J. Mater. Sci. Technol. ›› 2022, Vol. 113: 48-60.DOI: 10.1016/j.jmst.2021.09.023
• Research article • Previous Articles Next Articles
Jun Xua,b,**(), Bin Jiangc,*, Yuehua Kanga, Jun Zhaod, Weiwen Zhangb, Kaihong Zhenga, Fusheng Pana,c
Received:
2021-08-17
Revised:
2021-09-27
Accepted:
2021-09-27
Published:
2021-12-27
Online:
2022-06-24
Contact:
Jun Xu,Bin Jiang
About author:
**Chang Xing Street 363, Tianhe District, Guangzhou, China. xujun@gdinm.com (J. Xu).Jun Xu, Bin Jiang, Yuehua Kang, Jun Zhao, Weiwen Zhang, Kaihong Zheng, Fusheng Pan. Tailoring microstructure and texture of Mg-3Al-1Zn alloy sheets through curve extrusion process for achieving low planar anisotropy[J]. J. Mater. Sci. Technol., 2022, 113: 48-60.
Fig. 2. The grain orientation images of (a) TE, (b) SCE and (c) ACE sheets taken from the central section parallel to ED; (d) Misorientation angle variation curves of the three sheets.
Fig. 4. EBSD IPF maps in the ND corresponding to grains with c-axis deviating from ND by more than 25°for the (a) TE, (b) SCE and (c) ACE sheets; (d) the area fraction.
Samples | YS (MPa) | EI (%) | UTS (MPa) | n-value | r-value | UTS/YS | △r | |
---|---|---|---|---|---|---|---|---|
TE | ED | 162 ± 3 | 19.2 ± 0.5 | 327 ± 5 | 0.26 | 1.61 ± 0.06 | 2.0 | 0.20 |
Empty Cell | 45° | 185 ± 4 | 18.5 ± 0.8 | 326 ± 6 | 0.21 | 2.21 ± 0.07 | 1.8 | |
Empty Cell | TD | 216 ± 5 | 18.9 ± 0.4 | 330 ± 5 | 0.19 | 3.21 ± 0.16 | 1.5 | |
Empty Cell | Average value | 187 ± 4 | 18.8 ± 0.6 | 327 ± 5 | 0.22 | 2.31 ± 0.09 | 1.8 | |
SCE | ED | 169 ± 2 | 21.1 ± 0.4 | 331 ± 6 | 0.26 | 1.64 ± 0.05 | 2.0 | -0.16 |
Empty Cell | 45° | 177 ± 4 | 21.5 ± 0.4 | 331 ± 7 | 0.24 | 2.14 ± 0.14 | 1.9 | |
Empty Cell | TD | 196 ± 3 | 20.7 ± 0.6 | 333 ± 4 | 0.22 | 2.32 ± 0.09 | 1.7 | |
Empty Cell | Average value | 180 ± 4 | 21.2 ± 0.5 | 332 ± 6 | 0.24 | 2.06 ± 0.10 | 1.8 | |
ACE | ED | 172 ± 2 | 19.8 ± 0.4 | 329 ± 5 | 0.26 | 1.85 ± 0.07 | 1.9 | -0.06 |
Empty Cell | 45° | 148 ± 3 | 24.5 ± 0.3 | 333 ± 6 | 0.29 | 1.67 ± 0.09 | 2.3 | |
Empty Cell | TD | 152 ± 3 | 21.9 ± 0.5 | 337 ± 4 | 0.30 | 1.37 ± 0.06 | 2.2 | |
Empty Cell | Average value | 155 ± 3 | 22.5 ± 0.4 | 333 ± 5 | 0.29 | 1.64 ± 0.08 | 2.1 |
Table 1. Tensile properties of the TE, SCE and ACE sheets at room temperature.
Samples | YS (MPa) | EI (%) | UTS (MPa) | n-value | r-value | UTS/YS | △r | |
---|---|---|---|---|---|---|---|---|
TE | ED | 162 ± 3 | 19.2 ± 0.5 | 327 ± 5 | 0.26 | 1.61 ± 0.06 | 2.0 | 0.20 |
Empty Cell | 45° | 185 ± 4 | 18.5 ± 0.8 | 326 ± 6 | 0.21 | 2.21 ± 0.07 | 1.8 | |
Empty Cell | TD | 216 ± 5 | 18.9 ± 0.4 | 330 ± 5 | 0.19 | 3.21 ± 0.16 | 1.5 | |
Empty Cell | Average value | 187 ± 4 | 18.8 ± 0.6 | 327 ± 5 | 0.22 | 2.31 ± 0.09 | 1.8 | |
SCE | ED | 169 ± 2 | 21.1 ± 0.4 | 331 ± 6 | 0.26 | 1.64 ± 0.05 | 2.0 | -0.16 |
Empty Cell | 45° | 177 ± 4 | 21.5 ± 0.4 | 331 ± 7 | 0.24 | 2.14 ± 0.14 | 1.9 | |
Empty Cell | TD | 196 ± 3 | 20.7 ± 0.6 | 333 ± 4 | 0.22 | 2.32 ± 0.09 | 1.7 | |
Empty Cell | Average value | 180 ± 4 | 21.2 ± 0.5 | 332 ± 6 | 0.24 | 2.06 ± 0.10 | 1.8 | |
ACE | ED | 172 ± 2 | 19.8 ± 0.4 | 329 ± 5 | 0.26 | 1.85 ± 0.07 | 1.9 | -0.06 |
Empty Cell | 45° | 148 ± 3 | 24.5 ± 0.3 | 333 ± 6 | 0.29 | 1.67 ± 0.09 | 2.3 | |
Empty Cell | TD | 152 ± 3 | 21.9 ± 0.5 | 337 ± 4 | 0.30 | 1.37 ± 0.06 | 2.2 | |
Empty Cell | Average value | 155 ± 3 | 22.5 ± 0.4 | 333 ± 5 | 0.29 | 1.64 ± 0.08 | 2.1 |
Fig. 6. The microstructure and texture evolutions of the AZ31 Mg alloy during TE process: at (a) 14 mm, (b) 8 mm and (c) 2 mm from die exit; (d) TE sheet.
Fig. 7. The microstructure and texture evolutions of the AZ31 Mg alloy during SCE process: at (a) 33 mm, (b) 14 mm, (c) 8 mm and (d) 2 mm from die exit; (e) SCE sheet.
Fig. 8. The microstructure and texture evolutions of the AZ31 Mg alloy during ACE process: at (a) 33 mm, (b) 22 mm, (c) 14 mm, (d) 8 mm and (e) 2 mm from die exit; (f) ACE sheet.
Fig. 12. Flow velocity evolutions along ED in the top and bottom surfaces of AZ31 sheet near the extrusion outlet (indicated by red regions) during TE (a) and ACE (b) processes.
Fig. 13. Low-magnification optical microstructures obtain from ED-ND plane near the die exit of the AZ31 Mg alloy during TE (a) and SCE (b) processes.
Fig. 14. Schmid factor maps and distributions of Schmid factors for basal 〈a〉 slip of the three AZ31 sheet when applied the virtual tension along 45° and TD: (a, d) TE-45° and TE-TD samples; (b, e) SCE-45° and SCE-TD samples; (c, f) ACE-45° and ACE-TD samples.
[1] |
H. Pan, R. Kang, J. Li, H. Xie, Z. Zeng, Q. Huang, C. Yang, Y. Ren, G. Qin, Acta Mater. 186 (2020) 278-290.
DOI URL |
[2] |
H.J. Kim, S. Jin, J. Jung, S.H. Park, J. Mater. Sci. Technol. 71 (2021) 87-97.
DOI URL |
[3] | Q. Zeng, Y. Zhang, K. Li, Y. Zhuang, J. Li, Y.J. Yuan, D. Yin, J. Magnes. Alloy.(2021) 1-10. |
[4] |
T. Laser, C. Hartig, M.R. Nürnberg, D. Letzig, R. Bormann, Acta Mater. 56 (2008) 2791-2798.
DOI URL |
[5] |
J. Kang, X. Sun, K. Deng, F. Xu, X. Zhang, Y. Bai, Mater. Sci. Eng. A 697 (2017) 211-216.
DOI URL |
[6] |
J. Go, J.U. Lee, H. Yu, S.H. Park, J. Mater. Sci. Technol. 44 (2020) 62-75.
DOI URL |
[7] |
X. Gu, W. Cheng, S. Cheng, Y. Liu, Z. Wang, H. Yu, Z. Cui, L. Wang, H. Wang, J. Mater. Sci. Technol. 60 (2021) 77-89.
DOI URL |
[8] |
Q. Wang, B. Jiang, A. Tang, J. Fu, Z. Jiang, H. Sheng, D. Zhang, G. Huang, F. Pan, J. Mater. Sci. Technol. 43 (2020) 104-118.
DOI URL |
[9] |
W.W. Hu, Z.Q. Yang, H.Q. Ye, Acta Mater. 124 (2017) 372-382.
DOI URL |
[10] |
B. Suh, J.H. Kim, J.H. Bae, J.H. Hwang, M. Shim, N.J. Kim, Acta Mater. 124 (2017) 268-279.
DOI URL |
[11] |
F. Mokdad, D.L. Chen, D.Y. Li, Mater. Des. 119 (2017) 376-396.
DOI URL |
[12] |
J. Li, A. Zhang, H. Pan, Y. Ren, Z. Zeng, Q. Huang, C. Yang, L. Ma, G. Qin, J. Magnes. Alloy. 9 (2021) 1297-1303.
DOI URL |
[13] |
J. Song, J. She, D. Chen, F. Pan, J. Magnes. Alloy. 8 (2020) 1-41.
DOI URL |
[14] |
Y. Yang, X. Xiong, J. Chen, X. Peng, D. Chen, F. Pan, J. Magnes. Alloy. 9 (2021) 705-747.
DOI URL |
[15] |
Y. Wang, H. Choo, Acta. Mater. 81 (2014) 83-97.
DOI URL |
[16] |
H. Ding, X. Shi, Y. Wang, G. Cheng, S. Kamado, Mater. Sci. Eng. A 645 (2015) 196-204.
DOI URL |
[17] |
W. Zhang, K. Li, R. Chi, S. Tan, P. Li, J. Mater. Sci. Technol. 91 (2021) 40-57.
DOI URL |
[18] |
B. Beausir, S. Biswas, D.I. Kim, L.S. Tóth, S. Suwas, Acta Mater. 57 (2009) 5061-5077.
DOI URL |
[19] |
X. Huang, K. Suzuki, A. Watazu, I. Shigematsu, N. Saito, J. Alloy. Compd. 457 (2008) 408-412.
DOI URL |
[20] |
Y. Chino, M. Mabuchi, R. Kishihara, H. Hosokawa, Y. Yamada, C. Wen, K. Shi-mojima, H. Iwasaki, Mater. Trans. 43 (2002) 2554-2560.
DOI URL |
[21] |
J.A. Del Valle, F. Carreño, O.A. Ruano, Acta Mater. 54 (2006) 4247-4259.
DOI URL |
[22] |
R. Alizadeh, R. Mahmudi, A.H.W. Ngan, T.G. Langdon, J. Mater. Sci. 50 (2015) 4940-4951.
DOI URL |
[23] |
L. Lu, C. Liu, J. Zhao, W. Zeng, Z. Wang, J. Alloy. Compd. 628 (2015) 130-134.
DOI URL |
[24] |
Q. Yang, B. Jiang, Y. Tian, W. Liu, F. Pan, Mater. Lett. 100 (2013) 29-31.
DOI URL |
[25] |
S. Kim, B.S. You, S.H. Park, J. Alloy. Compd. 690 (2017) 417-423.
DOI URL |
[26] |
Z. Yu, Y. Huang, W. Gan, Z. Zhong, N. Hort, J. Meng, J. Mater. Sci. 52 (2017) 6670-6686.
DOI URL |
[27] |
T. Han, J. Zou, G. Huang, L. Ma, C. Che, W. Jia, L. Wang, F. Pan, J. Magnes. Alloy. 9 (2020) 1715-1724.
DOI URL |
[28] |
H. Borkar, M. Pekguleryuz, J. Mater. Sci. 48 (2013) 1436-1447.
DOI URL |
[29] |
J. Xu, J. Song, B. Jiang, J. He, Q. Wang, B. Liu, G. Huang, F. Pan, Mater. Sci. Eng. A 706 (2017) 172-180.
DOI URL |
[30] |
F. Pan, Q. Wang, B. Jiang, J. He, Y. Chai, J. Xu, Mater. Sci. Eng. A 655 (2016) 339-345.
DOI URL |
[31] |
F. Li, X. Zeng, Q. Chen, G.J. Cao, Mater. Des. 85 (2015) 389-395.
DOI URL |
[32] |
F. Li, X. Zeng, G.J. Cao, Mater. Sci. Eng. A 639 (2015) 395-401.
DOI URL |
[33] |
J. Xu, B. Jiang, J. Song, J. He, P. Gao, W. Liu, T. Yang, G. Huang, F. Pan, Mater. Sci. Eng. A 732 (2018) 1-5.
DOI URL |
[34] |
K. Hantzsche, J. Bohlen, J. Wendt, K.U. Kainer, S.B. Yi, D. Letzig, Scr. Mater. 63 (2010) 725-730.
DOI URL |
[35] |
A. Levinson, R.K. Mishra, R.D. Doherty, S.R. Kalidindi, Acta Mater. 61 (2013) 5966-5978.
DOI URL |
[36] |
S. Yi, J. Bohlen, F. Heinemann, D. Letzig, Acta Mater. 58 (2010) 592-605.
DOI URL |
[37] |
Q. Wang, Y. Shen, B. Jiang, A. Tang, Y. Chai, J. Song, T. Yang, G. Huang, F. Pan, Mater. Sci. Eng. A 736 (2018) 404-416.
DOI URL |
[38] |
T. Zhou, Z. Yang, D. Hu, T. Feng, M. Yang, X. Zhai, J. Alloy. Compd. 650 (2015) 436-443.
DOI URL |
[39] |
J. Xu, T. Yang, B. Jiang, J. Song, J. He, Q. Wang, Y. Chai, G. Huang, F. Pan, J. Alloy. Compd. 762 (2018) 719-729.
DOI URL |
[40] |
J. Suh, J. Victoria-Hernández, D. Letzig, R. Golle, W. Volk, Mater. Sci. Eng. A 669 (2016) 159-170.
DOI URL |
[41] |
S.R. Agnew, Ö. Duygulu, Int. J. Plast. 21 (2005) 1161-1193.
DOI URL |
[42] |
T. Xie, H. Shi, H. Wang, Q. Luo, Q. Li, K. Chou, J. Mater. Sci. Technol. 97 (2022) 147-155.
DOI URL |
[43] |
F. Li, X. Zeng, Q. Chen, G.J. Cao, Mater. Des. 85 (2015) 389-395.
DOI URL |
[44] |
Q. Luo, Y. Guo, B. Liu, Y. Feng, J. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol. 44 (2020) 171-190.
DOI |
[45] |
M.A. Azeem, A. Tewari, S. Mishra, S. Gollapudi, U. Ramamurty, Acta Mater. 58 (2010) 1495-1502.
DOI URL |
[46] |
A. Galiyev, R. Kaibyshev, G. Gottstein, Acta Mater. 49 (2001) 1199-1207.
DOI URL |
[47] |
Z. Yu, C. Xu, J. Meng, X. Zhang, S. Kamado, Mater. Sci. Eng. A 713 (2018) 234-243.
DOI URL |
[48] |
Q. Wang, J. Song, B. Jiang, A. Tang, Y. Chai, T. Yang, G. Huang, F. Pan, Mater. Sci. Eng. A 720 (2018) 85-97.
DOI URL |
[49] |
H. Yu, S.H. Park, B.S. You, J. Mater. Process. Tech. 224 (2015) 181-188.
DOI URL |
[50] |
P. Minárik, R. Král, J. čížek, F. Chmelík, Acta Mater. 107 (2016) 83-95.
DOI URL |
[51] |
J. Hofstetter, S. Rüedi, I. Baumgartner, H. Kilian, B. Mingler, E. Povoden-Ka-radeniz, S. Pogatscher, P.J. Uggowitzer, J.F. Löffler, Acta Mater. 98 (2015) 423-432.
DOI URL |
[52] |
K. Guan, R. Ma, J. Zhang, R. Wu, Q. Yang, J. Meng, J. Magnes. Alloy. 9 (2021) 1098-1109.
DOI URL |
[53] |
X. Jin, W. Xu, D. Shan, B. Guo, B.C. Jin, Mater. Des. 199 (2021) 109384.
DOI URL |
[54] |
S.R. Agnew, J.A. Horton, T.M. Lillo, D.W. Brown, Scr. Mater. 50 (2004) 377-381.
DOI URL |
[55] |
Y.N. Wang, J.C. Huang, Acta Mater. 55 (2007) 897-905.
DOI URL |
[56] |
J. Wang, D. Zhang, Y. Li, Z. Xiao, J. Fouse, X. Yang, Mater. Des. 86 (2015) 526-535.
DOI URL |
[57] |
X. Huang, K. Suzuki, Y. Chino, J. Alloy. Compd. 509 (2011) 4854-4860.
DOI URL |
[58] |
Q. Yang, B. Jiang, J. Li, H. Dong, W. Liu, S. Luo, F. Pan, Int. J. Mater. Form. 9 (2016) 305-311.
DOI URL |
[59] |
H. Zhang, G. Huang, J. Li, L. Wang, H.J. Roven, J. Alloy. Compd. 563 (2013) 150-154.
DOI URL |
[60] |
J. Dong, D. Zhang, J. Sun, Q. Dai, F. Pan, J. Mater. Sci. Technol. 31 (2015) 935-940.
DOI URL |
[61] |
D.H. Kang, D.W. Kim, S. Kim, G.T. Bae, K.H. Kim, N.J. Kim, Scripta Mater. 61 (2009) 768-771.
DOI URL |
[1] | Yu Yin, Qiyang Tan, Qiang Sun, Wangrui Ren, Jingqi Zhang, Shiyang Liu, Yingang Liu, Michael Bermingham, Houwen Chen, Ming-Xing Zhang. Heterogeneous lamella design to tune the mechanical behaviour of a new cost-effective compositionally complicated alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 113-125. |
[2] | Shiwei Li, Jinglong Li, Junmiao Shi, Yu Peng, Xuan Peng, Xianjun Sun, Feng Jin, Jiangtao Xiong, Fusheng Zhang. Microstructure and mechanical properties of transient liquid phase bonding DD5 single-crystal superalloy to CrCoNi-based medium-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 140-150. |
[3] | Bijun Xie, Zhenxiang Yu, Haiyang Jiang, Bin Xu, Chunyang Wang, Jianyang Zhang, Mingyue Sun, Dianzhong Li, Yiyi Li. Effects of surface roughness on interfacial dynamic recrystallization and mechanical properties of Ti-6Al-3Nb-2Zr-1Mo alloy joints produced by hot-compression bonding [J]. J. Mater. Sci. Technol., 2022, 96(0): 199-211. |
[4] | Jinshuo Zhang, Guohua Wu, Liang Zhang, Xiaolong Zhang, Chunchang Shi, Xin Tong. Addressing the strength-ductility trade-off in a cast Al-Li-Cu alloy—Synergistic effect of Sc-alloying and optimized artificial ageing scheme [J]. J. Mater. Sci. Technol., 2022, 96(0): 212-225. |
[5] | Juan Li, Yaqun Xu, Wenlong Xiao, Chaoli Ma, Xu Huang. Development of Ti-Al-Ta-Nb-(Re) near-α high temperature titanium alloy: Microstructure, thermal stability and mechanical properties [J]. J. Mater. Sci. Technol., 2022, 109(0): 1-11. |
[6] | Cheng Li, Guanhong Lei, Jizhao Liu, Awen Liu, C.L. Ren, Hefei Huang. A potential candidate structural material for molten salt reactor: ODS nickel-based alloy [J]. J. Mater. Sci. Technol., 2022, 109(0): 129-139. |
[7] | Donghai Li, Binbin Wang, Liangshun Luo, Xuewen Li, Yanjin Xu, BinQiang Li, Diween Hawezy, Liang Wang, Yanqing Su, Jingjie Guo, Hengzhi Fu. Effect of processing parameters on the microstructure and mechanical properties of TiAl/Ti2AlNb laminated composites [J]. J. Mater. Sci. Technol., 2022, 109(0): 228-244. |
[8] | Xuehui Yan, Peter K. Liaw, Yong Zhang. Ultrastrong and ductile BCC high-entropy alloys with low-density via dislocation regulation and nanoprecipitates [J]. J. Mater. Sci. Technol., 2022, 110(0): 109-116. |
[9] | Jianwen Le, Yuanfei Han, Peikun Qiu, Shaopeng Li, Guangfa Huang, Jianwei Mao, Weijie Lu. Insight into the formation mechanism and interaction of matrix/TiB whisker textures and their synergistic effect on property anisotropy in titanium matrix composites [J]. J. Mater. Sci. Technol., 2022, 110(0): 1-13. |
[10] | Xin Liu, Sansan Shuai, Chenglin Huang, Shijun Wu, Tao Hu, Chaoyue Chen, Jiang Wang, Zhongming Ren. Microstructure and mechanical properties of directionally solidified Al-rich Ni3Al-based alloy under static magnetic field [J]. J. Mater. Sci. Technol., 2022, 110(0): 117-127. |
[11] | Mengcheng Zhou, Xinfang Zhang. Regulating the recrystallized grain to induce strong cube texture in oriented silicon steel [J]. J. Mater. Sci. Technol., 2022, 96(0): 126-139. |
[12] | Zhe Shen, Zhongze Lin, Peijian Shi, Jiale Zhu, Tianxiang Zheng, Biao Ding, Yifeng Guo, Yunbo Zhong. Enhanced electrical, mechanical and tribological properties of Cu-Cr-Zr alloys by continuous extrusion forming and subsequent aging treatment [J]. J. Mater. Sci. Technol., 2022, 110(0): 187-197. |
[13] | H.Z. Lu, L.H. Liu, , X. Luo, C.H. Song, Z. Wang, J. Wang, Y.D. Su, Y.F. Ding, L.C. Zhang, Y.Y. Li. Simultaneous enhancement of mechanical and shape memory properties by heat-treatment homogenization of Ti2Ni precipitates in TiNi shape memory alloy fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 101(0): 205-216. |
[14] | Yingmei Tan, Ruirun Chen, Hongze Fang, Yangli Liu, Hongzhi Cui, Yanqing Su, Jingjie Guo, Hengzhi Fu. Enhanced strength and ductility in Ti46Al4Nb1Mo alloys via boron addition [J]. J. Mater. Sci. Technol., 2022, 102(0): 16-23. |
[15] | J.C. Wang, Y.J. Liu, S.X. Liang, Y.S. Zhang, L.Q. Wang, T.B. Sercombe, L.C. Zhang. Comparison of microstructure and mechanical behavior of Ti-35Nb manufactured by laser powder bed fusion from elemental powder mixture and prealloyed powder [J]. J. Mater. Sci. Technol., 2022, 105(0): 1-16. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||