J. Mater. Sci. Technol. ›› 2022, Vol. 113: 61-70.DOI: 10.1016/j.jmst.2021.09.025
• Research article • Previous Articles Next Articles
Jianping Yanga, Linwen Jianga,*(), Zhonghao Liub, Zhuo Tanga, Anhua Wuc
Received:
2021-07-23
Revised:
2021-09-23
Accepted:
2021-09-26
Published:
2021-12-30
Online:
2022-06-24
Contact:
Linwen Jiang
About author:
*E-mail address: jianglinwen@nbu.edu.cn (L. Jiang).Jianping Yang, Linwen Jiang, Zhonghao Liu, Zhuo Tang, Anhua Wu. Multifunctional interstitial-carbon-doped FeCoNiCu high entropy alloys with excellent electromagnetic-wave absorption performance[J]. J. Mater. Sci. Technol., 2022, 113: 61-70.
Fig. 2. (a) Phase prediction parameters of FeCoNiCuCx HEAs. (b) XRD patterns and (c) the lattice constants of carbon-doped FeCoNiCu HEAs samples (#C000, #C004, #C010 and #C050).
Samples | Regions | (at.%) | |||||
---|---|---|---|---|---|---|---|
Fe | Co | Ni | Cu | C | O | ||
#C000 | 1 | 26.61 | 24.69 | 24.62 | 23.71 | 0 | 0.37 |
2 | 26.92 | 24.49 | 24.61 | 23.75 | 0 | 0.23 | |
#C004 | 1 | 26.11 | 24.58 | 24.32 | 23.49 | 1.21 | 0.29 |
2 | 25.39 | 24.05 | 24.89 | 24.19 | 1.15 | 0.33 | |
#C010 | 1 | 25.05 | 23.92 | 24.03 | 23.93 | 2.63 | 0.44 |
2 | 26.73 | 24.38 | 23.47 | 22.54 | 2.57 | 0.31 | |
#C050 | 1 | 26.54 | 25.19 | 22.96 | 20.45 | 4.12 | 0.74 |
2 | 10.27 | 9.32 | 8.81 | 50.45 | 19.58 | 1.57 |
Table 1. Chemical composition for sample #C000, #C004, #C010 and #C050.
Samples | Regions | (at.%) | |||||
---|---|---|---|---|---|---|---|
Fe | Co | Ni | Cu | C | O | ||
#C000 | 1 | 26.61 | 24.69 | 24.62 | 23.71 | 0 | 0.37 |
2 | 26.92 | 24.49 | 24.61 | 23.75 | 0 | 0.23 | |
#C004 | 1 | 26.11 | 24.58 | 24.32 | 23.49 | 1.21 | 0.29 |
2 | 25.39 | 24.05 | 24.89 | 24.19 | 1.15 | 0.33 | |
#C010 | 1 | 25.05 | 23.92 | 24.03 | 23.93 | 2.63 | 0.44 |
2 | 26.73 | 24.38 | 23.47 | 22.54 | 2.57 | 0.31 | |
#C050 | 1 | 26.54 | 25.19 | 22.96 | 20.45 | 4.12 | 0.74 |
2 | 10.27 | 9.32 | 8.81 | 50.45 | 19.58 | 1.57 |
Fig. 4. (a) Potentiodynamic polarization curves and (b) Nyquist plots (the inset is the equivalent circuit) for FeCoNiCuCx (x = 0, 0.04, 0.1, 0.5) in 3.5 wt.% NaCl solution.
Samples | icorr (μA/cm2) | Ecorr (mV) | Eb (mV) |
---|---|---|---|
#C000 | 3.62 ± 0.98 | -224.1 ± 27.6 | 1005.7 ± 11.6 |
#C004 | 5.14 ± 0.99 | -324.9 ± 11.1 | 991.3 ± 31.2 |
#C010 | 9.25 ± 0.35 | -363.5 ± 5.5 | 994.7 ± 11.5 |
#C050 | 4.08 ± 1.43 | -260.5 ± 46.5 | 1005.8 ± 22.7 |
Table 2. Corrosion-resistance behavior in 3.5 wt.% NaCl solution for all samples.
Samples | icorr (μA/cm2) | Ecorr (mV) | Eb (mV) |
---|---|---|---|
#C000 | 3.62 ± 0.98 | -224.1 ± 27.6 | 1005.7 ± 11.6 |
#C004 | 5.14 ± 0.99 | -324.9 ± 11.1 | 991.3 ± 31.2 |
#C010 | 9.25 ± 0.35 | -363.5 ± 5.5 | 994.7 ± 11.5 |
#C050 | 4.08 ± 1.43 | -260.5 ± 46.5 | 1005.8 ± 22.7 |
Fig. 6. (a) Experimental relationship between nanoindentation load and nanoindentation depth, and (b) nanoindentation hardness and Young’ modulus for FeCoNiCuCx (x = 0, 0.04, 0.1 and 0.5) HEAs. (c) The comparison of mechanical properties with other related materials (the detailed mechanical properties were listed in Table S5).
Fig. 8. (a) The real parts and (b) the imaginary parts of the relative complex permittivity. (c) The dielectric loss tangent. (d) The real parts and (e) the imaginary parts of the relative complex permeability. (f) The magnetic loss tangent as function of frequency.
Fig. 9. (a-d) Color-filled contour impedance matching plots and (e-h) color-filled contour reflection loss plots for #C000, #C004, #C010 and #C010, respectively.
Fig. 10. (a) and (c) 3D RL plots for #C004 and #C010, respectively. (b) and (d) RL plots and corresponding peak frequency based on λ/4 wavelength theory for #C004 and #C010, respectively.
[1] |
D. Son, J. Hyun, J. Lee, W. Lee, Compos. Struct. 186 (2018) 106-113.
DOI URL |
[2] |
X. Zeng, X. Cheng, R. Yu, G. Stucky, Carbon N Y 168 (2020) 606-623.
DOI URL |
[3] |
N. Liu, Y. Xu, Y. Tian, H. Ma, S. Wen, Futur. Gener. Comp. Syst. 94 (2019) 524-535.
DOI URL |
[4] | A. Yoganandhan, S. Subhash, J. Hebinson, V. Mohanavel, Mater. Today: Proc 33 (2020) 333-3310. |
[5] |
A. Jain, E. Lopez-Aguilera, I. Demirkol, Comput. Commun. 161 (2020) 50-75.
DOI URL |
[6] | P. Yi, Z. Yao, J. Zhou, B. Wei, L. Lei, R. Tan, H. Fan, Nanoscale 13 (2021) 3319-3135. |
[7] |
Q. Song, F. Ye, L. Kong, Q. Shen, L. Han, L. Feng, G. Yu, Y. Pan, H. Li, Adv. Funct. Mater. 30 (2020) 2000475.
DOI URL |
[8] |
Z. Huang, H. Chen, Y. Huang, Z. Ge, Y. Zhou, Y. Yang, P. Xiao, J. Liang, T. Zhang, Q. Shi, G. Li, Y. Chen, Adv. Funct. Mater. 28 (2018) 1704363.
DOI URL |
[9] |
J. Li, H. Ji, Y. Xu, J. Zhang, Y. Yan, J. Mater. Res. Technol. 9 (2020) 762-772.
DOI URL |
[10] |
C. Lei, Y. Zhang, D. Liu, K. Wu, Q. Fu, ACS Appl. Mater. Inter. 12 (2020) 26485-26495.
DOI URL |
[11] |
B. Deng, X. Zhen, J. Xiong, Z. Liu, L. Yu, W. Lu, Nano-Micro Lett 12 (2020) 55.
DOI URL |
[12] |
Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan, W. She, Y. Yang, R. Che, Adv. Mater. 28 (2016) 486-490.
DOI URL |
[13] |
J. Ding, L. Wang, Y. Zhao, L. Xing, X. Yu, G. Chen, J. Zhang, R. Che, Small 15 (2019) 1902885.
DOI URL |
[14] |
M. Green, X. Chen, J. Materiomics 5 (2019) 503-541.
DOI URL |
[15] |
L. Yu, B. Li, L. Sheng, K. An, X. Zhao, J. Alloys Compd. 575 (2013) 123.
DOI URL |
[16] |
Y. Jiao, F. Wu, A. Xie, L. Wu, W. Zhao, X. Zhu, X. Qi, Chem. Eng. J. 398 (2020) 125591.
DOI URL |
[17] |
J. Yeh, S. Chen, S. Lin, J. Gan, T. Chin, T. Shun, C. Tsau, S. Chang, Adv. Eng. Mater. 6 (2004) 299-303.
DOI URL |
[18] |
B. Zhang, Y. Duan, Y. Cui, G. Ma, T. Wang, X. Dong, Mater. Des. 149 (2018) 173-183.
DOI URL |
[19] | Z. Fu, L. Jiang, J. Wardini, B. MacDonald, H. Wen, W. Xiong, D. Zhang, Y. Zhou, T. Rupert, W. Chen, E. Lavernia, Sci. Adv. 4 (2018) eaat8712. |
[20] |
Y. Fu, J. Li, H. Luo, C. Du, X. Li, J. Mater. Sci. Technol. 80 (2021) 217-233.
DOI URL |
[21] |
B. Zhang, Y. Duan, X. Yang, G. Ma, T. Wang, X. Dong, Y. Zeng, Intermetallics 117 (2020) 106678.
DOI URL |
[22] |
B. Zhang, Y. Duan, Y. Cui, G. Ma, T. Wang, X. Dong, Rsc Adv. 8 (2018) 14936-14946.
DOI URL |
[23] |
P. Yang, Y. Liu, X. Zhao, J. Cheng, H. Li, Adv. Powder Technol. 27 (2016) 1128-1133.
DOI URL |
[24] |
Y. Duan, X. Wen, B. Zhang, G. Ma, T. Wang, J. Magn. Magn. Mater. 497 (2020) 165947.
DOI URL |
[25] |
W. Zhang, D. Yan, W. Lu, Z. Li, J. Alloys Compd. 831 (2020) 154799.
DOI URL |
[26] | M. Song, R. Zhou, J. Gu, Z. Wang, S. Ni, Y. Liu, Appl. Mater. Today 18 (2020) 100498. |
[27] |
Z. Wang, I. Baker, W. Guo, J. Poplawsky, Acta Mater 126 (2017) 346-360.
DOI URL |
[28] | X. Chang, M. Zeng, K. Liu, L. Fu, Adv. Mater. 32 (2020) 1907226. |
[29] | R. Boer, W. Mattens, A. Miedema, A. Niessen, Cohesion in, Metals Transition Metal Alloys (1988) 217-313. |
[30] |
Y. Zhang, Y. Zhou, J. Lin, G. Chen, P. Liaw, Adv. Eng. Mater. 10 (2008) 534-538.
DOI URL |
[31] |
R. Nutor, Q. Cao, X. Wang, D. Zhang, Y. Fang, Y. Zhang, J. Jiang, Adv. Eng. Mater. 22 (2020) 2000466.
DOI URL |
[32] |
N. Stepanov, N. Yurchenko, M. Tikhonovsky, G. Salishchev, J. Alloys Compd. 687 (2016) 59-71.
DOI URL |
[33] |
Y. Shi, B. Yang, P. Liaw, Metals (Basel) 7 (2017) 43.
DOI URL |
[34] |
C. Tsau, S. Lin, C. Fang, Mater. Chem. Phys. 186 (2017) 534-540.
DOI URL |
[35] |
J. He, W. Liu, H. Wang, Y. Wu, X. Liu, T. Nieh, Z. Lu, Acta Mater 62 (2014) 105-113.
DOI URL |
[36] | H. Wei, Z. Zhang, G. Hussain, L. Zhou, Q. Li, K. Ostrikov, Appl. Mater. Today 19 (2020) 100596. |
[37] |
Y. Cheng, J. Seow, H. Zhao, Z. Xu, G. Ji, Nano-Micro Lett 12 (2020) 125.
DOI PMID |
[38] |
P. Liu, S. Gao, G. Zhang, Y. Huang, W. You, R. Che, Adv. Funct. Mater. 31 (2021) 2102812.
DOI URL |
[39] |
Z. Tong, Z. Liao, Y. Liu, M. Ma, Y. Bi, W. Huang, Y. Ma, M. Qiao, G. Wu, Carbon N Y 179 (2021) 646-654.
DOI URL |
[40] |
Y. Bi, M. Ma, Z. Liao, Z. Tong, Y. Chen, R. Wang, Y. Ma, G. Wu, J. Colloid Interf. Sci. 605 (2022) 483-492.
DOI URL |
[41] |
Z. Liao, M. Ma, Y. Bi, Z. Tong, K.L. Chung, Z. Li, Y. Ma, B. Gao, Z. Cao, R. Sun, X. Zhong, J. Colloid Interface Sci. 606 (2022) 709-718.
DOI URL |
[42] |
X. Liu, Y. Huang, L. Ding, X. Zhao, P. Liu, T. Li, J. Mater. Sci. Technol. 72 (2021) 93-103.
DOI URL |
[43] |
Y. Zhou, B. Zhao, H. Chen, H. Xiang, F. Dai, S. Wu, W. Xu, J. Mater. Sci. Technol. 74 (2021) 105-118.
DOI URL |
[44] |
H. Chen, B. Zhao, Z. Zhao, H. Xiang, F. Dai, J. Liu, Y. Zhou, J. Mater. Sci. Technol. 47 (2020) 216-222.
DOI URL |
[45] |
D. Lan, Z. Zhao, Z. Gao, K. Kou, G. Wu, H. Wu, J. Magn. Magn. Mater. 512 (2020) 167065.
DOI URL |
[46] |
J. Lin, Y. Wang, D. Sun, H. Xue, R. Guan, H. Liu, JOM 72 (2020) 3661-3671.
DOI URL |
[47] |
Y. Shen, H. Hsieh, S. Chen, J. Li, S. Chen, H. Nishikawa, Appl. Surf. Sci. 546 (2021) 148931.
DOI URL |
[48] |
Y. Xue, S. Wang, G. Zhao, A. Taleb, Y. Jin, Surf. Coat. Technol. 363 (2019) 352-361.
DOI URL |
[49] |
Y. Hong, C. Zhou, Y. Zheng, L. Zhang, J. Zheng, Mater. Sci. Eng. A 799 (2021) 140279.
DOI URL |
[50] |
C.Chen Suprianto, Mater. Sci. Eng. A 807 (2021) 140810.
DOI URL |
[1] | Xuejiao Zhou, Junwu Wen, Zhenni Wang, Xiaohua Ma, Hongjing Wu. Broadband high-performance microwave absorption of the single-layer Ti3C2Tx Mxene [J]. J. Mater. Sci. Technol., 2022, 115(0): 148-155. |
[2] | Jijun Wang, Songlin Yu, Qingqing Wu, Yan Li, Fangyuan Li, Xiao Zhou, Yuhua Chen, Bingzhen Li, Panbo Liu. Heterogeneous junctions of magnetic Ni core@binary dielectric shells toward high-efficiency microwave attenuation [J]. J. Mater. Sci. Technol., 2022, 115(0): 71-80. |
[3] | Yu Yin, Qiyang Tan, Qiang Sun, Wangrui Ren, Jingqi Zhang, Shiyang Liu, Yingang Liu, Michael Bermingham, Houwen Chen, Ming-Xing Zhang. Heterogeneous lamella design to tune the mechanical behaviour of a new cost-effective compositionally complicated alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 113-125. |
[4] | Zibao Jiao, Wenjun Huyan, Junru Yao, Zhengjun Yao, Jintang Zhou, Peijiang Liu. Heterogeneous ZnO@CF structures and their excellent microwave absorbing properties with thin thickness and low filling [J]. J. Mater. Sci. Technol., 2022, 113(0): 166-174. |
[5] | Zhuguang Nie, Yang Feng, Qing Zhu, YingXia Li, ping Luo, Lan Ma, Jie Su, Xingman Hu, Rumin Wang, Shuhua Qi. Layered-structure N-doped expanded-graphite/boron nitride composites towards high performance of microwave absorption [J]. J. Mater. Sci. Technol., 2022, 113(0): 71-81. |
[6] | Fan Yang, Lilin Wang, Zhijun Wang, Qingfeng Wu, Kexuan Zhou, Xin Lin, Weidong Huang. Ultra strong and ductile eutectic high entropy alloy fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 106(0): 128-132. |
[7] | Fuxi Peng, Mingfeng Dai, Zhenyu Wang, Yifan Guo, Zuowan Zhou. Progress in graphene-based magnetic hybrids towards highly efficiency for microwave absorption [J]. J. Mater. Sci. Technol., 2022, 106(0): 147-161. |
[8] | Haicheng Wang, Huating Wu, Huifang Pang, Yuhua Xiong, Shuwang Ma, Yuping Duan, Yanglong Hou, Changhui Mao. Lightweight PPy aerogel adopted with Co and SiO2 nanoparticles for enhanced electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 97(0): 213-222. |
[9] | Shiyu Wu, Dongxu Qiao, Haitao Zhang, Junwei Miao, Hongliang Zhao, Jun Wang, Yiping Lu, Tongmin Wang, Tingju Li. Microstructure and mechanical properties of CxHf0.25NbTaW0.5 refractory high-entropy alloys at room and high temperatures [J]. J. Mater. Sci. Technol., 2022, 97(0): 229-238. |
[10] | Tong Gao, Zhengyu Zhang, Yixing Li, Yujuan Song, Huawei Rong, Xuefeng Zhang. Solid-state reaction induced defects in multi-walled carbon nanotubes for improving microwave absorption properties [J]. J. Mater. Sci. Technol., 2022, 108(0): 37-45. |
[11] | Bin Li, Fenglong Wang, Kejun Wang, Jing Qiao, Dongmei Xu, Yunfei Yang, Xue Zhang, Longfei Lyu, Wei Liu, Jiurong Liu. Metal sulfides based composites as promising efficient microwave absorption materials: A review [J]. J. Mater. Sci. Technol., 2022, 104(0): 244-268. |
[12] | Jun He, Shengtao Gao, Yuanchun Zhang, Xingzhao Zhang, Hanxu Li. N-doped residual carbon from coal gasification fine slag decorated with Fe3O4 nanoparticles for electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 104(0): 98-108. |
[13] | Wei Luo, Yi Liu, Chuangye Wang, Dan Zhao, Xiaoyan Yuan, Jianfeng Zhu, Lei Wang, Shouwu Guo. Sacrificial template synthesis of (V0.8Ti0.1Cr0.1)2AlC and carbon fiber@(V0.8Ti0.1Cr0.1)2AlC microrods for efficient microwave absorption [J]. J. Mater. Sci. Technol., 2022, 111(0): 236-244. |
[14] | H.T. Jeong, W.J. Kim. Effect of roll speed ratio on the texture and microstructural evolution of an FCC high-entropy alloy during differential speed rolling [J]. J. Mater. Sci. Technol., 2022, 111(0): 152-166. |
[15] | Fei Pan, Lei Cai, Yanyan Dong, Xiaojie Zhu, Yuyang Shi, Wei Lu. Mixed-dimensional hierarchical configuration of 2D Ni2P nanosheets anchored on 1D silk-derived carbon fiber for extraordinary electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 101(0): 85-94. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||