J. Mater. Sci. Technol. ›› 2022, Vol. 113: 90-104.DOI: 10.1016/j.jmst.2021.10.001
• Research article • Previous Articles Next Articles
Jun Wanga, Yao Lua, Fanghui Jiaa, Wenzhen Xiab,c, Fei Lina, Jian Hana, Ruichao Wangd, Zengxi Pana, Huijun Lia, Zhengyi Jianga,*()
Received:
2021-04-25
Revised:
2021-09-12
Accepted:
2021-10-02
Published:
2022-01-01
Online:
2022-06-24
Contact:
Zhengyi Jiang
About author:
*E-mail address: jiang@uow.edu.au (Z. Jiang).Jun Wang, Yao Lu, Fanghui Jia, Wenzhen Xia, Fei Lin, Jian Han, Ruichao Wang, Zengxi Pan, Huijun Li, Zhengyi Jiang. Effects of inter-layer remelting frequency on the microstructure evolution and mechanical properties of equimolar CoCrFeNiMn high entropy alloys during in-situ powder-bed arc additive manufacturing (PBAAM) process[J]. J. Mater. Sci. Technol., 2022, 113: 90-104.
Fig. 1. (a) Schematic illustration of the PBAAM process; (b) detailed drawing of powder bed system; (c) side view of the deposited thin-wall HEA component after roughly removing surface unmelted powders; (d) extraction of phase and microstructure observation specimen and tensile samples.
Fig. 2. XRD patterns of PAAMed CoCrFeNiMn HEA components fabricated under different remelting frequencies, (b) magnified view of the area with 2θ ranging from 49 ° to 52 ° in Fig. 2(a), (c) lattice parameter and FWHM of (200) peak of PAAMed CoCrFeNiMn HEA specimens.
Fig. 3. EBSD orientation maps of the PAAMed CoCrFeNiMn HEA samples R1, R3, R5, R7 displayed in (a), (d), (g), and (j), respectively. {100} pole figures (PFs) of samples R1, R3, R5, R7 exhibited in (b), (e), (h), and (k), respectively. Orientation distribution functions (ODFs) with φ2 = 0 ° and 45 ° of samples R1, R3, R5, R7 shown in (c), (f), (i), and (l), respectively. Noted that all samples were taken from the horizontal plane at the same height and the building (BD), normal (ND), and transverse (TD) directions were indicated on the bottom of the pictures. The inverse pole figure (IPF) legend corresponding to the crystal orientation-color relation map was illustrated on the left-bottom corner.
Fig. 4. Grain size distribution of samples R1, R3, R5, and R7 exhibited in (a), (b), (c), and (d), respectively, determined statistically based on the EBSD orientation maps in Fig. 2 with a critical misorientation boundary angle of 2 °.
Fig. 5. Grain boundary orientation maps and corresponding misorientation angle distributions of the PAAMed HEA processed with different inter-layer remelt (a, b) R1, (c, d) R3, (e, f) R5, (g, h) R7.
Fig. 7. SEM image and corresponding elemental distributions on the enlarged region of sample R1: (a) EDS maps; (b) EDS line scans on the zone indicated in (a).
Fig. 8. Kernel average misorientation (KAM) distribution maps of PAAMed CoCrFeNiMn HEA alloys: (a) R1; (b) R3, (c) R5; (d) R7; (e) comparisons of geometrically stored dislocations (GNDs) densities obtained from the KAM maps of samples processed with different remelts.
Fig. 9. TEM bright-field (BF) images with two magnifications and corresponding selected area electron diffraction patterns (SAED) of the PAAMed CoCrFeMnNi HEAs R1 (a, c, d) and R7 (b, e, f), respectively.
Fig. 10. TEM images of Cr-rich particles precipitated at the grain boundary shown in R1 FIB sample: (a) low-magnification BF image; (b) magnified high-angle annular dark-field (HAADF) image of the precipitate; (c) high-resolution transmission electron microscopy (HRTEM) image of the precipitate; (d) EDX elemental mappings of area exhibited in (a).
Fig. 11. TEM images of Mn-rich particles precipitated at the grain boundary shown in R7 FIB sample: (a) BF image, (b) corresponding phase maps, and (c) the EDX elemental distribution maps.
Fig. 12. (a) Representative engineering stress-strain curves, (b) corresponding strain hardening rate-true strain curves of PBAAMed CoCrFeNiMn HEAs processed with different inter-layer remelts, (c) a summary of UTS versus UE for CoCrFeNiMn HEA alloys fabricated by various AM methods including our work and casting method. Here, the 0.2%-offset yield strength (YS) and ultimate tensile strength (UTS) are labeled by dashed lines and break angle on curves, respectively. The uniform elongation (UE) was obtained by the point of intersection of the work hardening rate-true strain and true stress-true strain curves.
Inter-layer remelts | YS (MPa) | UTS (MPa) | UE (%) |
---|---|---|---|
R1 | 305 ± 17 | 504 ± 27 | 42.8 ± 3.1 |
R3 | 428 ± 23 | 569 ± 17 | 24.8 ± 3.7 |
R5 | 479 ± 21 | 605 ± 33 | 24.6 ± 2.6 |
R7 | 624 ± 32 | 748 ± 37 | 19.4 ± 2.9 |
Table 1. Tensile characteristics of the PBAAMed CoCrFeNiMn HEA deposited with different inter-layer remelts.
Inter-layer remelts | YS (MPa) | UTS (MPa) | UE (%) |
---|---|---|---|
R1 | 305 ± 17 | 504 ± 27 | 42.8 ± 3.1 |
R3 | 428 ± 23 | 569 ± 17 | 24.8 ± 3.7 |
R5 | 479 ± 21 | 605 ± 33 | 24.6 ± 2.6 |
R7 | 624 ± 32 | 748 ± 37 | 19.4 ± 2.9 |
Fig. 13. (a-c) Schmid factor distribution maps and corresponding Schmid factor index evolution, (e-f) KAM distribution maps and corresponding calculated GND density distribution of PBAAMed CoCrFeNiMn R1 and R7 samples after tensile deformation.
[1] |
F. Otto, A. Dlouhy, K.G. Pradeep, M. Kubenova, D. Raabe, G. Eggeler, E.P. George, Acta Mater. 112 (2016) 40-52.
DOI URL |
[2] |
H.L. Yao, Z. Tan, D.Y. He, Z.L. Zhou, Z. Zhou, Y.F. Xue, L. Cui, L.J. Chen, G.H. Wang, Y. Yang, J. Alloy Compd. 813 (2020) 152196.
DOI URL |
[3] |
B. Li, L. Zhang, Y. Xu, Z.Y. Liu, B. Qian, F.Z. Xuan, Powder Technol. 360 (2020) 509-521.
DOI URL |
[4] |
F. Otto, A. Dlouhy, C. Somsen, H. Bei, G. Eggeler, E.P. George, Acta Mater. 61 (2013) 5743-5755.
DOI URL |
[5] |
N.D. Stepanov, N.Y. Yurchenko, M.A. Tikhonovsky, G.A. Salishchev, J. Alloys Compd. 687 (2016) 59-71.
DOI URL |
[6] |
B. Schuh, F. Mendez-Martin, B. Volker, E.P. George, H. Clemens, R. Pippan, A. Hohenwarter, Acta Mater. 96 (2015) 258-268.
DOI URL |
[7] |
Y.H. Xie, Y.F. Luo, T. Xia, W. Zeng, J. Wang, J.M. Liang, D.S. Zhou, D.L. Zhang, J. Alloy Compd. 819 (2020) 152937.
DOI URL |
[8] |
J. Chen, Z.H. Yao, X.B. Wang, Y.K. Lu, X.H. Wang, Y. Liu, X.H. Fan, Mater. Chem. Phys. 210 (2018) 136-145.
DOI URL |
[9] |
E.J. Pickering, R. Munoz-Moreno, H.J. Stone, N.G. Jones, Scr. Mater. 113 (2016) 106-109.
DOI URL |
[10] |
R.D. Li, P.D. Niu, T.C. Yuan, P. Cao, C. Chen, K.C. Zhou, J. Alloy Compd. 746 (2018) 125-134.
DOI URL |
[11] | J.W. Wang, Q. Luo, H.M. Wang, Y. Wu, X. Cheng, H.B. Tang, Addit. Manuf. 32 (2020) 101007. |
[12] |
S.C. Luo, P. Gao, H.C. Yu, J.J. Yang, Z.M. Wang, X.Y. Zeng, J. Alloy Compd. 771 (2019) 387-397.
DOI URL |
[13] | P.D. Niu, R.D. Li, T.C. Yuan, S.Y. Zhu, C. Chen, M.B. Wang, L. Huang, Inter- metallics 104 (2019) 24-32. |
[14] | S.C. Luo, C.Y. Zhao, Y. Su, Q. Liu, Z.M. Wang, Addit. Manuf. 31 (2020) 100925. |
[15] |
S. Xiang, H.W. Luan, J. Wu, K.F. Yao, J.F. Li, X. Liu, Y.Z. Tian, W.L. Mao, H. Bai, G. M. Le, Q. Li, J. Alloy Compd. 773 (2019) 387-392.
DOI |
[16] |
P. Wang, P.F. Huang, F.L. Ng, W.J. Sin, S.L. Lu, M.L. S.R. Nai, Z.L. Dong, J. Wei, Mater. Des. 168 (2019) 107576.
DOI URL |
[17] |
Q.K. Shen, X.D. Kong, X.Z. Chen, X.K. Yao, V.B. Deev, E.S. Prusov, Mater. Lett. 282 (2021) 128736.
DOI URL |
[18] |
K.H. Lee, S.K. Hong, S.I. Hong, Materialia 8 (2019) 100445.
DOI URL |
[19] |
J. Joseph, T. Jarvis, X.H. Wu, N. Stanford, P. Hodgson, D.M. Fabijanic, Mater. Sci. Eng. A 633 (2015) 184-193.
DOI URL |
[20] |
Z.P. Tong, X.D. Ren, J.F. Jiao, W.F. Zhou, Y.P. Ren, Y.X. Ye, E.A. Larson, J.Y. Gu, J. Alloy Compd. 785 (2019) 1144-1159.
DOI URL |
[21] |
L. Jiang, Y.P. Lu, Y. Dong, T.M. Wang, Z.Q. Cao, T.J. Li, Intermetallics 44 (2014) 37-43.
DOI URL |
[22] |
P. Sathiyamoorthi, J. Basu, S. Kashyap, K.G. Pradeep, R.S. Kottada, Mater. Des. 134 (2017) 426-433.
DOI URL |
[23] |
P. Chen, S. Li, Y.H. Zhou, M. Yan, M.M. Attallah, J. Mater. Sci. Technol. 43 (2020) 40-43.
DOI |
[24] |
J. Wang, Z.X. Pan, K. Carpenter, J.A. Han, Z.Y. Wang, H.J. Li, Mater. Sci. Eng. A 800 (2021) 140307.
DOI URL |
[25] |
T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Prog. Mater. Sci. 92 (2018) 112-224.
DOI URL |
[26] | S. Shakerin, A. Hadadzadeh, B.S. Amirkhiz, S. Shamsdini, J. Li, M. Mohammadi, Addit. Manuf. 29 (2019) 100797. |
[27] |
H. Zhang, Y. Pan, Y.Z. He, Surf. Coat. Technol. 205 (2011) 4068-4072.
DOI URL |
[28] | D.Y. Lin, L.Y. Xu, H.Y. Jing, Y.D. Han, L. Zhao, F. Minami, Addit. Manuf. 32 (2020) 101058. |
[29] |
S. Guan, D. Wan, K. Solberg, F. Berto, T. Welo, T.M. Yue, K.C. Chan, Mater. Sci. Eng. A 761 (2019) 138056.
DOI URL |
[30] |
M. Laurent-Brocq, A. Akhatova, L. Perriere, S. Chebini, X. Sauvage, E. Leroy, Y. Champion, Acta Mater. 88 (2015) 355-365.
DOI URL |
[31] |
L.F. Liu, Q.Q. Ding, Y. Zhong, J. Zou, J. Wu, Y.L. Chiu, J.X. Li, Z. Zhang, Q. Yu, Z.J. Shen, Mater. Today 21 (2018) 354-361.
DOI URL |
[32] |
Z.G. Zhu, Q.B. Nguyen, F.L. Ng, X.H. An, X.Z. Liao, P.K. Liaw, S.M.L. Nai, J. Wei, Scr. Mater. 154 (2018) 20-24.
DOI URL |
[33] | B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A 375-377 (2004) 213-218. |
[34] | J. Wang, Z.X. Pan, Y.F. Wang, L. Wang, L.H. Su, D. Cuiuri, Y.H. Zhao, H.J. Li, Addit. Manuf. 34 (2020) 101240. |
[35] |
S.S.S. Kumar, B. Pavithra, V. Singh, P. Ghosal, T. Raghu, Mater. Sci. Eng. A 747 (2019) 1-16.
DOI URL |
[36] |
L.P. Kubin, A. Mortensen, Scr. Mater. 48 (2003) 119-125.
DOI URL |
[37] |
Y. Lu, H.B. Xie, J. Wang, Z. Li, F.H. Jia, H. Wu, J.T. Han, Z.Y. Jiang, J. Manuf. Process. 58 (2020) 1171-1181.
DOI URL |
[38] |
S.H. Joo, H. Kato, M.J. Jang, J. Moon, C.W. Tsai, J.W. Yeh, H.S. Kim, Mater. Sci. Eng. A 689 (2017) 122-133.
DOI URL |
[39] |
A.T. Lim, D.J. Srolovitz, M. Haataja, Acta Mater. 57 (2009) 5013-5022.
DOI URL |
[40] |
C.C. Zhang, K. Feng, H. Kokawa, B. Han, Z.G. Li, Mater. Sci. Eng. A 789 (2020) 139672.
DOI URL |
[41] |
N. Choi, K.R. Lim, Y.S. Na, U. Glatzel, J.H. Park, J. Alloy Compd. 763 (2018) 546-557.
DOI URL |
[42] |
U.F. Kocks, H. Mecking, Prog. Mater. Sci. 48 (2003) 171-273.
DOI URL |
[43] |
G.M. Karthik, S. Panikar, G.D.J. Ram, R.S. Kottada, Mater. Sci. Eng. A 679 (2017) 193-203.
DOI URL |
[44] |
Z.G. Liu, P.J. Li, L.T. Xiong, T.Y. Liu, L.J. He, Mater. Sci. Eng. A 680 (2017) 259-269.
DOI URL |
[45] |
G. Laplanche, A. Kostka, O.M. Horst, G. Eggeler, E.P. George, Acta Mater. 118 (2016) 152-163.
DOI URL |
[46] |
J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, Z.P. Lu, Acta Mater. 102 (2016) 187-196.
DOI URL |
[1] | Yinghao Zhou, Xiyu Yao, Wenfei Lu, Dandan Liang, Xiaodi Liu, Ming Yan, Jun Shen. Heat treatment of hot-isostatic-pressed 60NiTi shape memory alloy: Microstructure, phase transformation and mechanical properties [J]. J. Mater. Sci. Technol., 2022, 107(0): 124-135. |
[2] | Jinlong Su, Xiankun Ji, Jin Liu, Jie Teng, Fulin Jiang, Dingfa Fu, Hui Zhang. Revealing the decomposition mechanisms of dislocations and metastable α' phase and their effects on mechanical properties in a Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2022, 107(0): 136-148. |
[3] | Wei Fan, Yu Bai, Yanfen Liu, Taotao Li, Binmao Li, Lei Zhang, Chenmin Gao, Shiyu Shan, Haocen Han. Principal element design of pyrochlore-fluorite dual-phase medium- and high-entropy ceramics [J]. J. Mater. Sci. Technol., 2022, 107(0): 149-154. |
[4] | Xiaoping Ma, Dianzhong Li. Multi-scale dendritic patterns sequentially superimposed in a primary semi-solid matrix [J]. J. Mater. Sci. Technol., 2022, 107(0): 26-33. |
[5] | Joung Sik Suh, Byeong-Chan Suh, Sang Eun Lee, Jun Ho Bae, Byoung Gi Moon. Quantitative analysis of mechanical properties associated with aging treatment and microstructure in Mg-Al-Zn alloys through machine learning [J]. J. Mater. Sci. Technol., 2022, 107(0): 52-63. |
[6] | Peihao Geng, Ninshu Ma, Hong Ma, Yunwu Ma, Kazuki Murakami, Huihong Liu, Yasuhiro Aoki, Hidetoshi Fujii. Flat friction spot joining of aluminum alloy to carbon fiber reinforced polymer sheets: Experiment and simulation [J]. J. Mater. Sci. Technol., 2022, 107(0): 266-289. |
[7] | Yunwei Pan, Anping Dong, Yang Zhou, Dafan Du, Donghong Wang, Guoliang Zhu, Baode Sun. Effects of V addition on the mechanical properties at elevated temperatures in a γ"-strengthened NiCoCr-based multi-component alloy [J]. J. Mater. Sci. Technol., 2022, 107(0): 290-300. |
[8] | Chunyang Gao, Yixiao Jiang, Tingting Yao, Ang Tao, Xuexi Yan, Xiang Li, Chunlin Chen, Xiu-Liang Ma, Hengqiang Ye. Atomic origin of magnetic coupling of antiphase boundaries in magnetite thin films [J]. J. Mater. Sci. Technol., 2022, 107(0): 92-99. |
[9] | Hanchen Feng, Lei Cai, Linfeng Wang, Xiaodan Zhang, Feng Fang. Microstructure and strength in ultrastrong cold-drawn medium carbon steel [J]. J. Mater. Sci. Technol., 2022, 97(0): 89-100. |
[10] | Shaohan Li, Weiwei Sun, Yi Luo, Jin Yu, Litao Sun, Bao-Tian Wang, Ji-Xuan Liu, Guo-Jun Zhang, Igor Di Marco. Pushing the limit of thermal conductivity of MAX borides and MABs [J]. J. Mater. Sci. Technol., 2022, 97(0): 79-88. |
[11] | Shiyu Wu, Dongxu Qiao, Haitao Zhang, Junwei Miao, Hongliang Zhao, Jun Wang, Yiping Lu, Tongmin Wang, Tingju Li. Microstructure and mechanical properties of CxHf0.25NbTaW0.5 refractory high-entropy alloys at room and high temperatures [J]. J. Mater. Sci. Technol., 2022, 97(0): 229-238. |
[12] | H.Y. Wan, W.K. Yang, L.Y. Wang, Z.J. Zhou, C.P. Li, G.F. Chen, L.M. Lei, G.P. Zhang. Toward qualification of additively manufactured metal parts: Tensile and fatigue properties of selective laser melted Inconel 718 evaluated using miniature specimens [J]. J. Mater. Sci. Technol., 2022, 97(0): 239-253. |
[13] | Xing Qi, Naoki Takata, Asuka Suzuki, Makoto Kobashi, Masaki Kato. Change in microstructural characteristics of laser powder bed fused Al-Fe binary alloy at elevated temperature [J]. J. Mater. Sci. Technol., 2022, 97(0): 38-53. |
[14] | Yue Wang, Siyuan Yang, Ting Zhou, Long Hou, Lansong Ba, Yves Fautrelle, Zhongming Ren, Yanyan Zhu, Zongbin Li, Xi Li. Microstructure evolution and mechanical behavior of Ni-rich Ni-Mn-Ga alloys under compressive and tensile stresses [J]. J. Mater. Sci. Technol., 2022, 97(0): 113-122. |
[15] | Tianci Xie, Hui Shi, Hongbin Wang, Qun Luo, Qian Li, Kuo-Chih Chou. Thermodynamic prediction of thermal diffusivity and thermal conductivity in Mg-Zn-La/Ce system [J]. J. Mater. Sci. Technol., 2022, 97(0): 147-155. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||