J. Mater. Sci. Technol. ›› 2021, Vol. 94: 22-31.DOI: 10.1016/j.jmst.2021.04.010
• Research Article • Previous Articles Next Articles
Wei Tana, Tianshu Lib, Suzhi Lia,*(), Daqing Fanga,*(
), Xiangdong Dinga,*(
), Jun Suna
Received:
2021-02-02
Revised:
2021-03-25
Accepted:
2021-04-01
Published:
2021-05-10
Online:
2021-05-10
Contact:
Suzhi Li,Daqing Fang,Xiangdong Ding
About author:
dingxd@mail.xjtu.edu.cn (X. Ding).Wei Tan, Tianshu Li, Suzhi Li, Daqing Fang, Xiangdong Ding, Jun Sun. High strength-ductility and rapid degradation rate of as-cast Mg-Cu-Al alloys for application in fracturing balls[J]. J. Mater. Sci. Technol., 2021, 94: 22-31.
Fig. 1. XRD patterns of as-cast Mg-2.5Cu and Mg-2.5Cu-xAl (x = 4.5, 6.0 wt.%) alloys. Crystalline Mg peaks were identified in three alloys. The Mg2Cu, β-Mg17Al12 and MgAlCu phases were clearly identified.
Particle | Element Atomic (at. %) | ||
---|---|---|---|
Mg | Al | Cu | |
α-Mg (Mg-2.5Cu) | 99.81 | - | 0.19 |
Mg2Cu | 66.94 | - | 33.06 |
α-Mg (Mg-2.5Cu-4.5Al) | 96.82 | 3.02 | 0.16 |
α-Mg (Mg-2.5Cu-6.0Al) | 96.16 | 3.73 | 0.11 |
Mg17Al12 (Point A) | 67.47 | 29.95 | 2.58 |
Al2Cu (Point B) | 69.57 | 19.44 | 10.99 |
MgAlCu (Point C) | 39.50 | 33.16 | 27.35 |
Table 1 TEM-EDS analysis of as-cast Mg-2.5Cu and Mg-2.5Cu-xAl (x = 4.5, 6.0 wt.%) alloys with particles and α-Mg matrix.
Particle | Element Atomic (at. %) | ||
---|---|---|---|
Mg | Al | Cu | |
α-Mg (Mg-2.5Cu) | 99.81 | - | 0.19 |
Mg2Cu | 66.94 | - | 33.06 |
α-Mg (Mg-2.5Cu-4.5Al) | 96.82 | 3.02 | 0.16 |
α-Mg (Mg-2.5Cu-6.0Al) | 96.16 | 3.73 | 0.11 |
Mg17Al12 (Point A) | 67.47 | 29.95 | 2.58 |
Al2Cu (Point B) | 69.57 | 19.44 | 10.99 |
MgAlCu (Point C) | 39.50 | 33.16 | 27.35 |
Fig. 2. Microstructural images and corresponding EDS maps of as-cast (a-c) Mg-2.5Cu, (d-g) Mg-2.5Cu-4.5Al and (h-k) Mg-2.5Cu-6.0Al alloys. (a), (d) and (h) show the etched optical micrographs. (b), (e) and (i) show the backscattered electron images with the bright contrast Cu-rich regions (as indicated by green arrow), Al/Cu-rich regions (as indicated by yellow arrow) and grey contrast Al-rich regions (as indicated by blue arrow). (c), (f) and (j) show the EDS maps with Cu elements. (g) and (k) show the EDS maps with Al elements.
Fig. 3. TEM images and corresponding EDS mapping of as-cast Mg-2.5Cu-6.0Al alloy. (a) TEM image of a coarse shaped particle embedded in the Mg matrix. A selected-area electron diffraction pattern taken along (b) [-113] and (c) [011] from the area of point A. Point B represents the dark needle-shaped particles. The EDS analyses of grey contrast particles with body-centered cubic structure are rich in Mg and Al. The Al and Cu atoms are rich in the needle-shaped precipitates with dark contrast. (d) TEM image of a rod-shaped particle embedded in the Mg matrix. A SAED pattern taken along (e) [01-11] and (f) [11], [12], [13], [14], [15], [16], [17], [18], [19], [20] at the area of point C. The EDS analyses of dark contrast particles with hexagonal closed packed structure are rich in Mg, Al and Cu.
Fig. 4. Engineering stress-strain curves obtained from uniaxial (a) tension and (b) compression tests with a strain rate of 1.0 × 10-4 s-1 at room temperature. The samples with Al addition exhibit enhanced strength and ductility.
As-cast alloys | UTS (MPa) | Tensile ductility (%) | UCS (MPa) | Compressive strain (%) |
---|---|---|---|---|
Mg-2.5Cu | 145.8±6.1 | 8.1±0.9 | 261.7±6.2 | 24.1±1.0 |
Mg-2.5Cu-4.5Al | 211.9±2.1 | 12.7±0.2 | 365.4±3.3 | 30.3±0.9 |
Mg-2.5Cu-6.0Al | 215.2±5.3 | 10.2±0.3 | 378.8±2.7 | 27.3±0.7 |
Table 2 Mechanical properties (ultimate tensile strength (UTS), tensile ductility, ultimate compressive strength (UCS), compressive strain) of as-cast Mg-2.5Cu and Mg-2.5Cu-xAl (x = 4.5, 6.0 wt.%) alloys obtained from Fig. 4.
As-cast alloys | UTS (MPa) | Tensile ductility (%) | UCS (MPa) | Compressive strain (%) |
---|---|---|---|---|
Mg-2.5Cu | 145.8±6.1 | 8.1±0.9 | 261.7±6.2 | 24.1±1.0 |
Mg-2.5Cu-4.5Al | 211.9±2.1 | 12.7±0.2 | 365.4±3.3 | 30.3±0.9 |
Mg-2.5Cu-6.0Al | 215.2±5.3 | 10.2±0.3 | 378.8±2.7 | 27.3±0.7 |
Samples | Ecorr (VSCE) | icorr (mA/cm2) | βc (V/decade) | Pi (mm/y) | Pw (mm/y) | PH (mm/y) |
---|---|---|---|---|---|---|
Mg-2.5Cu | 1.64±0.004 | 4.32±0.02 | -0.29±0.008 | 98.7±0.5 | 1113±5.0 | 1092±13.4 |
Mg-2.5Cu-4.5Al | 1.58±0.003 | 0.60±0.03 | -0.21±0.003 | 13.6±0.7 | 269.1±5.3 | 267.9±4.1 |
Mg-2.5Cu-6.0Al | 1.58±0.002 | 0.95±0.02 | -0.22±0.006 | 21.6±0.5 | 383.4±1.2 | 377.4±3.4 |
Table 3 Corrosion behavior of as-cast Mg-2.5Cu and Mg-2.5Cu-xAl (x = 4.5, 6.0 wt.%) alloys in a 3 wt.% KCl solution at 25±1 °C. Ecorr, icorr and βc represent corrosion potential, corrosion current density and the cathodic Tafel slope, respectively. Pi, Pw and PH are the corrosion rates calculated by corrosion current density, weight loss and hydrogen evolution.
Samples | Ecorr (VSCE) | icorr (mA/cm2) | βc (V/decade) | Pi (mm/y) | Pw (mm/y) | PH (mm/y) |
---|---|---|---|---|---|---|
Mg-2.5Cu | 1.64±0.004 | 4.32±0.02 | -0.29±0.008 | 98.7±0.5 | 1113±5.0 | 1092±13.4 |
Mg-2.5Cu-4.5Al | 1.58±0.003 | 0.60±0.03 | -0.21±0.003 | 13.6±0.7 | 269.1±5.3 | 267.9±4.1 |
Mg-2.5Cu-6.0Al | 1.58±0.002 | 0.95±0.02 | -0.22±0.006 | 21.6±0.5 | 383.4±1.2 | 377.4±3.4 |
Fig. 7. Corrosion behaviors of as-cast Mg-2.5Cu and Mg-2.5Cu-xAl (x = 4.5, 6.0 wt.%) alloys exposed to a 3 wt.% KCl at 25±1 °C. The variation of (a) H2 evolution volume and (b) H2 evolution rate as a function of immersion test.
Samples | 25±1 °C | 93±1 °C |
---|---|---|
Mg-2.5Cu | 1113±5.0 | 7188±57 |
Mg-2.5Cu-4.5Al | 269±5.3 | 1892±10 |
Mg-2.5Cu-6.0Al | 383±1.2 | 2079±13 |
Table 4 Mass loss rate Pw of as-cast Mg-2.5Cu and Mg-2.5Cu-xAl (x = 4.5, 6.0 wt.%) alloys exposed to a 3 wt.% KCl solution at 25±1 °C and 93±1 °C. The unit is mm/y.
Samples | 25±1 °C | 93±1 °C |
---|---|---|
Mg-2.5Cu | 1113±5.0 | 7188±57 |
Mg-2.5Cu-4.5Al | 269±5.3 | 1892±10 |
Mg-2.5Cu-6.0Al | 383±1.2 | 2079±13 |
Fig. 8. The comparison of three alloys with mass loss rate, ultimate compressive strength, and compressive strain. The as-cast Mg-2.5Cu-6.0Al exhibits the combination of good mechanical properties (ultimate compressive strength = 378.8 MPa, compressive strain = 27.3%) and rapid degradation rate (Pw = 383.1 mm/y).
Fig. 9. Scanning electron micrographs of (a)-(c) surfaces after immersion 20 s and (d)-(i) cross-sections after immersion 2 h in a 3 wt.% KCl solution at 25±1 °C for as-cast Mg-2.5Cu and Mg-2.5Cu-xAl (x = 4.5, 6.0 wt.%) alloys. (a)-(c) The corrosion initiates from Mg matrix (green arrows). (d)-(f) The residual second phases (dashed pink, yellow, blue arrows) contact with solution surrounded by the corrosion products. (g)-(i) The magnified pictures of selected areas in (d)-(f) are presented.
Fig. 10. EDS analysis of surface morphologies after immersion 2 hours in a 3 wt.% KCl solution at 25±1 °C for Mg-2.5Cu-6.0Al alloys in Fig. 9(i). (a)-(d) EDS maps for Mg, O, Al and Cu.
Fig. 11. Surface Volta potential maps and linear scan profiles of as-cast (a, c) Mg-2.5Cu, (b, d) Mg-2.5Cu-6.0Al alloys. (a) SKPM surface potential image with Mg2Cu phase (dark region). (b) SKPM surface potential images with β-Mg17Al12+Al2Cu phase (grey region) and MgAlCu phase (dark region). Corresponding surface potential profiles along (c) the red line A and (d) the red line B.
Fig. 12. Schematic illustration of corrosion process of as-cast Mg-Cu-Al alloys during exposure to a 3 wt.% KCl solution. The incomplete surface films and particles form micro-galvanic couples at stage I. Mg matrix corrodes around the second phases preferentially at stage II. The particles are surrounded by the corrosion products at stage III. Finally, both of them split off simultaneously at stage IV, leading to deteriorated corrosion.
Fig. 13. Bright-field TEM images of microstructure of Mg-2.5Cu-6.0Al alloy after uniaxial tension. (a) A selected area with g = 01-11 near the [2-1-10] zone axis. Both basal (as indicated by white arrows) and non-basal (as indicated by yellow arrows) <a> dislocations are activated. (b) Stacking faults were observed as fringes with bright/dark features (as indicated by blue arrows).
Fig. 14. The variation of ultimate compressive strength as a function of (a) degradation rate and (b) compressive strain for various degradable Mg alloys [28, 51-53]. Our developed alloys show the combined high strength and improved compressive strain, while keep a high corrosion rate compared with other degradable Mg alloys.
[1] | I. Aviles, M. Dardis, Soc. Petroleum Eng. 173695 (2015) 24-25. |
[2] | B.J. Salinas, Z. Xu, Soc. Petroleum Eng. 153428 (2012) 12-14. |
[3] | C. Zheng, Y. Liu, J. Nat. Gas Sci. Eng. 35 (2016) 203-210. |
[4] | Z. Walton, M. Fripp, Soc. Petroleum Eng. 27149 (2016) 1-10. |
[5] | Y. Jia, Y. Jia, Materials 12 (2019) 1136. |
[6] |
G. Song, A. Atren, Corros. Sci. 41 (1999) 249-273.
DOI URL |
[7] |
T. Zhang, Y. Shao, G. Meng, Z. Cui, F. Wang, Corros. Sci. 53 (2011) 1960-1968.
DOI URL |
[8] |
Y. Song, E.H. Han, D. Shan, C.D. Yim, B.S. You, Corros. Sci. 60 (2012) 238-245.
DOI URL |
[9] | R. Arrabal, A. Pardo, M.C. Merino, M. Mohedano, P. Casajús, K. Paucar, G. Gar-cés, Corros.Sci. 55 (2012) 301-312. |
[10] |
J.D. Robson, C. Paa-Rai, Acta Mater. 95 (2015) 10-19.
DOI URL |
[11] | P.R. Cha, H.S. Han, G.F. Yang, Y.C. Kim, K.H. Hong, Sci. Rep. 2367 (2013) 1-6. |
[12] |
S.M. Beak, J.S. Kang, Corros. Sci. 141 (2018) 203-210.
DOI URL |
[13] |
G.L. Song, A. Atrens, Adv. Eng. Mater. 1 (1999) 11-33.
DOI URL |
[14] | Z. Wu, R. Ahmad, Science 359 (2018) 447-452. |
[15] |
G. Proust, Science 365 (2019) 30-31.
DOI URL |
[16] |
C. Wang, H.Y. Wang, H.Y. Zhang, X.L. Nan, J. Alloys Compd. 575 (2013) 423-433.
DOI URL |
[17] |
A. Sadeghi, E. Hasanpur, A. Bahmani, K.S. Shin, Corros. Sci. 141 (2018) 117-126.
DOI URL |
[18] |
G. Song, A. Atrens, Adv. Eng. Mater. 5 (2003) 837-858.
DOI URL |
[19] |
D. Nagarajan, X. Ren, Mater. Sci. Eng. A 696 (2017) 387-392.
DOI URL |
[20] |
C.H. Caceres, D.M. Rovera, J. Light Metals 1 (2001) 151-156.
DOI URL |
[21] |
X. Zhao, C. Tan, S. Meng, B. Chen, X. Song, J. Mater. Eng. Perform. 27 (2018) 1427-1439.
DOI URL |
[22] |
B. Song, R. Xin, Y. Liang, G. Chen, Q. Liu, Mater. Sci. Eng. A 614 (2014) 106-115.
DOI URL |
[23] |
J. Sun, Z. Yang, H. Liu, J. Han, Y. Wu, X. Zhuo, D. Song, Mater. Sci. Eng. A 759 (2019) 703-707.
DOI URL |
[24] | Y.Q. Chi, X.H. Zhou, X.G. Qiao, H.G. Brokmeier, M.Y. Zheng, Mater. Des. 170 (2019) 107705. |
[25] |
Z. Shi, M. Liu, A. Atrens, Corros. Sci. 52 (2010) 579-588.
DOI URL |
[26] |
B. Jiang, Q. Xiang, A. Atrens, J. Song, F. Pan, Corros. Sci. 126 (2017) 374-380.
DOI URL |
[27] | A. Atrens, G.L. Song, Encyclopedia of interfacial chemistry, Elsevier(2018) 515-532. |
[28] |
Y. Zhang, X. Wang, Y. Kuang, B. Liu, K. Zhang, D. Fang, Mater. Lett. 195 (2017) 194-197.
DOI URL |
[29] | J. Baihly, I. Aviles, Soc. Petroleum Eng. 162657 (2012) 1-14. |
[30] | B.J. Salinas, Z. Xu, Soc. Petroleum Eng. 153428 (2012) 1-5. |
[31] |
H. Pan, K. Pang, F. Cui, F. Ge, C. Man, X. Wang, Z. Cui, Corros. Sci. 157 (2019) 420-437.
DOI URL |
[32] |
Y. Zhou, Z. Zhao, L. Wei, Y. Zhu, L. Li, Adv. Powder Technol. 24 (2013) 643-646.
DOI URL |
[33] |
J. Tian, Y. Zhao, H. Hou, P. Han, Solid State Commun. 268 (2017) 44-50.
DOI URL |
[34] | S.L. Chen, Y. Zuo, Metall. Mater. Trans. A 28A (1997) 435-446. |
[35] |
Q. Luo, Y. Guo, B. Liu, Y. Feng, J. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol. 44 (2020) 171-190.
DOI |
[36] |
Y. Guo, B. Liu, W. Xie, Q. Luo, Q. Li, Scr. Mater. 193 (2021) 127-131.
DOI URL |
[37] |
Y. Pang, D. Sun, Q. Gu, K.-C. Chou, X. Wang, X. Wang, Cryst. Growth Des. 16 (2016) 2404-2415.
DOI URL |
[38] |
J.H. Nordlien, J. Electrochem. Soc. 143 (1996) 2564-2572.
DOI URL |
[39] | C.R. Hutchinson, J.F. Nie, Metall. Mater. Trans. A 36A (2005) 2093-2105. |
[40] | S. Ganguly, S.T. Reddy, J. Majhi, P. Nasker, A.K. Mondal, Mater. Sci. Eng. A 799 (2021) 140341. |
[41] | Z.Z. Jin, M. Zha, Z.Y. Yu, P.K. Ma, Y.K. Li, J.M. Liu, J. Alloys Compd. 833 (2020) 155004. |
[42] | J. Wei, S. Jiang, Z. Chen, C. Liu, Mater. Sci. Eng. A 780 (2020) 139192. |
[43] |
S. Sandlöbes, S. Zaefferer, Acta Mater. 59 (2011) 429-439.
DOI URL |
[44] |
M. Suzuki, T. Kimura, J. Koike, K. Maruyama, Mater. Sci. Eng. A 387-389 (2004) 706-709.
DOI URL |
[45] |
S. Sandlöbes, M. Friák, S. Zaefferer, A. Dick, S. Yi, D. Letzig, Z. Pei, L.F. Zhu, J. Neugebauer, D. Raabe, Acta Mater. 60 (2012) 3011-3021.
DOI URL |
[46] |
B. Yin, Z. Wu, W.A. Curtin, Acta Mater. 136 (2017) 249-261.
DOI URL |
[47] |
Z. Ding, W. Liu, H. Sun, S. Li, D. Zhang, Y. Zhao, E.J. Lavernia, Acta Mater. 146 (2018) 265-272.
DOI URL |
[48] | H. Sun, Z. Ding, D. Zhang, H. Zhou, S. Li, E.J. Lavernia, Y. Zhu, W. Liu, Materialia 7 (2019) 100352. |
[49] |
K.H. Kim, J.B. Jeon, N.J. Kim, B.J. Lee, Scr. Mater. 108 (2015) 104-108.
DOI URL |
[50] |
A. Akhtar, E. Teghtsoonian, Acta Metall. 17 (1969) 1339-1349.
DOI URL |
[51] |
M.F. Wang, D.H. Xiao, P.F. Zhou, W.S. Liu, Y.Z. Ma, B.R. Sun, J. Alloys Compd. 742 (2018) 232-239.
DOI URL |
[52] |
H.Y. Niu, K.K. Deng, K.B. Nie, F.F. Cao, X.C. Zhang, J. Alloys Compd. 787 (2019) 1290-1300.
DOI URL |
[53] |
Z. Geng, D. Xiao, L. Chen, J. Alloys Compd. 686 (2016) 145-152.
DOI URL |
[1] | Huajing Xiong, Jianan Fu, Jinyao Li, Rashad Ali, Hong Wang, Yifan Liu, Hua Su, Yuanxun Li, Woon-Ming Lau, Nasir Mahmood, Chunhong Mu, Xian Jian. Strain-regulated sensing properties of α-Fe2O3 nano-cylinders with atomic carbon layers for ethanol detection [J]. J. Mater. Sci. Technol., 2021, 68(0): 132-139. |
[2] | Jixing Lin, Xian Tong, Kun Wang, Zimu Shi, Yuncang Li, Matthew Dargusch, Cuie Wen. Biodegradable Zn-3Cu and Zn-3Cu-0.2Ti alloys with ultrahigh ductility and antibacterial ability for orthopedic applications [J]. J. Mater. Sci. Technol., 2021, 68(0): 76-90. |
[3] | Xiaoyang Yi, Kuishan Sun, Jingjing Liu, Xiaohang Zheng, Xianglong Meng, Zhiyong Gao, Wei Cai. Tailoring the microstructure, martensitic transformation and strain recovery characteristics of Ti-Ta shape memory alloys by changing Hf content [J]. J. Mater. Sci. Technol., 2021, 83(0): 123-130. |
[4] | Yang Bao, Lujun Huang, Shan Jiang, Rui Zhang, Qi An, Caiwei Zhang, Lin Geng, Xinxin Ma. A novel Ti cored wire developed for wire-feed arc deposition of TiB/Ti composite coating [J]. J. Mater. Sci. Technol., 2021, 83(0): 145-160. |
[5] | Y.M. Ren, X. Lin, H.O. Yang, H. Tan, J. Chen, Z.Y. Jian, J.Q. Li, W.D. Huang. Microstructural features of Ti-6Al-4V manufactured via high power laser directed energy deposition under low-cycle fatigue [J]. J. Mater. Sci. Technol., 2021, 83(0): 18-33. |
[6] | Jingfeng Zou, Lifeng Ma, Weitao Jia, Qichi Le, Gaowu Qin, Yuan Yuan. Microstructural and mechanical response of ZK60 magnesium alloy subjected to radial forging [J]. J. Mater. Sci. Technol., 2021, 83(0): 228-238. |
[7] | Guoqiang Ma, Darcy A. Hughes, Andrew W. Godfrey, Qiang Chen, Niels Hansen, Guilin Wu. Microstructure and strength of a tantalum-tungsten alloy after cold rolling from small to large strains [J]. J. Mater. Sci. Technol., 2021, 83(0): 34-48. |
[8] | Sajian Wu, Jing Li, Changji Li, Yiyi Li, Liangyin Xiong, Shi Liu. Preliminary study on the fabrication of 14Cr-ODS FeCrAl alloy by powder forging [J]. J. Mater. Sci. Technol., 2021, 83(0): 49-57. |
[9] | Shuting Cao, Yaqian Yang, Bo Chen, Kui Liu, Yingche Ma, Leilei Ding, Junjie Shi. Influence of yttrium on purification and carbide precipitation of superalloy K4169 [J]. J. Mater. Sci. Technol., 2021, 86(0): 260-270. |
[10] | Zijian Yu, Xi Xu, Adil Mansoor, Baotian Du, Kang Shi, Ke Liu, Shubo Li, Wenbo Du. Precipitate characteristics and their effects on the mechanical properties of as-extruded Mg-Gd-Li-Y-Zn alloy [J]. J. Mater. Sci. Technol., 2021, 88(0): 21-35. |
[11] | Dan Liu, Daoxin Liu, Junfeng Cui, Xingchen Xu, Kaifa Fan, Amin Ma, Yuting He, Sara Bagherifard. Deformation mechanism and in-situ TEM compression behavior of TB8 β titanium alloy with gradient structure [J]. J. Mater. Sci. Technol., 2021, 84(0): 105-115. |
[12] | Baolei Wang, Qian Wu, Yonggang Fu, Tong Liu. A review on carbon/magnetic metal composites for microwave absorption [J]. J. Mater. Sci. Technol., 2021, 86(0): 91-109. |
[13] | Z.W. Yang, J.M. Lin, J.F. Zhang, Q.W. Qiu, Y. Wang, D.P. Wang, J. Song. An effective approach for bonding of TZM and Nb-Zr system: Microstructure evolution, mechanical properties, and bonding mechanism [J]. J. Mater. Sci. Technol., 2021, 84(0): 16-26. |
[14] | Hu Liu, Jie Wei, Junhua Dong, Yiqing Chen, Yumin Wu, Yangtao Zhou, Subedi Dhruba Babu, Wei Ke. Influence of cementite spheroidization on relieving the micro-galvanic effect of ferrite-pearlite steel in acidic chloride environment [J]. J. Mater. Sci. Technol., 2021, 61(0): 234-246. |
[15] | Hui Jiang, Dongxu Qiao, Wenna Jiao, Kaiming Han, Yiping Lu, Peter K. Liaw. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 119-124. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||