J. Mater. Sci. Technol. ›› 2021, Vol. 94: 10-21.DOI: 10.1016/j.jmst.2021.02.062
• Research Article • Previous Articles Next Articles
Yue Tiana,b, Qingqiang Cuib, Linlin Xub, Anxin Jiaob, Shuang Lic,*(), Xuelin Wanga, Ming Chenb,*(
)
Received:
2020-11-15
Revised:
2021-02-24
Accepted:
2021-02-28
Published:
2021-05-18
Online:
2021-05-18
Contact:
Shuang Li,Ming Chen
About author:
chenming@sdu.edu.cn (M. Chen).Yue Tian, Qingqiang Cui, Linlin Xu, Anxin Jiao, Shuang Li, Xuelin Wang, Ming Chen. Pronounced interfacial interaction in icosahedral Au@C60 core-shell nanostructure for boosting direct plasmonic photocatalysis under alkaline condition[J]. J. Mater. Sci. Technol., 2021, 94: 10-21.
Scheme 1. Schematics of plasmon-induced generation of hot carriers on Ih Au@C60 core-shell NMs and the mechanism of charge separation and photocatalytic process under broad-spectrum light irradiation.
Fig. 2. Morphology and structural characterizations of the obtained Ih Au@C60 NMs. (a, b) SEM and (c, d) TEM and HRTEM images. (e) SAED pattern. (f) Cross-sectional compositional line profile. (g) Raman spectrum of Ih Au@C60 NMs.
Fig. 3. (a) XRD patterns of Ih Au@C60 NMs, spherical Au@C60 NPs and Au NPs. (b) UV-visible absorption spectra of these three samples. (c) Down-converted photoluminescence spectra of C60. (d) Spectral overlap of C60 emission and Ih Au@C60 NMs absorption spectrum, both peaks are normalized.
Fig. 4. High-resolution XPS spectra of C1s on the surface of (a) C60, O1s on the surfaces of (b) Au NPs and (c) Ih Au@C60 NMs. (d) The detailed structure information of Au NPs and Ih Au@C60 NMs.
Fig. 5. (a) SERS spectra of 10-7 M CV adsorbed on Ih Au@C60 NMs, spherical Au@C60 NPs and bare Au NPs, respectively. The excitation wavelength is 633 nm. (b) FDTD calculations of near-field distributions for Au NPs and Ih Au with excitation of 633 nm. Einc is parallel to the y axis.
Fig. 6. (a) Temporal evolution of UV-vis absorption spectra of CV dyes during the photocatalytic degradation in the presence of Ih Au@C60 NMs under visible light irradiation. (b) Photocatalytic degradation of CV as a function of irradiation time, (c) kinetic linear simulation and (d) the corresponding rate constant (k) histogram of visible-light-driven photocatalytic performances in Ih Au@C60 NMs, spherical Au@C60 NPs and Au NPs systems.
Fig. 7. Based on the obtained Ih Au@C60 photocatalyst, the absorption spectra of CV dyes after photocatalytic degradation of 3 h by using three laser sources with wavelength of 532, 635 and 808 nm, respectively. (b) Degradation rate of CV dyes as a function of the laser wavelength. Overlaid (black line) is the UV-visible absorption spectrum of Ih Au@C60 NMs. FDTD calculations of near-field distributions of Ih Au nanostructure with excitation of 532 nm (c1), 635 nm (c2) and 808 nm (c3), respectively. Einc is parallel to the y axis.
Fig. 8. (a) Transient photocurrent responses of Ih Au@C60 NMs, spherical Au@C60 NPs and bare Au NPs in 0.1 M Na2SO4 under visible light irradiation. (b) The photocurrent density of three samples at 200 s.
Fig. 9. (a) The influence of different capture agents on photocatalytic performance of Ih Au@C60 NMs. (b) ESR spectra of the DMPO-•OH recorded on Ih Au@C60 NMs, bare Au NPs and original C60 powders under visible light irradiation.
Fig. 10. (a-c) Influence of pH0 on the photocatalytic degradation of CV dyes in the presence of Ih Au@C60 NMs. (d) High resolution XPS spectra of O1s region on the surface of Ih Au@C60 at pH0 11.4.
Fig. 11. Recycling runs of photocatalytic degradation of CV dyes under visible light irradiation at pH0 11.4 in the presence of Ih Au@C60 powders (a) and flexible film (c). (b) Digital photos of flexible Ih Au@C60 film and the mixed CV solution before and after a typical photocatalytic reaction. (d) The XRD pattern and (e) SEM image of Ih Au@C60 NMs after 10 cycles of repeated applications.
[1] |
X. Meng, L. Liu, S.X. Ouyang, H. Xu, D. Wang, N. Zhao, J. Ye, Adv. Mater. 28 (2016) 6781-6803.
DOI URL |
[2] | J. Ran, M. Jaroniec, S. Qiao, Adv. Mater. 30 (2018) 1704649. |
[3] |
M. Kale, T. Avanesian, P. Christopher, ACS Catal. 4 (2014) 116-128.
DOI URL |
[4] | T. Peng, J. Miao, Z. Gao, L. Zhang, Y. Gao, C. Fan, D. Li, Small 14 (2018) 1703510. |
[5] |
X. Gao, X. Zhang, Y. Wang, C. Fan, Chemosphere 163 (2016) 438-445.
DOI URL |
[6] |
Q. Liu, T. Chen, Y. Guo, Z. Zhang, X. Fang, Appl. Catal. B: Environ. 193 (2016) 248-258.
DOI URL |
[7] | M. Yan, F. Zhu, W. Gu, L. Sun, W. Shi, Y. Hua, RSC Adv. 6 (2016) 61162-61174. |
[8] |
P. Wang, B. Huang, X. Qin, X. Zhang, Y. Dai, J. Wei, M. Whangbo, Angew. Chem. Int. Ed. 47 (2008) 7931-7933.
DOI URL |
[9] |
D. Ma, J. Zhong, R. Peng, J. Li, R. Duan, Appl. Surf. Sci. 465 (2019) 249-258.
DOI URL |
[10] |
S. Zhu, T. Xu, H. Fu, J. Zhao, Y. Zhu, Environ. Sci. Technol. 41 (2007) 6234-6239.
DOI URL |
[11] |
F. Wang, Y. Wang, Y. Feng, Y. Zeng, Z. Xie, Q. Zhang, Y. Su, P. Chen, Y. Liu, K. Yao, W. Lv, G. Liu, Appl. Catal. B: Environ. 221 (2018) 510-520.
DOI URL |
[12] | R. Gao, Q. Dai, F. Du, D. Yan, L. Dai, J. Am. Chem. Soc. 141 (2019) 11658-11666. |
[13] |
M. Yang, N. Zhang, Y. Xu, ACS Appl. Mater. Interfaces 5 (2013) 1156-1164.
DOI URL |
[14] |
X. Zhu, T. Zhang, D. Jiang, H. Duan, Z. Sun, M. Zhang, H. Jin, R. Guan, Y. Liu, M. Chen, H. Ji, P. Du, W. Yan, S. Wei, Y. Lu, S. Yang, Nat. Commun. 9 (2018) 4177.
DOI URL |
[15] |
W. Ding, G. Gu, W. Zhong, W. Zang, Y. Du, Chem. Phys. Lett. 262 (1996) 259-262.
DOI URL |
[16] |
D. Liu, Q. Wang, C. Traverse, C. Yang, M. Young, P. Kuttipillai, S. Lunt, T. Hamann, R. Lunt, ACS Nano 12 (2018) 876-883.
DOI URL |
[17] |
Q. Zhou, G. Li, K. Chen, H. Yang, M. Yang, Y. Zhang, Y. Wan, Y. Shen, Y. Zhang, Anal. Chem. 92 (2020) 983-990.
DOI URL |
[18] |
C. Lin, T. Lu, Recent Patents on Nanotechnol 6 (2012) 105-113.
DOI URL |
[19] | Y. Pan, X. Liu, W. Zhang, Z. Liu, G. Zeng, B. Shao, Q. Liang, Q. He, X. Yuan, D. Huang, M. Chen, Appl. Catal. B: Environ. 265 (2020) 118579. |
[20] |
H. Fu, T. Xu, S. Zhu, Y. Zhu, Environ. Sci. Technol. 42 (2008) 8064-8069.
DOI URL |
[21] |
N. Justh, T. Firkala, K. László, J. Lábár, I. Szilágyi, Appl. Surf. Sci. 419 (2017) 497-502.
DOI URL |
[22] |
L. Ju, P. Wu, Q. Yang, Z. Ahmed, N. Zhu, Appl. Catal. B: Environ. 224 (2018) 159-174.
DOI URL |
[23] |
X. Bai, L. Wang, Y. Wang, W. Yao, Y. Zhu, Appl. Catal. B: Environ. 152-153 (2014) 262-270.
DOI URL |
[24] |
T. Song, J. Huo, T. Liao, J. Zeng, J. Qin, H. Zeng, Chem. Eng. J. 287 (2016) 359-366.
DOI URL |
[25] | B. Shao, Z. Liu, G. Zeng, Z. Wu, Y. Liu, M. Cheng, M. Chen, Y. Liu, W. Zhang, H. Feng, ACS Sustainable Chem. Eng. 6 (2018) 16424-16436. |
[26] |
P. Li, Y. Lan, Q. Zhang, Z. Zhao, T. Pullerits, K. Zheng, Y. Zhou, J. Phys. Chem. C 120 (2016) 9253-9262.
DOI URL |
[27] |
C. Wang, X. Nie, Y. Shi, Y. Zhou, J. Xu, X. Xia, H. Chen, ACS Nano 11 (2017) 5897-5905.
DOI PMID |
[28] |
S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. Brown, J. Cheng, J. Lassiter, E. Carter, P. Nordlander, N. Halas, Nano Lett 13 (2013) 240-247.
DOI PMID |
[29] |
C. Clavero, Nat. Photon. 8 (2014) 95-103.
DOI URL |
[30] |
C. Zhan, X. Chen, J. Yi, J. Li, D. Wu, Z. Tian, Nat. Rev. Chem. 2 (2018) 216-230.
DOI URL |
[31] |
S. Roy, V. Jain, R. Kashyap, A. Rao, P. Pillai, ACS Catal 10 (2020) 5522-5528.
DOI URL |
[32] | H. Yang, L. He, Y. Hu, X. Lu, G. Li, B. Liu, B. Ren, Y. Tong, P. Fang, Angew. Chem. Int. Ed. 54 (2015) 11462-11466. |
[33] | C. Boerigter, R. Campana, M. Morabito, S. Linic, Nat. Commun. 7 (2016) 10545. |
[34] | K. Chen, Y. Pu, K. Chang, Y. Liang, C. Liu, J. Yeh, H. Shih, Y. Hsu, J. Phys. Chem. C 116 (2012) 19039-19045. |
[35] |
Z. Wang, J. Du, Y. Zhang, J. Han, S. Huang, A. Hirata, M. Chen, Nano Energy 56 (2019) 286-293.
DOI URL |
[36] |
S. Linic, P. Christopher, D. Ingram, Nat. Mater. 10 (2011) 911-921.
DOI URL |
[37] |
K. Kokubo, K. Matsubayashi, H. Tategaki, H. Takada, T. Oshima, ACS Nano 2 (2008) 327-333.
DOI PMID |
[38] |
P. Scharff, C. Siegmund, K. Risch, I. Lysko, O. Lysko, D. Zherebetskyy, A. Ivanisik, A. Gorchinskiy, E. Buzaneva, Fuller. Nanotub. Carbon Nanostruct. 13 (2005) 497-509.
DOI URL |
[39] | X. Zhang, Y. Ma, S. Fu, A. Zhang, Nanomaterials 9 (2019) 1647. |
[40] | H. Zheng, Q. Wang, Y. Long, H. Zhang, X. Huang, R. Zhu, Chem. Commun. 47 (2011) 10650-10652. |
[41] |
M. Yang, X. Pan, N. Zhang, Y. Xu, CrystEngComm 15 (2013) 6 819-6 828.
DOI URL |
[42] | J. Jin, S. Zhu, Y. Song, H. Zhao, Z. Zhang, Y. Guo, J. Li, W. Song, B. Yang, B. Zhao, ACS Appl. Mater. Interfaces 8 (2016) 27956-27965. |
[43] | M. Xu, L. Zhang, F. Zhao, ACS Appl. Mater. Interfaces 12 (2020) 12186-12194. |
[44] |
P. Luo, C. Li, G. Shi, Phys. Chem. Chem. Phys. 14 (2012) 7360-7366.
DOI URL |
[45] |
S. Baker, G. Baker, Angew. Chem. Int. Ed. 49 (2010) 6726-6744.
DOI URL |
[46] | C. Kuo, L. Lamontagne, C. Brodsky, L. Chou, J. Zhuang, B. Sneed, M. Sheehan, C. Tsung, ChemSusChem 6 (2013) 1993-2000. |
[47] |
H. Li, X. He, Z. Kang, H. Huang, Y. Liu, J. Liu, S. Lian, C. Tsang, X. Yang, S. Lee, Angew. Chem. 122 (2010) 4532-4536.
DOI URL |
[48] | L. Xu, H. Zhang, Y. Tian, A. Jiao, S. Li, Y. Tan, M. Chen, F. Chen, Talanta 209 (2020) 120535. |
[49] |
D. Rosenthal, M. Ruta, R. Schlogl, L. Minsker, Carbon 48 (2010) 1835-1843.
DOI URL |
[50] |
W. Li, J. Miao, T. Peng, H. Lv, J. Wang, K. Li, Y. Zhu, D. Li, Nano Lett 20 (2020) 2507-2513.
DOI URL |
[51] |
U. Aslam, V. Rao, S. Chavez, S. Linic, Nat. Catal. 1 (2018) 656-665.
DOI URL |
[52] |
Y. Jiang, H. Lin, W. Chung, Y. Dai, W. Lin, C. Chen, J. Hazard. Mater. 283 (2015) 787-805.
DOI URL |
[53] |
H. Zhang, L. Zhao, F. Geng, L. Guo, B. Wan, Y. Yang, Appl. Catal. B: Environ. 180 (2016) 656-662.
DOI URL |
[54] |
Y. Lei, C. Chen, Y. Tu, Y. Huang, H. Zhang, Environ. Sci. Technol. 49 (2015) 6 838-6 845.
DOI URL |
[1] | Bing Leng, Xinglai Zhang, Shanshan Chen, Jing Li, Ziqing Sun, Zongyi Ma, Wenjin Yang, Bingchun Zhang, Ke Yang, Shu Guo. Highly efficient visible-light photocatalytic degradation and antibacterial activity by GaN:ZnO solid solution nanoparticles [J]. J. Mater. Sci. Technol., 2021, 94(0): 67-76. |
[2] | Jingjun Liu, Wei Fu, Yulong Liao, Jiajie Fan, Quanjun Xiang. Recent advances in crystalline carbon nitride for photocatalysis [J]. J. Mater. Sci. Technol., 2021, 91(0): 224-240. |
[3] | Mingyue Li, Na Yuan, Yiwen Tang, Ling Pei, Yongdan Zhu, Jiaxian Liu, Lihua Bai, Meiya Li. Performance optimization of dye-sensitized solar cells by gradient-ascent architecture of SiO2@Au@TiO2 microspheres embedded with Au nanoparticles [J]. J. Mater. Sci. Technol., 2019, 35(4): 604-609. |
[4] | Chao Li, Weiyi Yang, Qi Li. TiO2-based photocatalysts prepared by oxidation of TiN nanoparticles and their photocatalytic activities under visible light illumination [J]. J. Mater. Sci. Technol., 2018, 34(6): 969-975. |
[5] | Qian Tingting, Yin Xiaoping, Li Jinhong, Nian Hong’en, Xu Hui, Deng Yong, Wang Xiang. Nano-TiO2 Decorated Radial-Like Mesoporous Silica: Preparation, Characterization, and Adsorption-Photodegradation Behavior [J]. J. Mater. Sci. Technol., 2017, 33(11): 1314-1322. |
[6] | Anil Kumar Reddy Police, Srinivas Basavaraju, Durga Kumari Valluri, Subrahmanyam Machiraju. Bismuth Modified Porous Silica Preparation, Characterization and Photocatalytic Activity Evaluation for Degradation of Isoproturon [J]. J. Mater. Sci. Technol., 2013, 29(7): 639-646. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||