J. Mater. Sci. Technol. ›› 2022, Vol. 113: 71-81.DOI: 10.1016/j.jmst.2021.10.003
• Research article • Previous Articles Next Articles
Zhuguang Nie, Yang Feng, Qing Zhu, YingXia Li, ping Luo, Lan Ma, Jie Su, Xingman Hu, Rumin Wang*(), Shuhua Qi*(
)
Received:
2021-08-03
Revised:
2021-09-25
Accepted:
2021-10-02
Published:
2021-12-29
Online:
2022-06-24
Contact:
Rumin Wang,Shuhua Qi
About author:
qishuhuanwpu@163.com (S.Qi).Zhuguang Nie, Yang Feng, Qing Zhu, YingXia Li, ping Luo, Lan Ma, Jie Su, Xingman Hu, Rumin Wang, Shuhua Qi. Layered-structure N-doped expanded-graphite/boron nitride composites towards high performance of microwave absorption[J]. J. Mater. Sci. Technol., 2022, 113: 71-81.
Fig. 2. (a) Expandable graphite without any treatment, (b, c) expanded graphite treated at 900 °C for 30 s, (d-f) EG/BN-101 composites, (g-i) EG/BN-102 composites, (j-l) EG/BN-103 composites at 900 °C and (m) partial enlarged view of expandable graphite without any processing.
Fig. 3. EDS test of EG/BN-103: (a) original image of EG/BN-103, (b) EDS energy spectrum of the elements, (c) element content of the complex, (d) element mappings of the component.
Fig. 4. (A) XRD patterns of composite samples. (B) XRD patterns of BN and BN, EG mixture. XPS survey spectra of EG/BN composites: (C) full spectrum of EG/BN-103, (D-F) high-resolution XPS spectra of C 1 s, N 1 s and B 1 s of EG/BN composites.
Samples | EG/BN (wt.%) | Conductivity σ (S/cm) |
---|---|---|
Expanded graphite(EG) | - | 649 |
EG/BN-101 | 10:1 | 34.97 |
EG/BN-102 | 10:2 | 20.39 |
EG/BN-103 | 10:3 | 17.91 |
Table 1. Conductivity of as-prepared expanded graphite and EG/BN composites.
Samples | EG/BN (wt.%) | Conductivity σ (S/cm) |
---|---|---|
Expanded graphite(EG) | - | 649 |
EG/BN-101 | 10:1 | 34.97 |
EG/BN-102 | 10:2 | 20.39 |
EG/BN-103 | 10:3 | 17.91 |
Fig. 8. Microwave absorbing properties of pure EG and EG/BN composites: (a, b) belonged to pure EG, (c, e, g) three-dimensional color map of the reflection loss with absorbers frequency and thickness for the composites EG/BN-101-103 at the frequency range of 0.5-18 GHz and thickness of 1-4 mm. (d, f, h) Reflection loss plot of EG/BN-101-103 composites with different coating thicknesses.
Materials | Shapes | Thickness (mm) | Min RL(dB) | Frequency(GHz) | Bandwidh(< -10 dB) (GHz) | Refs. |
---|---|---|---|---|---|---|
Ni/graphite | Flakes | 2 | -42 | -17.6 | 6.1 | [ |
RGO/NiO | Nano-sheets | 3.5 | -55.5 | 10.6 | 6.7 | [ |
FeCo/Graphite | Nano-plates | - | -53.93 | - | 4.3 | [ |
EG | 2D sheet | 4.0 | -26.4 | - | 5.2 | [ |
GNPs@NixSy@MoS2 | Plates | 2.2 | -43.3 | - | 3.6 | [ |
FeOx/Fe/C | Foams | 2.0 | -37 | 12 | 6.5 | [ |
MnS2/CNTs | Microspheres | 1.4 | -63.8 | 17.4 | 4.3 | [ |
RGO/MWCNTs/CeO2 | Flakes | 4.5 | -59.3 | - | 3.2 | [ |
CoNi/N-GCT | 3D frameworks | 3.5 | -41.13 | - | 3.2 | [ |
Ni/C | Foams | 2 | -45 | 13.3 | 4.5 | [ |
SiC/C | Foams | 1.5 | -31.21 | 15.76 | 4.1 | [ |
CNTs/Ti3C2 | Foams | 3.95 | -24.4 | - | 4.2 | [ |
N-doped graphene | Foams | 3.5 | -53.9 | - | 4.56 | [ |
ZnO/C | Nanoparticles | - | -50.43 | 15.77 | 3.52 | [ |
Ni@C | core-shell sphere | 2.6 | -60 | - | [ | |
EG/BN | 2D Sheets | 2.4 | -51.58 | 17.3 | 9.37 | our work |
Table 2. Partially reported carbon materials, magnetic materials, and other dielectric materials with EM microwave absorbing properties.
Materials | Shapes | Thickness (mm) | Min RL(dB) | Frequency(GHz) | Bandwidh(< -10 dB) (GHz) | Refs. |
---|---|---|---|---|---|---|
Ni/graphite | Flakes | 2 | -42 | -17.6 | 6.1 | [ |
RGO/NiO | Nano-sheets | 3.5 | -55.5 | 10.6 | 6.7 | [ |
FeCo/Graphite | Nano-plates | - | -53.93 | - | 4.3 | [ |
EG | 2D sheet | 4.0 | -26.4 | - | 5.2 | [ |
GNPs@NixSy@MoS2 | Plates | 2.2 | -43.3 | - | 3.6 | [ |
FeOx/Fe/C | Foams | 2.0 | -37 | 12 | 6.5 | [ |
MnS2/CNTs | Microspheres | 1.4 | -63.8 | 17.4 | 4.3 | [ |
RGO/MWCNTs/CeO2 | Flakes | 4.5 | -59.3 | - | 3.2 | [ |
CoNi/N-GCT | 3D frameworks | 3.5 | -41.13 | - | 3.2 | [ |
Ni/C | Foams | 2 | -45 | 13.3 | 4.5 | [ |
SiC/C | Foams | 1.5 | -31.21 | 15.76 | 4.1 | [ |
CNTs/Ti3C2 | Foams | 3.95 | -24.4 | - | 4.2 | [ |
N-doped graphene | Foams | 3.5 | -53.9 | - | 4.56 | [ |
ZnO/C | Nanoparticles | - | -50.43 | 15.77 | 3.52 | [ |
Ni@C | core-shell sphere | 2.6 | -60 | - | [ | |
EG/BN | 2D Sheets | 2.4 | -51.58 | 17.3 | 9.37 | our work |
Fig. 10. Electromagnetic parameters of EG/BN: (a) real part ε′, (b) image part ε″ of complex permittivity, (c) dielectric loss tangents tanδ, (d) attenuation coefficient α.
[1] | H. Wei, X.M. Ma, C.Y. Du, Y.N. Wu, K. Liu, H.S.L. Wen, J. Mater. Sci. Mater. Elec-tron. 31 (2020) 6418-6434. |
[2] |
J. Yu, R. Su, J. Yu, X. Liu, X. Zhang, X. Dong, Ceram. Int. 46 (2020) 18339-18346.
DOI URL |
[3] |
Y. Zheng, W. Zhang, X. Zhang, Q. Zhu, W. Zhu, R. Wang, J. Phys. D 52 (2019) 485003.
DOI URL |
[4] |
W. Zhang, Y. Zheng, X. Zhang, Q. Zhu, H. Yan, L.F. Liotta, J. Alloy. Compd. 792 (2019) 945-952.
DOI URL |
[5] |
H. Wang, F. Meng, J. Li, T. Li, Z. Chen, H. Luo, ACS Sustain. Chem. Eng. 6 (2018) 11801-11810.
DOI URL |
[6] | Q. Hu, R. Yang, Z. Mo, D. Lu, L. Yang, Z. He, Carbon 153 (2019) 737-744. |
[7] |
X. Zhao, L. Xu, Q. Chen, Q. Peng, M. Yang, W. Zhao, Adv. Mater. Technol 4 (2019) 1900443.
DOI URL |
[8] | J. Zhang, H. Li, T. Xu, J. Wu, S. Zhou, Z.H. Hang, Carbon 165 (2020) 404-411. |
[9] | X. Zhou, Z. Jia, A. Feng, X. Wang, J. Liu, M. Zhang, Carbon 152 (2019) 827-836. |
[10] | Z. Mo, R. Yang, D. Lu, L. Yang, Q. Hu, H. Li, Carbon 144 (2019) 433-439. |
[11] |
X. Ye, Z. Chen, M. Li, T. Wang, J. Zhang, C. Wu, Compos. B Eng. 178 (2019) 107479.
DOI URL |
[12] |
R. Wang, E. Yang, X. Qi, R. Xie, S. Qin, C. Deng, Appl. Surf. Sci. 516 (2020) 146159.
DOI URL |
[13] |
J. Chai, J. Cheng, D. Zhang, Y. Xiong, X. Yang, X. Ba, J. Alloy. Compd. 829 (2020) 154531.
DOI URL |
[14] |
H. Liu, J. Wu, Q. Zhuang, A. Dang, T. Li, T. Zhao, J. Eur. Ceram. Soc. 36 (2016) 3939-3946.
DOI URL |
[15] |
B.H.K. Lopes, R.C. Portes, M.A.D. Amaral, D.E. Florez-Vergara, A.M. Gama, V. A. Silva, J. Mater. Res. Technol. 9 (2020) 2369-2375.
DOI URL |
[16] |
P. Yin, L. Zhang, X. Feng, J. Wang, J. Dai, Y. Tang, Integr. Ferroelectr. 211 (2020) 82-103.
DOI URL |
[17] |
J. Ju, T. Kuang, X. Ke, M. Zeng, Z. Chen, S. Zhang, Compos. Sci. Technol. 193 (2020) 108116.
DOI URL |
[18] |
X. Chen, X. Jia, Z. Wu, Z. Tang, Y. Zeng, X. Wang, IEEE Antennas Wirel. Propag. Lett. 18 (2019) 1016-1020.
DOI URL |
[19] |
X. Su, J. Wang, X. Zhang, S. Huo, W. Chen, W. Dai, Ceram. Int. 46 (2020) 12353-12363.
DOI URL |
[20] | J. Qiu, T. Qiu, Carbon 81 (2015) 20-28. |
[21] |
D. Min, W. Zhou, Y. Qing, F. Luo, D. Zhu, J. Alloy. Compd. 744 (2018) 629-636.
DOI URL |
[22] |
J. Zeng, H.Q. Fan, S.Q. Wang, J. Zhang, X.Y. Xue, Thin Solid Films 520 (2012) 5053-5059.
DOI URL |
[23] |
C. Liu, Y. Duan, J. Cai, X. Li, D. Zhang, J. Gao, Mater. Res. Express 6 (2019) 106114.
DOI URL |
[24] |
Y. Zhao, Z. Zhou, G.X. Chen, Q. Li, Mater. Lett. 233 (2018) 203-206.
DOI URL |
[25] |
H. Wei, W. Zheng, Z. Jiang, Y. Huang, J. Mater. Chem. C 7 (2019) 14375-14383.
DOI URL |
[26] |
F. Sultanov, C. Daulbayev, B. Bakbolat, O. Daulbayev, Adv. Colloid Interface Sci. 285 (2020) 102281.
DOI URL |
[27] |
H. Lv, Y. Li, Z. Jia, L. Wang, X. Guo, B. Zhao, Compos. B Eng. 196 (2020) 108122.
DOI URL |
[28] |
Y. Kang, Z. Jiang, T. Ma, Z. Chu, G. Li, ACS Appl. Mater. Interfaces 8 (2016) 32468-32476.
DOI URL |
[29] | C. Chen, J. Xi, E. Zhou, L. Peng, Z. Chen, C. Gao, Nanomicro Lett. 10 (2018) 26-37. |
[30] |
K. Raagulan, B.M. Kim, K.Y. Chai, Nanomaterials 10 (2020) 702-724.
DOI URL |
[31] |
H. Jia, Q.Q. Kong, Z. Liu, X.X. Wei, X.M. Li, J.P. Chen, Compos. A Appl. Sci. Manuf. 129 (2020) 105712.
DOI URL |
[32] |
Z. Zhu, X. Sun, G. Li, H. Xue, H. Guo, X. Fan, J. Magn. Magn. Mater. 377 (2015) 95-103.
DOI URL |
[33] |
H. Zhang, X. Tian, C. Wang, H. Luo, J. Hu, Y. Shen, Appl. Surf. Sci. 314 (2014) 228-232.
DOI URL |
[34] |
C. Wang, X. Han, P. Xu, J. Wang, Y. Du, X. Wang, J. Phys. Chem. C 114 (2010) 3196-3203.
DOI URL |
[35] |
C. Wang, X. Han, P. Xu, X. Zhang, Y. Du, S. Hu, Appl. Phys. Lett. 98 (2011) 072906.
DOI URL |
[36] |
X. Zhang, H. Wang, R. Hu, C. Huang, W. Zhong, L. Pan, Appl. Surf. Sci. 484 (2019) 383-391.
DOI URL |
[37] |
C. Basavaraja, W.J. Kim, Y.D. Kim, D.S. Huh, Mater. Lett. 65 (2011) 3120-3123.
DOI URL |
[38] | H. Wang, P. Shi, M. Rui, A. Zhu, R. Liu, C. Zhang, Prog. Org. Coat. 139 (2020) 105476. |
[39] |
X. Su, J. Wang, X. Zhang, S. Huo, W. Dai, B. Zhang, J. Alloy. Compd. 829 (2020) 154426.
DOI URL |
[40] | V. Pratap, A.K. Soni, A.M. Siddiqui, S.M. Abbas, R. Katiyar, N.E. Prasad, J. Elec- tron. Mater. 49 (2020) 3972-3981. |
[41] | F. Wang, C. Bai, L. Chen, Y. Yu, Mater. Today Nano 13 (2021) 100108. |
[42] |
Y. Yu, M. Wang, Y. Bai, B. Zhang, L. An, J. Zhang, Chem. Eng. J. 375 (2019) 121914.
DOI URL |
[43] |
B. Zhong, W. Liu, Y. Yu, L. Xia, J. Zhang, Z. Chai, Appl. Surf. Sci. 420 (2017) 858-867.
DOI URL |
[44] |
Y. Bai, B. Zhong, Y. Yu, M. Wang, J. Zhang, B. Zhang, NPJ 2D Mater. Appl. 3 (2019) 32.
DOI URL |
[45] |
B. Zhong, Y. Cheng, M. Wang, Y. Bai, X. Huang, Y. Yu, Compos. A Appl. Sci. Manuf. 112 (2018) 515-524.
DOI URL |
[46] |
S. Gao, G. Zhang, Y. Wang, X. Han, Y. Huang, P. Liu, J. Mater. Sci. Technol. 88 (2021) 56-65.
DOI URL |
[47] |
P. Liu, S. Gao, G. Zhang, Y. Huang, W. You, R. Che, Adv. Funct. Mater. 31 (2021) 2102812.
DOI URL |
[48] |
S. Zhang, L. Sui, H. Kang, H. Dong, L. Dong, L. Yu, Small 14 (2018) 1702570.
DOI URL |
[49] |
H. Wang, T. Maiyalagan, X. Wang, ACS Catal. 2 (2012) 781-794.
DOI URL |
[50] | H. Xu, X. Yin, M. Li, F. Ye, M. Han, Z. Hou, Carbon 132 (2018) 343-351. |
[51] |
W. Zhu, L. Zhang, W. Zhang, F. Zhang, Z. Li, Q. Zhu, Nanomaterials 9 (2019) 1403-1420.
DOI URL |
[52] |
W. Chen, H. Zhao, B. Xu, Q. Jiang, S. Bao, Z. Jiang, J. Alloy. Compd. 829 (2020) 154519.
DOI URL |
[53] |
C. Liu, B. Wang, C. Mu, K. Zhai, F. Wen, J. Xiang, J. Magn. Magn. Mater. 502 (2020) 166432.
DOI URL |
[54] |
Y. Wu, R. Shu, J. Zhang, Z. Wan, J. Shi, Y. Liu, J. Alloy. Compd. 819 (2020) 152944.
DOI URL |
[55] |
X. Zhang, X. Zhang, H. Yuan, K. Li, Q. Ouyang, C. Zhu, Chem. Eng. J. 383 (2020) 123208.
DOI URL |
[56] |
H.B. Zhao, Z.B. Fu, H.B. Chen, M.L. Zhong, C.Y. Wang, ACS Appl. Mater. Interfaces 8 (2016) 1468-1477.
DOI URL |
[57] |
B. Li, B. Mao, X. Wang, T. He, H. Huang, J. Alloy. Compd. 829 (2020) 154609.
DOI URL |
[58] |
X. Liu, N. Chai, Z. Yu, H. Xu, X. Li, J. Liu, J. Mater. Sci. Technol. 35 (2019) 2859-2867.
DOI URL |
[59] |
P. Liu, Y. Zhang, J. Yan, Y. Huang, L. Xia, Z. Guang, Chem. Eng. J. 368 (2019) 285-298.
DOI URL |
[60] |
D. Wei, Y. Qi, S. Lv, G. Shi, Y. Dai, Y. Qi, Ceram. Int. 45 (2019) 4448-4454.
DOI URL |
[61] |
W. Zhu, L. Zhang, W. Zhang, F. Zhang, Z. Li, Q. Zhu, Nanomaterials 9 (2019) 1403-1420.
DOI URL |
[62] |
H. Xu, L. Ma, Z. Jin, J. Energy Chem. 27 (2018) 146-160.
DOI URL |
[63] |
W.Q. Cao, X.X. Wang, J. Yuan, W.Z. Wang, M.S. Cao, J. Mater. Chem. C 3 (2015) 10017-10022.
DOI URL |
[64] | Q. Hu, R. Yang, Z. Mo, D. Lu, L. Yang, Z. He, Carbon 153 (2019) 737-744. |
[65] |
Y. Bi, M. Ma, Z. Liao, Z. Tong, Y. Chen, R. Wang, J. Colloid Interface Sci. 605 (2022) 483-492.
DOI URL |
[66] | Z. Tong, Z. Liao, Y. Liu, M. Ma, Y. Bi, W. Huang, Carbon 179 (2021) 646-654. |
[67] |
M. Ma, W. Li, Z. Tong, Y. Ma, Y. Bi, Z. Liao, J. Colloid Interface Sci. 578 (2022) 58-68.
DOI URL |
[68] |
Z. Liao, M. Ma, Y. Bi, Z. Tong, K.L. Chung, Z. Li, J. Colloid Interface Sci. 606 (2022) 709-718.
DOI URL |
[1] | Bin Li, Fenglong Wang, Kejun Wang, Jing Qiao, Dongmei Xu, Yunfei Yang, Xue Zhang, Longfei Lyu, Wei Liu, Jiurong Liu. Metal sulfides based composites as promising efficient microwave absorption materials: A review [J]. J. Mater. Sci. Technol., 2022, 104(0): 244-268. |
[2] | Tong Gao, Zhengyu Zhang, Yixing Li, Yujuan Song, Huawei Rong, Xuefeng Zhang. Solid-state reaction induced defects in multi-walled carbon nanotubes for improving microwave absorption properties [J]. J. Mater. Sci. Technol., 2022, 108(0): 37-45. |
[3] | Yating Wang, Hong Jin, Jiajun Shen, Bijia Wang, Xueling Feng, Zhiping Mao, Yumei Zhang, Xiaofeng Sui. Thermally conductive poly(lactic acid)/boron nitride composites via regenerated cellulose assisted Pickering emulsion approach [J]. J. Mater. Sci. Technol., 2022, 101(0): 146-154. |
[4] | Yue-Yi Wang, , Wen-Jin Sun, Kun Dai, Ding-Xiang Yan, Zhong-Ming Li. Highly enhanced microwave absorption for carbon nanotube/barium ferrite composite with ultra-low carbon nanotube loading [J]. J. Mater. Sci. Technol., 2022, 102(0): 115-122. |
[5] | Yawei Zhang, Shuangshuang Li, Xinwei Tang, Wei Fan, Qianqian Lan, Le Li, Piming Ma, Weifu Dong, Zicheng Wang, Tianxi Liu. Ultralight and ordered lamellar polyimide-based graphene foams with efficient broadband electromagnetic absorption [J]. J. Mater. Sci. Technol., 2022, 102(0): 97-104. |
[6] | Xuejiao Zhou, Junwu Wen, Zhenni Wang, Xiaohua Ma, Hongjing Wu. Broadband high-performance microwave absorption of the single-layer Ti3C2Tx Mxene [J]. J. Mater. Sci. Technol., 2022, 115(0): 148-155. |
[7] | Jijun Wang, Songlin Yu, Qingqing Wu, Yan Li, Fangyuan Li, Xiao Zhou, Yuhua Chen, Bingzhen Li, Panbo Liu. Heterogeneous junctions of magnetic Ni core@binary dielectric shells toward high-efficiency microwave attenuation [J]. J. Mater. Sci. Technol., 2022, 115(0): 71-80. |
[8] | Jianping Yang, Linwen Jiang, Zhonghao Liu, Zhuo Tang, Anhua Wu. Multifunctional interstitial-carbon-doped FeCoNiCu high entropy alloys with excellent electromagnetic-wave absorption performance [J]. J. Mater. Sci. Technol., 2022, 113(0): 61-70. |
[9] | Biao Zhao, Yang Li, Qingwen Zeng, Bingbing Fan, Lei Wang, Rui Zhang, Renchao Che. Growth of magnetic metals on carbon microspheres with synergetic dissipation abilities to broaden microwave absorption [J]. J. Mater. Sci. Technol., 2022, 107(0): 100-110. |
[10] | Xianghong Chen, Haiying Lu, Yu Lei, Jiakui Zhang, Feng Xiao, Rui Wang, Peiran Xie, Jiantie Xu. Expanded graphite confined SnO2 as anode for lithium ion batteries with low average working potential and enhanced rate capability [J]. J. Mater. Sci. Technol., 2022, 107(0): 165-171. |
[11] | Jing Wang, Ning Wang, Mengnan Liu, Chengyue Ge, Baorong Hou, Guichang Liu, Wen Sun, Yiteng Hu, Yanli Ning. Hexagonal boron nitride/poly(vinyl butyral) composite coatings for corrosion protection of copper [J]. J. Mater. Sci. Technol., 2022, 96(0): 103-112. |
[12] | Jingjing Pan, Jingyang Wang. Temperature-mediated supramolecular assemblies give rise to hierarchical boron nitride nano-ribbon networks with different micro-topology [J]. J. Mater. Sci. Technol., 2022, 96(0): 160-166. |
[13] | Shuaishuai Gao, Zuju Ma, Chengwei Xiao, Zhitao Cui, Wei Du, Xueqin Sun, Qiaohong Li, Rongjian Sa, Chenghua Sun. TM3 (TM = V, Fe, Mo, W) single-cluster catalyst confined on porous BN for electrocatalytic nitrogen reduction [J]. J. Mater. Sci. Technol., 2022, 108(0): 46-53. |
[14] | Fuxi Peng, Mingfeng Dai, Zhenyu Wang, Yifan Guo, Zuowan Zhou. Progress in graphene-based magnetic hybrids towards highly efficiency for microwave absorption [J]. J. Mater. Sci. Technol., 2022, 106(0): 147-161. |
[15] | Wei Luo, Yi Liu, Chuangye Wang, Dan Zhao, Xiaoyan Yuan, Jianfeng Zhu, Lei Wang, Shouwu Guo. Sacrificial template synthesis of (V0.8Ti0.1Cr0.1)2AlC and carbon fiber@(V0.8Ti0.1Cr0.1)2AlC microrods for efficient microwave absorption [J]. J. Mater. Sci. Technol., 2022, 111(0): 236-244. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||