J. Mater. Sci. Technol. ›› 2022, Vol. 113: 82-89.DOI: 10.1016/j.jmst.2021.09.063
• Research article • Previous Articles Next Articles
X.J. Guana,c, Z.P. Jiaa,c, S.M. Lianga,c, F. Shia,c, X.W. Lia,b,*()
Received:
2021-08-09
Revised:
2021-09-01
Accepted:
2021-09-01
Published:
2021-12-30
Online:
2022-06-24
Contact:
X.W. Li
About author:
*Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.E-mail address: xwli@mail.neu.edu.cn (X.W. Li).X.J. Guan, Z.P. Jia, S.M. Liang, F. Shi, X.W. Li. A pathway to improve low-cycle fatigue life of face-centered cubic metals via grain boundary engineering[J]. J. Mater. Sci. Technol., 2022, 113: 82-89.
Fig. 1. Comparisons of the GBCD (a, b) and corresponding RHAGB networks (a', b') of non-GBE (a, a') and GBE (b, b') samples. The black arrows indicate the position of RHAGB network interrupted by SBs.
Fig. 2. Comparison of tension-tension fatigue lives of non-GBE and GBE samples. The dashed lines are linear fitting curves of fatigue life. The arrow indicates the improvement of fatigue life by GBE becomes significant with the increase of stress amplitude.
Fig. 3. SEM micrographs showing the lateral surface deformation and damage characteristics of non-GBE (a-c) and GBE (d-f) samples fatigued at different amplitudes. (a, d) 125 MPa, (b, e) 150 MPa, (c, f) 175 MPa.
Fig. 4. SEM micrographs showing the fracture characteristics of non-GBE (a-c) and GBE (d-f) samples fatigued at different amplitudes, and variation trends (g) of the area of fatigue crack initiation and the ratio of intergranular area in these two samples with increasing stress amplitude. (a, d) 125 MPa, (b, e) 150 MPa, (c, f) 175 MPa. The red dashed lines are the boundaries between crack source and crack propagation. The yellow doted frames clearly show the magnified typical morphological features.
Fig. 5. Kernel average misorientation (KAM) distribution showing the deformation localization characteristics of non-GBE (a-c) and GBE (d-f) samples fatigued at different amplitudes. (a, d) 125 MPa, (b, e) 150 MPa, (c, f) 175 MPa. The black arrows and red arrows indicate the position of GBs with higher KAM and the interiors of grains with lower KAM in non-GBE samples, respectively (a-c), and there is no such obvious difference in KAM distribution in GBE samples (d-f).
[1] | S. Suresh, Fatigue of Materials, Cambridge University Press, Cambridge, 1998. |
[2] |
K. Differt, U. Esmann, H. Mughrabi, Philos. Mag. A 54 (1986) 237-258.
DOI URL |
[3] |
Y. Chen, Y.D. Cao, Z.X. Qi, G. Chen, J. Mater. Sci. Technol. 93 (2021) 53-59.
DOI URL |
[4] |
D. Han, Y.J. Zhang, X.W. Li, Acta Mater. 205 (2021) 116559.
DOI URL |
[5] |
C.W. Shao, F. Shi, X.W. Li, Metall. Mater. Trans. A 46 (2015) 1610-1620.
DOI URL |
[6] |
G. Kim, I. Kwon, M.E. Fine, Mater. Sci. Eng. A 142 (1991) 177-182.
DOI URL |
[7] |
F. Bahadur, K. Biswas, N.P. Gurao, Int. J. Fatigue 130 (2020) 105258.
DOI URL |
[8] |
L.L. Li, Z.J. Zhang, P. Zhang, Z.G. Wang, Z.F. Zhang, Nat. Commun. 5 (2014) 3536.
DOI PMID |
[9] |
L.L. Li, Z.J. Zhang, P. Zhang, Z.F. Zhang, Scr. Mater. 65 (2011) 505-508.
DOI URL |
[10] |
P. Zhang, Z.J. Zhang, L.L. Li, Z.F. Zhang, Scr. Mater. 66 (2012) 854-859.
DOI URL |
[11] |
Q.S. Pan, H.F. Zhou, Q.H. Lu, H.J. Gao, L. Lu, Nature 551 (2017) 214.
DOI URL |
[12] |
X.J. Guan, F. Shi, H.M. Ji, X.W. Li, Mater. Sci. Eng. A 765 (2019) 138299.
DOI URL |
[13] |
X.J. Guan, F. Shi, H.M. Ji, X.W. Li, Scr. Mater. 187 (2020) 216-220.
DOI URL |
[14] | A. Das, Philos. Mag. 97 (2017) 50-867. |
[15] |
X. Dong, N. Li, Y. Zhou, H. Peng, Y. Qu, Q. Sun, H. Shi, R. Li, S. Xu, J. Yan, J. Mater. Sci. Technol. 93 (2021) 244-253.
DOI |
[16] |
J. Qi, B. Huang, Z. Wang, H. Ding, J. Xi, W. Fu, J. Mater. Sci. Technol. 33 (2017) 1621-1628.
DOI URL |
[17] | S. Kobayashi, M. Hirata, S. Tsurekawa, T. Watanabe, Proc. Eng. 10 (2011) 112-117. |
[18] |
J. Gao, J. Tan, X.Q. Wu, S. Xia, Corros. Sci. 152 (2019) 190-201.
DOI URL |
[19] |
Z.J. Zhang, P. Zhang, L.L. Li, Z.F. Zhang, Acta Mater. 60 (2012) 3113-3127.
DOI URL |
[20] |
P. Xue, B.L. Xiao, Z.Y. Ma, Scr. Mater. 68 (2013) 751-754.
DOI URL |
[21] |
M. Kumar, W.E. King, A.J. Schwartz, Acta Mater. 48 (2000) 2081-2091.
DOI URL |
[22] |
C.W. Shao, F. Shi, X.W. Li, Mater. Sci. Eng. A 667 (2016) 208-216.
DOI URL |
[23] |
H. Mughrabi, Metall. Mater. Trans. B 40 (2009) 431-453.
DOI URL |
[24] |
M. Calcagnotto, D. Ponge, E. Demir, D. Raabe, Mater. Sci. Eng. A 527 (2010) 2738-2746.
DOI URL |
[25] |
J. Kadkhodapour, S. Schmauder, D. Raabe, S. Ziaei-Rad, U. Weber, M. Calcagnotto, Acta Mater. 59 (2011) 4387-4394.
DOI URL |
[26] |
A. Kundu, D.P. Field, Mater. Sci. Eng. A 667 (2016) 435-443.
DOI URL |
[27] | M.F. Ashby, Philos. Mag. 21 (2006) 399-424. |
[28] |
L. Lu, Y.F. Shen, X.H. Chen, L.H. Qian, K. Lu, Science 304 (2004) 422-426.
DOI URL |
[29] |
N. Shibata, F. Oba, T. Yamamoto, Y. Ikuhara, Philos. Mag. 84 (2004) 2381-2415.
DOI URL |
[30] |
Z. Shen, R.H. Wagoner, W. A.T. Clark, Acta Metall. 36 (1988) 3231-3242.
DOI URL |
[31] |
X.W. Li, X.M. Wu, Z.G. Wang, Y. Umakoshi, Metall. Mater. Trans. A 34 (2003) 307-318.
DOI URL |
[32] |
B. Zhou, M. Sui, J. Mater. Sci. Technol. 35 (2019) 2263-2268.
DOI |
[33] |
Z.F. Zhang, Z.G. Wang, Prog. Mater. Sci. 53 (2008) 1025-1099.
DOI URL |
[34] |
Z.F. Zhang, Z.G. Wang, Acta Mater. 51 (2003) 347-364.
DOI URL |
[35] |
L.L. Li, X.H. An, P.J. Imrich, P. Zhang, Z.J. Zhang, G. Dehm, Z.F. Zhang, Scr. Mater. 69 (2013) 199-202.
DOI URL |
[36] |
L. Lu, Z.S. You, K. Lu, Scr. Mater. 66 (2012) 837-842.
DOI URL |
[37] | R.C. Boettner, A.J. McEvily, Y.C. Liu, Philos. Mag. 10 (1964) 95-106. |
[38] |
A. Heinz, P. Neumann, Acta Metall. Mater. 38 (1990) 1933-1940.
DOI URL |
[39] |
L.L. Li, P. Zhang, Z.J. Zhang, Z.F. Zhang, Acta Mater. 61 (2013) 425-438.
DOI URL |
[40] |
L.L. Li, Z.J. Zhang, P. Zhang, J.B. Yang, Z.F. Zhang, Scr. Mater. 95 (2015) 19-22.
DOI URL |
[1] | Min Cheng, Zhengguan Lu, Jie Wu, Ruipeng Guo, Junwei Qiao, Lei Xu, Rui Yang. Effect of thermal induced porosity on high-cycle fatigue and very high-cycle fatigue behaviors of hot-isostatic-pressed Ti-6Al-4V powder components [J]. J. Mater. Sci. Technol., 2022, 98(0): 177-185. |
[2] | Lei He, ZhiLei Wang, Hiroyuki Akebono, Atsushi Sugeta. Machine learning-based predictions of fatigue life and fatigue limit for steels [J]. J. Mater. Sci. Technol., 2021, 90(0): 9-19. |
[3] | Mingyue Wen, Yuan Sun, Jinjiang Yu, Shulin Yang, Xingyu Hou, Yanhong Yang, Xiaofeng Sun, YiZhou Zhou. Amelioration of weld-crack resistance of the M951 superalloy by engineering grain boundaries [J]. J. Mater. Sci. Technol., 2021, 78(0): 260-267. |
[4] | Xin Dong, Ning Li, Yanan Zhou, Huabei Peng, Yuntao Qu, Qi Sun, Haojiang Shi, Rui Li, Sheng Xu, Jiazhen Yan. Grain boundary character and stress corrosion cracking behavior of Co-Cr alloy fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2021, 93(0): 244-253. |
[5] | Wei Tan, Tianshu Li, Suzhi Li, Daqing Fang, Xiangdong Ding, Jun Sun. High strength-ductility and rapid degradation rate of as-cast Mg-Cu-Al alloys for application in fracturing balls [J]. J. Mater. Sci. Technol., 2021, 94(0): 22-31. |
[6] | Zhihong Wu, Hongchao Kou, Nana Chen, Zhixin Zhang, Fengming Qiang, Jiangkun Fan, Bin Tang, Jinshan Li. Microstructural influences on the high cycle fatigue life dispersion and damage mechanism in a metastable β titanium alloy [J]. J. Mater. Sci. Technol., 2021, 70(0): 12-23. |
[7] | Yaoxiang Duan, Han Chen, Zhe Chen, Lei Wang, Mingliang Wang, Jun Liu, Fengguo Zhang, Haowei Wang. The influence of nanosized precipitates on Portevin-Le Chatelier bands and surface roughness in AlMgScZr alloy [J]. J. Mater. Sci. Technol., 2021, 87(0): 74-82. |
[8] | Yinling Zhang, Aihan Feng, Shoujiang Qu, Jun Shen, Daolun Chen. Microstructure and low cycle fatigue of a Ti2AlNb-based lightweight alloy [J]. J. Mater. Sci. Technol., 2020, 44(0): 140-147. |
[9] | Honglei Hu, Mingjiu Zhao, Lijian Rong. Retarding the precipitation of η phase in Fe-Ni based alloy through grain boundary engineering [J]. J. Mater. Sci. Technol., 2020, 47(0): 152-161. |
[10] | I.A. Segura, L.E. Murr, C.A. Terrazas, D. Bermudez, J. Mireles, V.S.V. Injeti, K. Li, B. Yu, R.D.K. Misra, R.B. Wicker. Grain boundary and microstructure engineering of Inconel 690 cladding on stainless-steel 316L using electron-beam powder bed fusion additive manufacturing [J]. J. Mater. Sci. Technol., 2019, 35(2): 351-367. |
[11] | Qi Jianjun, Huang Boyuan, Wang Zhenhua, Ding Hui, Xi Junliang, Fu Wantang. Dependence of corrosion resistance on grain boundary characteristics in a high nitrogen CrMn austenitic stainless steel [J]. J. Mater. Sci. Technol., 2017, 33(12): 1621-1628. |
[12] | Yan Zhongjie,Liu Xuesong,Fang Hongyuan. Effect of Sheet Configuration on Microstructure and Mechanical Behaviors of Dissimilar Al-Mg-Si/Al-Zn-Mg Aluminum Alloys Friction Stir Welding Joints [J]. J. Mater. Sci. Technol., 2016, 32(12): 1378-1385. |
[13] | G.M. Owolabi, H.A. Whitworth. Modeling and Simulation of Microstructurally Small Crack Formation and Growth in Notched Nickel-base Superalloy Component [J]. J. Mater. Sci. Technol., 2014, 30(3): 203-212. |
[14] | Weizhong JIN, Sen YANG, Hiroyuki KOKAWA, Zhanjie WANG, Yutaka S.Sato. Improvement of Intergranular Stress Corrosion Crack Susceptibility of Austenite Stainless Steel through Grain Boundary Engineering [J]. J Mater Sci Technol, 2007, 23(06): 785-789. |
[15] | Liuding WANG, Laizhu JIANG, Ming ZHU, Xiao LIU, Wangmin ZHOU. Improvement of Toughness of Ultrahigh Strength Steel Aermet 100 [J]. J Mater Sci Technol, 2005, 21(05): 710-714. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||