Sun, J. Wu, S.T. Zhang, R.X. Wang, W.W. Cao, ACS Appl. Mater. Inter. 9 (2017) 29863-29871.
DOI URL |
[28] |
F. Fu, J. Zhai, Z. Xu, B. Shen, X. Yao, Bull. Mater. Sci 37 (2014) 779-787.
DOI URL |
[29] |
T. Sato, T. Kimura, Ceram. Int. 34 (2008) 757-760.
DOI URL |
[30] |
J.J. Zhou, L.Q. Cheng, K. Wang, X.W. Zhang, J.F. Li, H. Liu, J.Z. Fang, Ceram. Int. 40 (2014) 2927-2931.
DOI URL |
[31] |
Y.R. Cui, X.Y. Liu, M.H. Jiang, Y.B. Hu, Q.S. Su, H. Wang, J. Mater. Sci-Mater. el. 23 (2012) 1342-1345.
DOI URL |
[32] |
T. Chen, T. Zhang, G. Wang, J. Zhou, J. Zhang, Y. Liu, J. Mater. Sci. 47 (2012) 4612-4619.
DOI URL |
[33] |
H. Takao, Y. Saito, Y. Aoki, K. Horibuchi, J. Am. Ceram. Soc. 89 (2006) 1951-1956.
DOI URL |
[34] |
J.H. Choi, J.S. Kim, S.H. Han, H.W. Kang, H.G. Lee, C.II. Cheon, Ceram. Int. 40 (2014) 13269-13274.
DOI URL |
[35] |
E. Suvaci, G.L. Messing, J. Am. Ceram. Soc. 83 (2000) 2041-2048.
DOI URL |
[36] |
M.J. Brova, B.H. Watson, R.L. Walton, E.R. Kupp, M.A. Fanton, R.J. Meyer, G.L. Messing, J. Eur. Ceram. Soc. 41 (2021) 1230-1235.
DOI URL |
[37] |
M.J. Brova, B.H. Watson, R.L. Walton, E.R. Kupp, M.A. Fanton, R.J. Meyer, G.L. Messing, J. Am. Ceram. Soc. 103 (2020) 6149-6156.
DOI URL |
[38] |
M. Nev ˇriva, E. Pollert, L. Mat ˇejková, A. T ˇríska, J. Cryst. Growth. 91 (1988) 434-438.
DOI URL |
[39] |
M.A. De La Rubia, J.J. Reinosa, P. Leret, J.J. Romero, J. De Frutos, J.F. Fernández, J. Eur. Ceram. Soc. 32 (2012) 71-76.
DOI URL |
[40] |
E. Suvaci, G.L. Messing, J. Am. Ceram. Soc. 83 (2000) 2041-2048.
DOI URL |
[41] |
M. Valant, D. Suvorov, R.C. Pullar, K. Sarma, N.M. Alford, J. Eur. Ceram. Soc. 26 (2006) 2777-2783.
DOI URL |
[42] |
M. Labeau, U. Schmatz, G. Delabouglise, J. Roman, M. Valletregi, A. Gaskov, Sensor Actuat. B-Chem. 26 (1995) 49-52.
DOI URL |
[43] | K.H. Brosnan Ph.D. thesis, Pennsylvania State University, 2007. |
[44] |
L. Bian, Q.W. Kou, L.J. Liu, H.S. Zheng, N. Wang, X.D. Qi, B. Yang, W.W. Cao, ACS Appl. Mater. Inter. 14 (2022) 3076-3083.
DOI URL |
[45] |
Y. Zhang, H. Sun, W. Chen, J. Phys. Chem. Solids. 114 (2018) 207-219.
DOI URL |
[46] |
H.Y. Tian, K.W. Kwok, H.L.W. Chan, C.E. Buckley, J. Mater. Sci. 42 (2007) 9750-9755.
DOI URL |
[47] |
T. Chen, T. Zhang, G.C. Wang, J.F. Zhou, J.W. Zhang, Y.H. Liu, J. Mater. Sci. 47 (2012) 4612-4619.
DOI URL |
[48] |
Z.M. Wang, X.F. Chen, X.L. Chao, J.J. Wang, P.F. Liang, Z.P. Yang, Ceram. Int. 42 (2016) 18037-18044.
DOI URL |
[49] | D.T. Harris Ph.D. thesis, North Carolina State University, 2015. |
[50] |
G. Liu, Y. Li, J. Dong, L. Yu, Y. Zhang, J. Hu, J. Gao, Z. He, Ceram. Int. 45 (2019) 21544-21556.
DOI URL |
[51] |
M. Zhou, R. Liang, Z. Zhou, X. Dong, J. Mater. Chem. C 6 (2018) 8528-8537.
DOI URL |
[52] |
J.F. Lin, Y. Zhou, Q.L. Lu, X. Wu, C. Lin, T.F. Lin, K.H. Xue, X.S. Miao, B.S. Sa, Z.M. Sun, J. Mater. Chem. A 7 (2019) 19374-19384.
DOI URL |
[53] |
P. Li, X.Q. Chen, F.F. Wang, B. Shen, J.W. Zhai, S.J. Zhang, Z.Y. Zhou, ACS Appl. Mater. Inter. 10 (2018) 28772-28779.
DOI URL |
[54] |
S. Dong, J. Adv. Dielectr. 02 (2012) 1230001.
DOI URL |
[55] |
X. Ma, Y. Liu, J. Ruan, C. Tao, J. Yuan, Y. Chang, W. Cao, IEEE T Ultrason. Ferr. 69 (2022) 751-760.
DOI URL |
[56] |
S.E. Park, T.R. Shrout, J. Appl. Phys. 82 (1997) 1804-1811.
DOI URL |
[57] |
Y. Yan, K.H. Cho, D. Maurya, A. Kumar, S. Kalinin, A. Khachaturyan, S. Priya, Appl. Phys. Lett. 102 (2013) 042903.
DOI URL |
[58] |
D. Xu, W.L. Li, L.D. Wang, W. Wang, W.P. Cao, W.D. Fei, Acta Mater 79 (2014) 84-92.
DOI URL |
[59] |
X. Chen, Y. Li, J. Zeng, L. Zheng, C.H. Park, G. Li, D. Damjanovic, J. Am. Ceram. Soc. 99 (2016) 2170-2174.
DOI URL |
[60] |
D. Xue, Y. Zhou, J. Gao, X. Ding, X. Ren, EPL-Europhys. Lett. 100 (2012) 17010.
DOI URL |
[61] | N. Pisitpipathsin, P. Kantha, K. Pengpat, G. Rujijanagul, Ceram. Int. 39 (2013) S35-S39. |
[62] |
J. Schultheiß, O. Clemens, S. Zhukov, H. von Seggern, W. Sakamoto, J. Koruza, J. Am. Ceram. Soc. 100 (2017) 2098-2107.
DOI URL |
[63] |
Y. Tian, L. Cao, P. Qin, S. Sun, Y. Gong, X. Ji, Q. Jing, Ceram. Int. 45 (2019) 12825-12831.
DOI URL |
[64] |
W. Bai, D. Chen, J. Zhang, J. Zhong, M. Ding, B. Shen, J. Zhai, Z. Ji, Ceram. Int. 42 (2016) 3598-3608.
DOI URL |
[65] | W. Bai, B. Shen, F. Fu, J. Zhai, Jpn. J. Appl. Phys. 51 (2012) 015503. |
[66] |
L.F. Zhu, B.P. Zhang, L. Zhao, S. Li, Y. Zhou, X.C. Shi, N. Wang, J. Eur. Ceram. Soc. 36 (2016) 1017-1024.
DOI URL |
[67] |
B. Li, M.C. Ehmke, J.E. Blendell, K.J. Bowman, J. Eur. Ceram. Soc. 33 (2013) 3037-3044.
DOI URL |
[68] |
Z. Yang, J. Fu, Y. Xu, R. Zuo, J. Eur. Ceram. Soc. 41 (2021) 6441-6448.
DOI URL |
[69] |
Y. Feng, W.L. Li, D. Xu, Y.L. Qiao, Y. Yu, Y. Zhao, W.D. Fei, ACS Appl. Mater. Inter. 8 (2016) 9231-9241.
DOI URL |
[70] |
J.P. Praveen, T. Karthik, A.R. James, E. Chandrakala, S. Asthana, D. Das, J. Eur. Ceram. Soc. 35 (2015) 1785-1798.
DOI URL |
[71] |
Q. Li, Q. Zhang, W. Cai, C. Zhou, R. Gao, G. Chen, X. Deng, Z. Wang, C. Fu, Mater. Chem. Phys. 252 (2020) 123242.
DOI URL |
[72] |
B.C. Keswani, S.I. Patil, A.R. James, R.C. Nath, R. Boomishankar, Y.D. Kolekar, C.V. Ramana, J. Appl. Phys. 126 (2019) 224101.
DOI URL |
[73] |
M. Zhou, R. Liang, Z. Zhou, C. Xu, X. Nie, X. Dong, Mater. Res. Bull. 106 (2018) 213-219.
DOI URL |
[74] |
X. Xia, X. Sun, J. Wang, Y. Liu, Y. Lyu, Ceram. Int. 46 (2020) 24231-24237.
DOI URL |
[75] |
M. Rotan, M. Zhuk, J. Glaum, J. Eur. Ceram. Soc. 40 (2020) 5402-5409.
DOI URL |
[76] |
X. Liu, D. Wu, Z. Chen, B. Fang, J. Ding, X. Zhao, H. Luo, Adv. Appl. Ceram. 114 (2015) 436-441.
DOI URL |
[77] |
J.P. Praveen, K. Kumar, A.R. James, T. Karthik, S. Asthana, D. Das, Curr. Appl. Phys. 14 (2014) 396-402.
DOI URL |
[78] |
C. Zhao, W. Wu, H. Wang, J. Wu, J. Appl. Phys. 119 (2016) 024108.
DOI URL |
[79] |
D. Xue, Y. Zhou, H. Bao, C. Zhou, J. Gao, X. Ren, J. Appl. Phys. 109 (2011) 054110.
DOI URL |
[80] |
L.F. Zhu, B.P. Zhang, X.K. Zhao, L. Zhao, P.F. Zhou, J.F. Li, J. Roedel, J. Am. Ceram. Soc. 96 (2013) 241-245.
DOI URL |
[81] |
Q. Zhang, W. Cai, Q. Li, R. Gao, G. Chen, X. Deng, Z. Wang, X. Cao, C. Fu, J. Alloy. Compd. 794 (2019) 542-552.
DOI URL |
[82] |
W. Cai, Q. Zhang, C. Zhou, R. Gao, F. Wang, G. Chen, X. Deng, Z. Wang, N. Deng, L. Cheng, C. Fu, J. Mater. Sci. 55 (2020) 9972-9992.
DOI URL |
[83] |
P.F. Zhou, B.P. Zhang, L. Zhao, X.K. Zhao, L.F. Zhu, L.Q. Cheng, J.F. Li, Appl. Phys. Lett. 103 (2013) 172904.
DOI URL |
[84] |
W.A. Dollase, J. Appl. Cryst. 19 (1986) 267-272.
DOI URL |
[85] |
Y.C. Liu, Y.F. Chang, E.W. Sun, F. Li, S.T. Zhang, B. Yang, Y. Sun, J. Wu, W.W. Cao, ACS Appl. Mater. Inter. 10 (2018) 31488-31497.
DOI URL |
[86] |
L. Bian, X.D. Qi, K. Li, Y. Yu, L.J. Liu, Y.F. Chang, W.W. Cao, S.X. Dong, Adv. Funct. Mater. 30 (2020) 2001846.
DOI URL |
[1] | Diyan Yang, Jihui Han, Jie Yin, Haoyue Xue, Jiagang Wu. Tailoring depolarization temperature by phase transition causing properties evolution in Bi0.5(Na1-xKx)0.5TiO3 ceramics [J]. J. Mater. Sci. Technol., 2022, 114(0): 111-119. |
[2] | Chang Gao, Yu Zhao, Weili Li, Yulong Qiao, Zhao Wang, Lu Jing, Jie Sheng, Wei-Dong Fei. Large linear electrostrain of acceptor-donor Co-doped ZnO films [J]. J. Mater. Sci. Technol., 2022, 109(0): 12-19. |
[3] | Zhengran Chen, Ruihong Liang, Chi Zhang, Zhiyong Zhou, Yuchen Li, Zhenming Liu, Xianlin Dong. High-performance and high-thermally stable PSN-PZT piezoelectric ceramics achieved by high-temperature poling [J]. J. Mater. Sci. Technol., 2022, 116(0): 238-245. |
[4] | Tingting Xu, Ping Niu, Shulan Wang, Li Li. High visible light photocatalytic activities obtained by integrating g-C3N4 with ferroelectric PbTiO3 [J]. J. Mater. Sci. Technol., 2021, 74(0): 128-135. |
[5] | Jiangguli Peng, Wenbin Liu, Jiangtao Zeng, Liaoying Zheng, Guorong Li, Anthony Rousseau, Alain Gibaud, Abdelhadi Kassiba. Large electromechanical strain at high temperatures of novel <001> textured BiFeGaO3-BaTiO3 based ceramics [J]. J. Mater. Sci. Technol., 2020, 48(0): 92-99. |
[6] | Anil Kunwar, Lili An, Jiahui Liu, Shengyan Shang, Peter Råback, Haitao Ma, Xueguan Song. A data-driven framework to predict the morphology of interfacial Cu6Sn5 IMC in SAC/Cu system during laser soldering [J]. J. Mater. Sci. Technol., 2020, 50(0): 115-127. |
[7] | Jing Shi, Xiao Liu, Wenchao Tian. High energy-storage properties of Bi0.5Na0.5TiO3-BaTiO3-SrTi0.875Nb0.1O3 lead-free relaxor ferroelectrics [J]. J. Mater. Sci. Technol., 2018, 34(12): 2371-2374. |
[8] | M.L. Huang, F. Yang. Solder Size Effect on Early Stage Interfacial Intermetallic Compound Evolution in Wetting Reaction of Sn3.0Ag0.5Cu/ENEPIG Joints [J]. J. Mater. Sci. Technol., 2015, 31(3): 252-256. |
[9] | Di Zhou, Youhua Zhou, Yu Tian, Yafang Tu, Guang Zheng, Haoshuang Gu. Structure and Piezoelectric Properties of Lead-Free Na0.5Bi0.5TiO3 Nanofibers Synthesized by Electrospinning [J]. J. Mater. Sci. Technol., 2015, 31(12): 1181-1185. |
[10] | Jing Han, Hongtao Chen, Mingyu Li, Chunqing Wang. Shear Deformation Behaviors of Sn3.5Ag Lead-free Solder Samples [J]. J. Mater. Sci. Technol., 2013, 29(5): 471-479. |
[11] | Sebastian Wiegand, Stefan Flege, Olaf Baake, Wolfgang Ensinger. Effect of Different Calcination Temperatures and Post Annealing on the Properties of Acetic Acid Based Sol-Gel (Na0.5K0.5)NbO3 (NKN) Thin Films [J]. J. Mater. Sci. Technol., 2013, 29(2): 142-148. |
[12] | Nai-Feng Hsu, Tien-Kan Chung, Ming Chang, Hong-Jun Chen. Rapid Synthesis of Piezoelectric ZnO-Nanostructures for Micro Power-Generators [J]. J. Mater. Sci. Technol., 2013, 29(10): 893-897. |
[13] | Sebastian Wiegand, Stefan Flege, Olaf Baake and Wolfgang Ensinger. Synthesis and Characterization of (Na0.5K0.5)NbO3 (NKN) Thin Films Formed by a Diol-based Sol-gel Process [J]. J Mater Sci Technol, 2012, 28(6): 500-505. |
[14] | Kamini Kumari, Ashutosh Prasad, Kamal Prasad. Structural and Dielectric Properties of ZnO Added (Na1/2Bi1/2)TiO3 Ceramics [J]. J Mater Sci Technol, 2011, 27(3): 213-217. |
[15] | Qiulian Zeng, Jianjun Guo, Xiaolong Gu, Xinbing Zhao, Xiaogang Liu. Wetting Behaviors and Interfacial Reaction between Sn-10Sb-5Cu High Temperature Lead-free Solder and Cu Substrate [J]. J Mater Sci Technol, 2010, 26(2): 156-162. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||