J. Mater. Sci. Technol. ›› 2022, Vol. 111: 245-255.DOI: 10.1016/j.jmst.2021.08.094
• Research Article • Previous Articles Next Articles
Pengsheng Xuea,1, Lida Zhua,1,*(), Jinsheng Ninga, Peihua Xua, Shuhao Wanga, Zhichao Yanga, Yuan Renb, Guiru Menga
Received:
2021-07-01
Revised:
2021-08-08
Accepted:
2021-08-16
Published:
2022-06-10
Online:
2021-12-10
Contact:
Lida Zhu
About author:
* E-mail address: neulidazhu@163.com (L. Zhu).1These authors contributed equally to this work.
Pengsheng Xue, Lida Zhu, Jinsheng Ning, Peihua Xu, Shuhao Wang, Zhichao Yang, Yuan Ren, Guiru Meng. The crystallographic texture and dependent mechanical properties of the CrCoNi medium-entropy alloy by laser remelting strategy[J]. J. Mater. Sci. Technol., 2022, 111: 245-255.
Fig. 1. (a) SEM image, EDX analysis and particle size distribution of the CrCoNi pre-alloyed powders, (b) Laser scanning strategies and sample size of LMD and LR: (i) LMD, (ii) LR90, (iii) LR0 and (iv) LR45.
LMD conditions | Empty Cell | LR conditions | Empty Cell |
---|---|---|---|
Laser power (W) | 850 | Laser power (W) | 510 |
Scanning speed (mm/s) | 9.5 | Scanning speed (mm/s) | 9.5 |
Defocusing distance (mm) | 13.5 | Z-axis lift (mm) | 0.4 |
Z-axis lift (mm) | 0.4 | Number of layers | 15 |
Number of layers | 15 | Hatch spacing (mm) | 1.2 |
Hatch spacing (mm) | 1.2 | - | - |
Table 1. LMD and LR conditions.
LMD conditions | Empty Cell | LR conditions | Empty Cell |
---|---|---|---|
Laser power (W) | 850 | Laser power (W) | 510 |
Scanning speed (mm/s) | 9.5 | Scanning speed (mm/s) | 9.5 |
Defocusing distance (mm) | 13.5 | Z-axis lift (mm) | 0.4 |
Z-axis lift (mm) | 0.4 | Number of layers | 15 |
Number of layers | 15 | Hatch spacing (mm) | 1.2 |
Hatch spacing (mm) | 1.2 | - | - |
Fig. 4. (a) The molten pool traces of side on samples by LMD, LR90, LR0 and LR45, (b) The microstructure of top, side and front on samples by LMD, LR90, LR0 and LR45.
Fig. 5. The EBSD analysis of samples under LMD, LR90, LR0 and LR45. (a, b) Inverse pole figure (IPF) imagines and pole figures, (c) Grain size distribution and (d) Schmid factor (SF) distribution.
Fig. 7. Mechanical properties of samples under different process parameters. (a) Engineering stress-strain curves, (b) Histogram of microhardness, yield strength (YS), ultimate tensile strength (UTS) and uniform elongation (εf).
Sample | YS(MPa) | UTS(MPa) | Uniform elongation(%) | Taylor factor | Averagegrain size(μm) | Cellular substructure size (μm) |
---|---|---|---|---|---|---|
LMD | 439.97 ± 6.61 | 632.84 ± 44.99 | 18.87 ± 4.76 | 3.36 | 316.81 | 6.33 |
LR90 | 442.25 ± 4.07 | 662.07 ± 9.96 | 21.22 ± 2.26 | 3.23 | 173.32 | 5.46 |
LR0 | 489.01 ± 14.45 | 714.79 ± 29.36 | 22.99 ± 3.77 | 3.02 | 160.30 | 5.58 |
LR45 | 487.21 ± 17.14 | 707.49 ± 7.68 | 26.41 ± 1.97 | 2.86 | 135.79 | 5.45 |
Cast [44] | ∼170 | ∼480 | 55 | - | - | - |
Cast [45] | 230 | ∼610 | 52 | - | - | - |
Table 2. Mechanical properties of LMD specimens varying with crystallographic orientations.
Sample | YS(MPa) | UTS(MPa) | Uniform elongation(%) | Taylor factor | Averagegrain size(μm) | Cellular substructure size (μm) |
---|---|---|---|---|---|---|
LMD | 439.97 ± 6.61 | 632.84 ± 44.99 | 18.87 ± 4.76 | 3.36 | 316.81 | 6.33 |
LR90 | 442.25 ± 4.07 | 662.07 ± 9.96 | 21.22 ± 2.26 | 3.23 | 173.32 | 5.46 |
LR0 | 489.01 ± 14.45 | 714.79 ± 29.36 | 22.99 ± 3.77 | 3.02 | 160.30 | 5.58 |
LR45 | 487.21 ± 17.14 | 707.49 ± 7.68 | 26.41 ± 1.97 | 2.86 | 135.79 | 5.45 |
Cast [44] | ∼170 | ∼480 | 55 | - | - | - |
Cast [45] | 230 | ∼610 | 52 | - | - | - |
Fig. 8. The inverse pole figure (IPF) map (i-iii), band contrast (BC) map (iv-vi), kernel average misorientation (KAM) map (vii-ix) and Schmid factor (SF) map (x-xii) near the fracture of the sample after tensile test under different process parameters: (i, iv, vii, x) LR90, (ii, v, viii, xi) partial magnification of LR90 sample, (iii, vi, ix, xii) LR45.
Fig. 9. The tensile sample under different process parameters. (a) Fracture morphology: (i-iii) LMD, (iv-vi) LR90, (vii-ix) LR0, (x-xii) LR45, (b) Microcrack characteristics: (i, ii) LMD, (iii, iv) LR90, (v, vi) LR0, (vii, -viii) LR45.
[1] |
D. Zhang, D. Qiu, M.A. Gibson, Y. Zheng, H.L. Fraser, D.H. StJohn, M.A. Easton, Nature 576 (2019) 91-95.
DOI URL |
[2] |
C. Wei, L. Li, Virtual Phys. Prototyp. 16 (2021) 347-371.
DOI URL |
[3] | B. Barkia, P. Aubry, P. Haghi-Ashtiani, T. Auger, L. Gosmain, F. Schuster, H. Maskrot, J. Mater. Sci.Technol. 41 (2020) 209-218. |
[4] | D. Kono, H. Yamaguchi, Y. Oda, T. Sakai, CIRP J. Manufact. Sci. Technol. 31 (2020) 244-250. |
[5] |
L.D. Zhu, Z.C. Yang, B. Xin, S.H. Wang, G.R. Meng, J.S. Ning, P.S. Xue, Surf. Coat. Technol. 410 (2021) 126964.
DOI URL |
[6] |
S.H. Wang, L.D. Zhu, J.Y.H. Fuh, H.Q. Zhang, W.T. Yan, Opt. Lasers Eng. 127 (2020) 105950.
DOI URL |
[7] |
S.L. Sing, W.Y. Yeong, Virtual Phys. Prototyp. 15 (2020) 359-370.
DOI URL |
[8] |
C. Keller, M. Mokhtari, B. Vieille, H. Briatta, P. Bernard, Mater. Sci. Eng. A 803 (2021) 140474.
DOI URL |
[9] |
L. Gomell, M. Roscher, H. Bishara, E.A. Jägle, C. Scheu, B. Gault, Scr. Mater. 193 (2021) 153-157.
DOI URL |
[10] |
J. Xu, P. Zou, D. Kang, W. Wang, J. Manuf. Process. 66 (2021) 39-52.
DOI URL |
[11] |
R. Koike, T. Misawa, T. Aoyama, M. Kondo, CIRP Ann. 67 (2018) 237-240.
DOI URL |
[12] |
Z.Y. Yu, Y. Zheng, J.M. Chen, C.F. Wu, J.J. Xu, H. Lu, C. Yu, J. Mater, Process. Technol. 284 (2020) 116738.
DOI URL |
[13] |
T. Gustmann, H. Schwab, U. Kühn, S. Pauly, Mater. Des. 153 (2018) 129-138.
DOI URL |
[14] | J. Metelkova, D. Ordnung, Y. Kinds, B. Van Hooreweder, J. Mater. Process. Tech- nol. 290 (2021) 116981. |
[15] |
C.M. Wang, J.X. Yu, Y. Zhang, Y. Yu, Mater. Des. 182 (2019) 108040.
DOI URL |
[16] |
K. Wei, M. Lv, X. Zeng, Z. Xiao, G. Huang, M. Liu, J. Deng, Mater. Charact. 150 (2019) 67-77.
DOI URL |
[17] |
J.R. Guan, Y.H. Jiang, X.W. Zhang, X.Y. Chong, Mater. Charact. 161 (2020) 110079.
DOI URL |
[18] |
E.P. George, D. Raabe, R.O. Ritchie, Nat. Rev. Mater. 4 (2019) 515-534.
DOI |
[19] | C. Han, Q. Fang, Y. Shi, S.B. Tor, C.K. Chua, K. Zhou, Adv. Mater. 32 (2020) e1903855. |
[20] |
L. Zhu, P. Xue, Q. Lan, G. Meng, Y. Ren, Z. Yang, P. Xu, Z. Liu, Opt. Laser Technol. 138 (2021) 106915.
DOI URL |
[21] | A. Ostovari Moghaddam, N.A. Shaburova, M.N. Samodurova, A. Abdollahzadeh, E.A. Trofimov, J. Mater. Sci.Technol. 77 (2021) 131-162. |
[22] |
B. Gludovatz, A. Hohenwarter, K.V. Thurston, H. Bei, Z. Wu, E.P. George, R.O. Ritchie, Nat. Commun. 7 (2016) 10602.
DOI PMID |
[23] |
G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, E.P. George, Acta Mater. 128 (2017) 292-303.
DOI URL |
[24] |
Z. Zhang, H. Sheng, Z. Wang, B. Gludovatz, Z. Zhang, E.P. George, Q. Yu, S.X. Mao, R.O. Ritchie, Nat. Commun. 8 (2017) 14390.
DOI URL |
[25] | F. Weng, Y.X. Chew, Z.G. Zhu, X.L. Yao, L.L. Wang, F.L. Ng, S.B. Liu, G.J. Bi, Addit. Manuf. 34 (2020) 101202. |
[26] | W. Woo, J.S. Jeong, D.K. Kim, C.M. Lee, S.H. Choi, J.Y. Suh, S.Y. Lee, S. Harjo, T. Kawasaki, Sci. Rep. 10 (2020) 1350. |
[27] |
K. Feng, Y. Zhang, Z.G. Li, C.W. Yao, L. Yao, C.Y. Fan, Surf. Coat. Technol. 397 (2020) 126004.
DOI URL |
[28] |
J. Karimi, C. Suryanarayana, I. Okulov, K.G. Prashanth, Mater. Sci. Eng. A 805 (2021) 140558.
DOI URL |
[29] |
M.S. Pham, B. Dovgyy, P.A. Hooper, C.M. Gourlay, A. Piglione, Nat. Commun. 11 (2020) 749.
DOI URL |
[30] | M. Ghayoor, K. Lee, Y.J. He, C.H. Chang, B.K. Paul, S. Pasebani, Addit. Manuf. 32 (2020) 101011. |
[31] | N. Nadammal, T. Mishurova, T. Fritsch, I. Serrano-Munoz, A. Kromm, C. Haber- land, P.D. Portella, G. Bruno, Addit. Manuf. 38 (2021) 101792. |
[32] | T. Ishimoto, K. Hagihara, K. Hisamoto, T. Nakano, Addit. Manufact. 43 (2021) 102004. |
[33] |
S.H. Sun, T. Ishimoto, K. Hagihara, Y. Tsutsumi, T. Hanawa, T. Nakano, Scr. Mater. 159 (2019) 89-93.
DOI URL |
[34] | Y. Yang, X. Li, M.M. Khonsari, Y. Zhu, H. Yang, Addit. Manuf. 36 (2020) 101583. |
[35] |
S.-. H. Sun, K. Hagihara, T. Nakano, Mater. Des. 140 (2018) 307-316.
DOI URL |
[36] |
Y. Ren, L. Liang, Q. Shan, A. Cai, J. Du, Q. Huang, S. Liu, X. Yang, Y. Tian, H. Wu, Virtual Phys. Prototyp. 15 (2020) 543-554.
DOI URL |
[37] |
X.L. Wang, J.A. Muniz-Lerma, M.A. Shandiz, O. Sanchez-Mata, M. Brochu, Mater. Sci. Eng. A 766 (2019) 138395.
DOI URL |
[38] | H.Y. Wan, Z.J. Zhou, C.P. Li, G.F. Chen, G.P. Zhang, J. Mater. Sci.Technol. 34 (2018) 1799-1804. |
[39] |
F. Weng, Y.X. Chew, Z.G. Zhu, S. Sui, C.L. Tan, X.L. Yao, F.L. Ng, W.K. Ong, G.J. Bi, Compos. Part B 216 (2021) 108837.
DOI URL |
[40] |
O. Gokcekaya, T. Ishimoto, S. Hibino, J. Yasutomi, T. Narushima, T. Nakano, Acta Mater. 212 (2021) 116876.
DOI URL |
[41] |
J.J. Marattukalam, D. Karlsson, V. Pacheco, P. Beran, U. Wiklund, U. Jansson, B. Hjorvarsson, M. Sahlberg, Mater. Des. 193 (2020) 108852.
DOI URL |
[42] |
P.S. Xue, L.D. Zhu, P.H. Xu, Y. Ren, B. Xin, S.H. Wang, Z.C. Yang, J.S. Ning, G.R. Meng, Z. Liu, Mater. Sci. Eng. A 817 (2021) 141306.
DOI URL |
[43] |
D. Zhao, Q. Yang, D. Wang, M. Yan, P. Wang, M. Jiang, C. Liu, D. Diao, C. Lao, Z. Chen, Z. Liu, Y. Wu, Z. Lu, Virtual Phys. Prototyp. 15 (2020) 532-542.
DOI URL |
[44] |
Y. Shi, Y.D. Wang, S. Li, R. Li, Y. Wang, Mater. Sci. Eng. A 788 (2020) 139600.
DOI URL |
[45] |
X.W. Liu, G. Laplanche, A. Kostka, S.G. Fries, J. Pfetzing-Micklich, G. Liu, E.P. George, J. Alloy. Compd. 775 (2019) 1068-1076.
DOI |
[46] |
X. Zhang, N. Hansen, Y. Gao, X. Huang, Acta Mater. 60 (2012) 5933-5943.
DOI URL |
[47] |
M.T. Andani, A. Lakshmanan, V. Sundararaghavan, J. Allison, A. Misra, Acta Mater. 200 (2020) 148-161.
DOI URL |
[48] |
X.G. Yang, Y. Zhou, S.Q. Xi, Z. Chen, P. Wei, C. He, T.T. Li, Y. Gao, H.J. Wu, Mater. Sci. Eng. A 767 (2019) 138382.
DOI URL |
[49] |
B.C. De Cooman, Y. Estrin, S.K. Kim, Acta Mater. 142 (2018) 283-362.
DOI URL |
[50] |
Z. Wu, H. Bei, G.M. Pharr, E.P. George, Acta Mater. 81 (2014) 428-441.
DOI URL |
[51] |
S. Xiang, J. Li, H. Luan, A. Amar, S. Lu, K. Li, L. Zhang, X. Liu, G. Le, X. Wang, F. Qu, W. Zhang, D. Wang, Q. Li, Mater. Sci. Eng. A 743 (2019) 412-417.
DOI URL |
[1] | Hanchen Feng, Lei Cai, Linfeng Wang, Xiaodan Zhang, Feng Fang. Microstructure and strength in ultrastrong cold-drawn medium carbon steel [J]. J. Mater. Sci. Technol., 2022, 97(0): 89-100. |
[2] | Shiyu Wu, Dongxu Qiao, Haitao Zhang, Junwei Miao, Hongliang Zhao, Jun Wang, Yiping Lu, Tongmin Wang, Tingju Li. Microstructure and mechanical properties of CxHf0.25NbTaW0.5 refractory high-entropy alloys at room and high temperatures [J]. J. Mater. Sci. Technol., 2022, 97(0): 229-238. |
[3] | Tianci Xie, Hui Shi, Hongbin Wang, Qun Luo, Qian Li, Kuo-Chih Chou. Thermodynamic prediction of thermal diffusivity and thermal conductivity in Mg-Zn-La/Ce system [J]. J. Mater. Sci. Technol., 2022, 97(0): 147-155. |
[4] | Ruifeng Dong, Xiaoyang Zhang, Chenhui Li, Yuhong Zhao, Jinzhong Tian, Li Wu, Hua Hou. Correlation between the mechanical properties and the 〈110〉 texture in a hot-rolled near β titanium alloy [J]. J. Mater. Sci. Technol., 2022, 97(0): 165-168. |
[5] | Pengyu Wen, Bin Hu, Jiansheng Han, Haiwen Luo. A strong and ductile medium Mn steel manufactured via ultrafast heating process [J]. J. Mater. Sci. Technol., 2022, 97(0): 54-68. |
[6] | Hongfeng Dong, Baozhong Li, BoBo Liu, Yang Zhang, Lei Sun, Kun Luo, Yingju Wu, Mengdong Ma, Bing Liu, Wentao Hu, Julong He, Dongli Yu, Bo Xu, Zhisheng Zhao, Yongjun Tian. Extraordinary high-temperature mechanical properties in binder-free nanopolycrystalline WC ceramic [J]. J. Mater. Sci. Technol., 2022, 97(0): 169-175. |
[7] | Xiaolin Li, Xiaoxiao Hao, Chi Jin, Qi Wang, Xiangtao Deng, Haifeng Wang, Zhaodong Wang. The determining role of carbon addition on mechanical performance of a non-equiatomic high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 110(0): 167-177. |
[8] | Fei Guo, Weijiu Huang, Xusheng Yang, Haipeng Dong, Hang Yu, Qiuyu Chen, Li Hu, Luyao Jiang. Variation of mechanical properties and microstructure of hot-rolled AA2099 Al-Li alloy induced by the precipitation during preheating process [J]. J. Mater. Sci. Technol., 2022, 110(0): 198-209. |
[9] | Pengfei Ji, Bohan Chen, Shuguang Liu, Bo Li, Chaoqun Xia, Xinyu Zhang, Mingzhen Ma, Riping Liu. Controlling the mechanical properties and corrosion behavior of biomedical TiZrNb alloys by combining recrystallization and spinodal decomposition [J]. J. Mater. Sci. Technol., 2022, 110(0): 227-238. |
[10] | Yu Yin, Qiyang Tan, Qiang Sun, Wangrui Ren, Jingqi Zhang, Shiyang Liu, Yingang Liu, Michael Bermingham, Houwen Chen, Ming-Xing Zhang. Heterogeneous lamella design to tune the mechanical behaviour of a new cost-effective compositionally complicated alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 113-125. |
[11] | Shiwei Li, Jinglong Li, Junmiao Shi, Yu Peng, Xuan Peng, Xianjun Sun, Feng Jin, Jiangtao Xiong, Fusheng Zhang. Microstructure and mechanical properties of transient liquid phase bonding DD5 single-crystal superalloy to CrCoNi-based medium-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 140-150. |
[12] | Bijun Xie, Zhenxiang Yu, Haiyang Jiang, Bin Xu, Chunyang Wang, Jianyang Zhang, Mingyue Sun, Dianzhong Li, Yiyi Li. Effects of surface roughness on interfacial dynamic recrystallization and mechanical properties of Ti-6Al-3Nb-2Zr-1Mo alloy joints produced by hot-compression bonding [J]. J. Mater. Sci. Technol., 2022, 96(0): 199-211. |
[13] | Jinshuo Zhang, Guohua Wu, Liang Zhang, Xiaolong Zhang, Chunchang Shi, Xin Tong. Addressing the strength-ductility trade-off in a cast Al-Li-Cu alloy—Synergistic effect of Sc-alloying and optimized artificial ageing scheme [J]. J. Mater. Sci. Technol., 2022, 96(0): 212-225. |
[14] | Sen Yu, Zhe Yu, Dagang Guo, Hui Zhu, Minghua Zhang, Jianye Han, Zhentao Yu, Yemin Cao, Gui Wang. Enhanced bioactivity and interfacial bonding strength of Ti3Zr2Sn3Mo25Nb alloy through graded porosity and surface bioactivation [J]. J. Mater. Sci. Technol., 2022, 100(0): 137-149. |
[15] | Zhen Jiang, Ran Wei, Wenzhou Wang, Mengjia Li, Zhenhua Han, Shuhan Yuan, Kaisheng Zhang, Chen Chen, Tan Wang, Fushan Li. Achieving high strength and ductility in Fe50Mn25Ni10Cr15 medium entropy alloy via Al alloying [J]. J. Mater. Sci. Technol., 2022, 100(0): 20-26. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||