J. Mater. Sci. Technol. ›› 2021, Vol. 94: 1-9.DOI: 10.1016/j.jmst.2021.02.061
• Research Article • Next Articles
Jinhu Zhanga,c,1,*(), Hongtao Jua,b,c,1, Haisheng Xua,b,c, Liang Yanga,c, Zhichao Menga,b,c, Chen Liud, Ping Sund, Jianke Qiua,b,c,**(
), Chunguang Baia,b,c, Dongsheng Xua,b,c,**(
)
Received:
2020-11-02
Revised:
2021-02-09
Accepted:
2021-02-19
Published:
2021-12-20
Online:
2021-05-19
Contact:
Jinhu Zhang,Jianke Qiu,Dongsheng Xu
About author:
dsxu@imr.ac.cn (D. Xu).1Both the authors equally contributed to this work.
Jinhu Zhang, Hongtao Ju, Haisheng Xu, Liang Yang, Zhichao Meng, Chen Liu, Ping Sun, Jianke Qiu, Chunguang Bai, Dongsheng Xu. Effects of heating rate on the alloy element partitioning and mechanical properties in equiaxed α+β Ti-6Al-4V alloy[J]. J. Mater. Sci. Technol., 2021, 94: 1-9.
Ti | Al | V | Fe | O | H | N |
---|---|---|---|---|---|---|
Bal. | 6.12 | 4.2 | 0.06 | 0.15 | 0.0014 | 0.0056 |
Table 1 Chemical compositions of as-received Ti-6Al-4 V alloy (wt%).
Ti | Al | V | Fe | O | H | N |
---|---|---|---|---|---|---|
Bal. | 6.12 | 4.2 | 0.06 | 0.15 | 0.0014 | 0.0056 |
Fig. 1. The schematic of solution treatment heated up to (a) 880, (b) 920 and (c) 960 oC under different heating rates of 1.0, 5.0 and 20.0 K/min respectively.
Fig. 2. Based on the relationship between conductivity vs. temperature (a), the thermal permeability of the sample is simulated using finite element method (FEM) from 750 to 960 °C under different heating rates of (b) 1.0, (c) 5.0 and (d) 20.0 K/min respectively.
Fig. 5. The compositions of Al and V (wt%) under different heating rates (1.0, 5.0 and 20.0 K/min), water quenching from (a) 880, (b) 920 and (c) 960 oC respectively.
Fig. 6. The microstructure morphology evolution simulations under different heating rates heated up to T = 920 °C. (a) the original microstructure, the one at the upper right corner in (a) is characterized by the experiment. (b-d) the microstructures under different heating rates of 1.0, 5.0 and 20.0 K/min, corresponding to the reduced time τ=68,000, 13,600, 3400 respectively. It should be pointed out that the red regions indicate αp phase, and the blue ones indicate β phase.
Fig. 7. The alloy element partitioning during α→β transformation under different heating rates heated up to T = 920 °C, (a, b, c) show the distributions of Al element, (d, e, f) show the distributions of V element, the reduced time τ=68,000 (a, d), 13,600 (b, e), 3400 (c, f) respectively.
Fig. 8. The atom mobilities of Al and V between β (order parameter η=0.0) and α (order parameter η=1.0) phases under T = 880, 920, 960 °C respectively.
Fig. 9. The Al (a) and V (b) concentration profiles between αp and β phases with the reduced time τ from 0 to 68,000, 13,600 and 3400 corresponding to 1.0, 5.0 and 20.0 K/min respectively at T = 920 °C. The light blue shaded areas indicate the αp/β interface.
Fig. 10. The yield and tensile strength of Ti-6Al-4 V alloy under different heating rates of 1.0, 5.0 and 20.0 K/min raising to (a) 880, (b) 920 and (c) 960 °C, respectively.
[1] | C. Leyens, M. Peters, Titanium and Titanium Alloys, first ed., Wiley-VCH, Wein-heim, 2003. |
[2] |
J.H. Zhang, X.X. Li, D.S. Xu, R. Yang, Prog. Nat. Sci. Mater. Int. 29 (2019) 295-304.
DOI URL |
[3] | G. Lütjering, J.C. Williams, Titanium, 2nd ed., Springer, Berlin Heidelberg, 2007. |
[4] | D.S. Xu, H. Wang, J.H. Zhang, C.G. Bai, R. Yang, in: W. Andreoni, S. Yip (Eds.), Handbook of Materials Modeling, Springer, 2020. |
[5] |
S.L. Semiatin, S.L. Knisley, P.N. Fagin, D.R. Barker, F. Zhang, Metall. Mater. Trans. A 34 (2003) 2377-2386.
DOI URL |
[6] |
W.C. Leslie, G.C. Rauch, Metall. Trans. A 9 (1978) 343-349.
DOI URL |
[7] |
M. Umemoto, Z.G. Liu, K. Masuyama, K. Tsuchiya, Scr. Mater. 45 (2001) 391-397.
DOI URL |
[8] |
G. Lütjering, Mater. Sci. Eng. A 263 (1999) 117-126.
DOI URL |
[9] | M. Atapour, A. Pilchak, G.S. Frankel, J.C. Williams, M.H. Fathi, M. Shamanian, Corrosion 66 (2010) 065004-065004-9. |
[10] |
T. Li, M. Ahmed, G. Sha, R.P. Shi, G. Casillas, H.W. Yen, Y.Z. Wang, E.V. Pereloma, J.M. Cairney, J. Alloy. Compd. 643 (2015) 212-222.
DOI URL |
[11] |
P. Barriobero-Vila, G. Requena, T. Buslaps, M. Alfeld, U. Boesenberg, J. Alloy. Compd. 626 (2015) 330-339.
DOI URL |
[12] |
L.R. Zeng, H.L. Chen, X. Li, L.M. Lei, G.P. Zhang, J. Mater. Sci. Technol. 34 (2018) 782-787.
DOI |
[13] |
S.S. Huang, J.H. Zhang, Y.J. Ma, S.L. Zhang, S.S. Youssef, M. Qi, H. Wang, J.K. Qiu, D.S. Xu, J.F. Lei, R. Yang, J. Alloy. Compd. 791 (2019) 575-585.
DOI URL |
[14] |
S. Zhu, H. Yang, L.G. Guo, X.G. Fan, Mater. Charact. 70 (2012) 101-110.
DOI URL |
[15] |
P. Barriobero-Vila, K. Artzt, A. Stark, N. Schell, M. Siggel, J. Gussone, J. Kleinert, W. Kitsche, G. Requena, J. Haubrich, Scr. Mater. 182 (2020) 48-52.
DOI URL |
[16] |
P. Mengucci, A. Gatto, E. Bassoli, L. Denti, F. Fiori, E. Girardin, P. Bastianoni, B. Rutkowski, A. Czyrska-Filemonowicz, G. Barucca, J. Mech. Behav. Biomed. Mater. 71 (2017) 1-9.
DOI PMID |
[17] | X.Y. Li, X. Zhou, K. Lu, Sci. Adv. 6 (2020) eaaz8003. |
[18] |
Q. Xu, X. Ai, J. Zhao, H. Zhang, W. Qin, F. Gong, Mater. Sci. Eng. A 628 (2015) 281-287.
DOI URL |
[19] |
D. Xu, J. Li, Q. Meng, Y. Liu, P. Li, J. Alloy. Compd. 614 (2014) 94-101.
DOI URL |
[20] |
M. Alfeld, M. Wahabzada, C. Bauckhage, K. Kersting, G. Wellenreuther, P. Bar-riobero-Vila, G. Requena, U. Boesenberg, G. Falkenberg, J. Synchrotron Radiat. 23 (2016) 579-589.
DOI URL |
[21] |
Z.B. Zhao, Q.J. Wang, H. Wang, J.R. Liu, R. Yang, J. Appl. Crystallogr. 51 (2018) 1125-1132.
DOI URL |
[22] | J.H. Zhang, D.S. Xu, C.Y. Teng, H. Wang, X.X. Li, J. Sun, R. Yang, Rare Met. Mater. Eng. 49 (2020) 939-943. |
[23] | J. Cahn, S. Allen, J. Phys. Colloq. 38 (1977) C7-51-C7-54. |
[24] |
J.W. Cahn, Acta Metall. 9 (1961) 795-801.
DOI URL |
[25] |
J.O. Andersson, J. Agren, J. Appl. Phys. 72 (1992) 1350-1355.
DOI URL |
[26] |
N. Zhou, D.C. Lv, H.L. Zhang, D. McAllister, F. Zhang, M.J. Mills, Y. Wang, Acta Mater. 65 (2014) 270-286.
DOI URL |
[27] | J.H. Zhang, D.S. Xu, Y. Wang, R. Yang, Acta Metall. Sin. 52 (2016) 905-914 in Chinese. |
[28] | J.H. Zhang, C.Y. Teng, Z.C. Meng, H.S. Xu, L. Yang, D.S. Xu, R. Yang, Intermetallics 126 (2020) 106946. |
[29] |
Q. Chen, N. Ma, K.S. Wu, Y. Wang, Scr. Mater. 50 (2004) 471-476.
DOI URL |
[30] |
L.Q. Chen, J. Shen, Comput. Phys. Commun. 108 (1998) 147-158.
DOI URL |
[31] | M. Mills, D. Hou, S. Suri, G. Viswanathan, in: Proceedings of the Boundaries & Interfaces in Materials: the David A. Smith Symposium, 1997, pp. 295-301. |
[32] |
R.P. Shi, N. Ma, Y. Wang, Acta Mater. 60 (2012) 4172-4184.
DOI URL |
[33] |
J.H. Zhang, J.M. Liu, D.S. Xu, J. Wu, L. Xu, R. Yang, J. Mater. Sci. Technol. 35 (2019) 2513-2525.
DOI |
[34] | Y. Wang, N. Ma, Q. Chen, F. Zhang, S.L. Chen, Y.A. Chang, JOM 57 (9) (2005) 32-39. |
[35] | G. Lütjering, J.C. Williams A. Gysler, in: J.C.M. Li (Ed.), Microstructure and Properties of Materials, World Scientific, Singapore, 2000, pp. 1-77. |
[36] | M. Yang, G. Wang, T. Liu, W.J. Zhao, D.S. Xu, Acta Metall. Sin.(Engl. Lett.) 30 (2017) 1-8. |
[37] | M. Peng, X. Cheng, C. Zheng, K. Yang, D. Jin, Rare Met. Mater. Eng. 46 (2017) 1843-1849. |
[38] |
R. Sahoo, B.B. Jha, T.K. Sahoo, Mater. Sci. Technol. 31 (2015) 1486-1494.
DOI URL |
[1] | Tao Xiang, Zeyun Cai, Peng Du, Kun Li, Zongwei Zhang, Guoqiang Xie. Dual phase equal-atomic NbTaTiZr high-entropy alloy with ultra-fine grain and excellent mechanical properties fabricated by spark plasma sintering [J]. J. Mater. Sci. Technol., 2021, 90(0): 150-158. |
[2] | Xiaopei Wang, Yoshiaki Morisada, Hidetoshi Fujii. Flat friction stir spot welding of low carbon steel by double side adjustable tools [J]. J. Mater. Sci. Technol., 2021, 66(0): 1-9. |
[3] | Zenan Ma, Jiawei Li, Jijun Zhang, Aina He, Yaqiang Dong, Guoguo Tan, Mingqiang Ning, Qikui Man, Xincai Liu. Ultrathin, flexible, and high-strength Ni/Cu/metallic glass/Cu/Ni composite with alternate magneto-electric structures for electromagnetic shielding [J]. J. Mater. Sci. Technol., 2021, 81(0): 43-50. |
[4] | Hui Jiang, Dongxu Qiao, Wenna Jiao, Kaiming Han, Yiping Lu, Peter K. Liaw. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 119-124. |
[5] | Qin Xu, Dezhi Chen, Chongyang Tan, Xiaoqin Bi, Qi Wang, Hongzhi Cui, Shuyan Zhang, Ruirun Chen. NbMoTiVSix refractory high entropy alloys strengthened by forming BCC phase and silicide eutectic structure [J]. J. Mater. Sci. Technol., 2021, 60(0): 1-7. |
[6] | Jinxue Ding, Xiaokang Ma, Xiaomeng Fan, Jimei Xue, Fang Ye, Laifei Cheng. Failure behavior of interfacial domain in SiC-matrix based composites [J]. J. Mater. Sci. Technol., 2021, 88(0): 1-10. |
[7] | Wenming Jiang, Junwen Zhu, Guangyu Li, Feng Guan, Yang Yu, Zitian Fan. Enhanced mechanical properties of 6082 aluminum alloy via SiC addition combined with squeeze casting [J]. J. Mater. Sci. Technol., 2021, 88(0): 119-131. |
[8] | Fengying Zhang, Panpan Gao, Hua Tan, Yao Li, Yongnan Chen, Min Mei, Adam T. Clare, Lai-Chang Zhang. Tailoring grain morphology in Ti-6Al-3Mo through heterogeneous nucleation in directed energy deposition [J]. J. Mater. Sci. Technol., 2021, 88(0): 132-142. |
[9] | Yong-Kang Li, Min Zha, Jian Rong, Hai-long Jia, Zhong-Zheng Jin, Hong-Min Zhang, Pin-Kui Ma, Hong Xu, Ting-Ting Feng, Hui-Yuan Wang. Effect of large thickness-reduction on microstructure evolution and tensile properties of Mg-9Al-1Zn alloy processed by hard-plate rolling [J]. J. Mater. Sci. Technol., 2021, 88(0): 215-225. |
[10] | Hongyu Chen, Dongdong Gu, Liang Deng, Tiwen Lu, Uta Kühn, Konrad Kosiba. Laser additive manufactured high-performance Fe-based composites with unique strengthening structure [J]. J. Mater. Sci. Technol., 2021, 89(0): 242-252. |
[11] | Pengfei Ji, Bohan Chen, Bo Li, Yihao Tang, Guofeng Zhang, Xinyu Zhang, Mingzhen Ma, Riping Liu. Influence of Nb addition on microstructural evolution and compression mechanical properties of Ti-Zr alloys [J]. J. Mater. Sci. Technol., 2021, 69(0): 7-14. |
[12] | Yanli Lu, Yi Wang, Yifan Wang, Meng Gao, Yao Chen, Zheng Chen. First-principles study on the mechanical, thermal properties and hydrogen behavior of ternary V-Ni-M alloys [J]. J. Mater. Sci. Technol., 2021, 70(0): 83-90. |
[13] | Xiaojie Zhou, Yuan Yao, Jian Zhang, Xiaomin Chen, Weiying Huang, Jing Pan, Haoran Wang, Maopeng Weng. A high-performance Mg-4.9Gd-3.2Y-1.1Zn-0.5Zr alloy via multidirectional forging after analyzing its compression behavior [J]. J. Mater. Sci. Technol., 2021, 70(0): 156-167. |
[14] | Qingqing Li, Yong Zhang, Jie Chen, Bugao Guo, Weicheng Wang, Yuhai Jing, Yong Liu. Effect of ultrasonic micro-forging treatment on microstructure and mechanical properties of GH3039 superalloy processed by directed energy deposition [J]. J. Mater. Sci. Technol., 2021, 70(0): 185-196. |
[15] | S.Z. Wu, T. Nakata, G.Z. Tang, C. Xu, X.J. Wang, X.W. Li, X.G. Qiao, M.Y. Zheng, L. Geng, S. Kamado, G.H. Fan. Effect of forced-air cooling on the microstructure and age-hardening response of extruded Mg-Gd-Y-Zn-Zr alloy full with LPSO lamella [J]. J. Mater. Sci. Technol., 2021, 73(0): 66-75. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||