J. Mater. Sci. Technol. ›› 2022, Vol. 111: 256-267.DOI: 10.1016/j.jmst.2021.08.093
• Research Article • Previous Articles Next Articles
Yiping Xiaa, Hao Wub, Kesong Miaoa, Xuewen Lib, Chao Xua, Lin Genga,*(
), Honglan Xiec, Guohua Fanb,*(
)
Received:2021-07-15
Revised:2021-08-28
Accepted:2021-08-31
Published:2021-12-12
Online:2021-12-12
Contact:
Lin Geng,Guohua Fan
About author:ghfan@njtech.edu.cn (G. Fan).Yiping Xia, Hao Wu, Kesong Miao, Xuewen Li, Chao Xu, Lin Geng, Honglan Xie, Guohua Fan. Effects of the layer thickness ratio on the enhanced ductility of laminated aluminum[J]. J. Mater. Sci. Technol., 2022, 111: 256-267.
Fig. 1. The microstructures of the laminated Al with different rc/f (C80, C40 and C10): (a) IPF maps observed along ND; (b) The statistical distribution of grain sizes of FLs; (c) {111} Pole figures of FLs; (d) Misorientation angles distributions of FLs and CLs.
| Materials | C10 | C40 | C80 |
|---|---|---|---|
| Thickness of FLs (μm) | 75.4 ± 2.5 | 73.1 ± 1.8 | 74.7 ± 1.8 |
| Thickness of CLs (μm) | 10.6 ± 1.4 | 36.1 ± 1.5 | 74.5 ± 1.9 |
| Ratio of layer thickness, rc/f | 0.14 | 0.49 | 1.00 |
Table 1. Thickness and thickness ratio of constituent layers in laminated Al.
| Materials | C10 | C40 | C80 |
|---|---|---|---|
| Thickness of FLs (μm) | 75.4 ± 2.5 | 73.1 ± 1.8 | 74.7 ± 1.8 |
| Thickness of CLs (μm) | 10.6 ± 1.4 | 36.1 ± 1.5 | 74.5 ± 1.9 |
| Ratio of layer thickness, rc/f | 0.14 | 0.49 | 1.00 |
Fig. 2. (a) Engineering tensile stress-strain curves of laminated Al with different rc/f (C80, C40 and C10) and homogeneous Al, FG and CG, (b) yielding strength and fracture elongation of the present laminated Al compared with other data from homogeneous commercial pure Al [[58], [59], [60], [61], [62], [63]].
| Empty Cell | FG | CG | C10 | C40 | C80 |
|---|---|---|---|---|---|
| Yield strengthen (MPa) | 105.4 ± 3.0 | 27.7 ± 2.5 | 92.9 ± 5.7 | 85.2 ± 4.4 | 80.5 ± 4.7 |
| Uniform elongation (%) | 1.8 ± 0.2 | 32.7 ± 2.0 | 12.0 ± 1.1 | 9.3 ± 1.2 | 10.0 ± 2.0 |
| Fracture elongation (%) | 10.2 ± 3.3 | 43.2 ± 4.1 | 33.0 ± 3.5 | 38.5 ± 3.5 | 50.4 ± 3.9 |
Table 2. Mechanical properties of laminated Al compared to FG and CG.
| Empty Cell | FG | CG | C10 | C40 | C80 |
|---|---|---|---|---|---|
| Yield strengthen (MPa) | 105.4 ± 3.0 | 27.7 ± 2.5 | 92.9 ± 5.7 | 85.2 ± 4.4 | 80.5 ± 4.7 |
| Uniform elongation (%) | 1.8 ± 0.2 | 32.7 ± 2.0 | 12.0 ± 1.1 | 9.3 ± 1.2 | 10.0 ± 2.0 |
| Fracture elongation (%) | 10.2 ± 3.3 | 43.2 ± 4.1 | 33.0 ± 3.5 | 38.5 ± 3.5 | 50.4 ± 3.9 |
Fig. 3. The local strain εxx evolution of laminated Al (a) C10, (b) C40 and (c) C80, compared with (d) FG and (e) CG. The average strains of the entire analyzed regions are shown at the top right corners of each map.
Fig. 4. The semi-quantitative evaluation of the strain localization. The STD of εxx in the regions of interest (ROIs) are compared: (a) FLs in LAs and FG, (b) CLs in LAs and CG. The value of ROI-STD reflects the degree of strain localization.
Fig. 5. The local strain εyy evolution of LAs, (a) C10, (b) C40 and (c) C80. The average strains of the whole analyzed regions are shown at the top right corners of each map.
Fig. 9. 2D cross-sectional fracture morphology of C10 (a, b) near the fracture surface (<300 μm) and (c, d) away from the fracture surface (800-1100 μm).
Fig. 10. 2D cross-sectional fracture morphology of C40 (a, b) near the fracture surface (< 300 μm) and (c, d) away from the fracture surface (800-1100 μm).
Fig. 11. 2D cross-sectional fracture morphology of C80 (a, b) near the fracture surface (< 300 μm) and (c, d) away from the fracture surface (800-1100 μm).
Fig. 13. Variation of ${{\sigma }_{\text{n}}}\left( \theta \right)/\sigma _{\text{y}}^{\text{loc}}\left( \theta \right)$ for different constituent layers, (a) as a function of layer thickness ratio and (b) length-diameter ratio of microcracks, r. (c) Schematic diagram of interfacial microcrack instability for C80, C40 and C10.
| [1] | I.A. Ovid’ko, R.Z. Valiev, Y.T. Zhu, Prog.Mater. Sci. 94 (2018) 462-540. |
| [2] |
K. Lu, Science 328 (2010) 319-320.
DOI PMID |
| [3] |
E.P. George, D. Raabe, R.O. Ritchie, Nat. Rev. Mater. 4 (2019) 515-534.
DOI |
| [4] |
Y. Li, B. Hu, B. Liu, A. Nie, Q. Gu, J. Wang, Q. Li, Acta Mater 187 (2020) 51-65.
DOI URL |
| [5] |
C.E. Slone, J. Miao, E.P. George, M.J. Mills, Acta Mater 165 (2019) 496-507.
DOI |
| [6] | Y. Li, Y. Jiang, B. Liu, Q. Luo, B. Hu, Q. Li, J. Mater. Sci.Technol. 65 (2021) 190-201. |
| [7] | C. Zhao, Y. Li, J. Xu, Q. Luo, Y. Jiang, Q. Xiao, Q. Li, J. Mater. Sci.Technol. 94 (2021) 104-112. |
| [8] |
A. Mortensen, J. Llorca, Annu. Rev. Mater. Res. 40 (2010) 243-270.
DOI URL |
| [9] |
S.C. Tjong, Mater. Sci. Eng. R 74 (2013) 281-350.
DOI URL |
| [10] |
T.W. Kim, Scr. Mater. 55 (2006) 1115-1118.
DOI URL |
| [11] | X. Wu, M. Yang, F. Yuan, G. Wu, Y. Wei, X. Huang, Y. Zhu, Proc. Natl. Acad. Sci. U. S. A. 112 (2015) 14501-14505. |
| [12] |
M. Opprecht, J.P. Garandet, G. Roux, C. Flament, Acta Mater. 215 (2021) 117024.
DOI URL |
| [13] | Z. Cheng, H. Zhou, Q. Lu, H. Gao, L. Lu, Science 362 (2018) 559-567. |
| [14] |
T.H. Fang, W.L. Li, N.R. Tao, K. Lu, Science 331 (2011) 1587-1590.
DOI PMID |
| [15] |
S. Shukla, D. Choudhuri, T. Wang, K. Liu, R. Wheeler, S. Williams, B. Gwalani, R.S. Mishra, Mater. Res. Lett. 6 (2018) 676-682.
DOI URL |
| [16] |
C. Ferraro, S. Meille, J. Réthoré, N. Ni, J. Chevalier, E. Saiz, Acta Mater. 144 (2018) 202-215.
DOI URL |
| [17] |
D.M. Fronczek, J. Wojewoda-Budka, R. Chulist, A. Sypien, A. Korneva, Z. Szulc, N. Schell, P. Zieba, Mater. Des. 91 (2016) 80-89.
DOI URL |
| [18] |
P. Feldner, B. Merle, M. Göken, Mater. Res. Lett. 9 (2020) 41-49.
DOI URL |
| [19] |
E.B. Kashkarov, N.S. Pushilina, M.S. Syrtanov, D.G. Krotkevich, I. Gotman, N. Travitzky, Scr. Mater. 194 (2021) 113696.
DOI URL |
| [20] |
M. Ojima, J. Inoue, S. Nambu, P. Xu, K. Akita, H. Suzuki, T. Koseki, Scr. Mater. 66 (2012) 139-142.
DOI URL |
| [21] |
X. Jiang, Y. Bai, L. Zhang, G. Wu, S. Gao, X. Huang, N. Tsuji, Mater. Sci. Eng. A 782 (2020) 139240.
DOI URL |
| [22] |
M. Ruppert, C. Schunk, D. Hausmann, H.W. Höppel, M. Göken, Acta Mater. 103 (2016) 643-650.
DOI URL |
| [23] |
L. Zhang, Z. Chen, Y. Wang, G. Ma, T. Huang, G. Wu, D.J. Jensen, Scr. Mater. 141 (2017) 111-114.
DOI URL |
| [24] |
X. Ma, C. Huang, J. Moering, M. Ruppert, H.W. Höppel, M. Göken, J. Narayan, Y. Zhu, Acta Mater. 116 (2016) 43-52.
DOI URL |
| [25] |
H.J. Gao, Y. Huang, W.D. Nix, J.W. Hutchinson, J. Mech. Phys. Solids 47 (1999) 1239-1263.
DOI URL |
| [26] |
Y. Zhu, X. Wu, Mater. Res. Lett. 7 (2019) 393-398.
DOI URL |
| [27] |
H. Wang, R. Kou, H. Yi, S. Figueroa, K.S. Vecchio, Acta Mater. 213 (2021) 116949.
DOI URL |
| [28] |
D. Li, G. Fan, X. Huang, D. Juul Jensen, K. Miao, C. Xu, L. Geng, Y. Zhang, T. Yu, Acta Mater. 206 (2021) 116627.
DOI URL |
| [29] |
H. Zhou, C. Huang, X. Sha, L. Xiao, X. Ma, H.W. Höppel, M. Göken, X. Wu, K. Ameyama, X. Han, Y. Zhu, Mater. Res. Lett. 7 (2019) 376-382.
DOI |
| [30] |
Y.F. Wang, C.X. Huang, X.T. Fang, H.W. Höppel, M. Göken, Y.T. Zhu, Scr. Mater. 174 (2020) 19-23.
DOI URL |
| [31] |
Y.F. Wang, M.S. Wang, X.T. Fang, F.J. Guo, H.Q. Liu, R.O. Scattergood, C.X. Huang, Y.T. Zhu, Int. J. Plasticity 123 (2019) 196-207.
DOI URL |
| [32] |
F. Liang, B. Zhang, Y. Yong, X.M. Luo, G.P. Zhang, Int. J. Plasticity 132 (2020) 102745.
DOI URL |
| [33] |
T.J. Nizolek, M.R. Begley, R.J. McCabe, J.T. Avallone, N.A. Mara, I.J. Beyerlein, T.M. Pollock, Acta Mater. 133 (2017) 303-315.
DOI URL |
| [34] |
H. Wu, M. Huang, X.W. Li, Y.P. Xia, Z. Wang, G.H. Fan, Int. J. Plasticity 141 (2021) 102998.
DOI URL |
| [35] |
P. Lhuissier, J. Inoue, T. Koseki, Scr. Mater. 64 (2011) 970-973.
DOI URL |
| [36] |
H.S. Liu, B. Zhang, G.P. Zhang, Scr. Mater. 64 (2011) 13-16.
DOI URL |
| [37] |
M. Ardeljan, M. Knezevic, T. Nizolek, I.J. Beyerlein, N.A. Mara, T.M. Pollock, Int. J. Plasticity 74 (2015) 35-57.
DOI URL |
| [38] |
H. Wu, G. Fan, Prog. Mater. Sci. 113 (2020) 100675.
DOI URL |
| [39] |
S.D. Antolovich, R.W. Armstrong, Prog. Mater. Sci. 59 (2014) 1-160.
DOI URL |
| [40] |
G. Liu, Q. Wang, Z. Shang, L. Luo, B. Ye, H. Jiang, W. Ding, Metall. Mater. Trans. A 50 (2019) 5866-5876.
DOI URL |
| [41] | M. Huang, J.S. Chen, H. Wu, G.H. Fan, L. Geng, IOP Conf. Ser.: Mater. Sci. Eng. 219 (2017) 012028. |
| [42] |
N. Koga, M. Suzuki, O. Umezawa, Mater. Sci. Eng. A 806 (2021) 140599.
DOI URL |
| [43] |
A. Misra, J.P. Hirth, R.G. Hoagland, Acta Mater 53 (2005) 4817-4824.
DOI URL |
| [44] |
M.J. Demkowicz, I.J. Beyerlein, Scr. Mater. 187 (2020) 130-136.
DOI URL |
| [45] |
N. Jia, D. Raabe, X. Zhao, Acta Mater. 111 (2016) 116-128.
DOI URL |
| [46] |
Y. Wang, C. Huang, Z. Li, X. Fang, M. Wang, Q. He, F. Guo, Y. Zhu, Extreme Mech. Lett. 37 (2020) 100686.
DOI URL |
| [47] |
R.Q. Cao, J. Pan, Y. Lin, Y. Li, Mater. Sci. Eng. A 760 (2019) 458-468.
DOI URL |
| [48] |
F. Liang, Z.X. Wang, Y.W. Luo, B. Zhang, X.M. Luo, G.P. Zhang, Acta Mater. 216 (2021) 117138.
DOI URL |
| [49] |
F. Liang, H.F. Tan, B. Zhang, G.P. Zhang, Scr. Mater. 134 (2017) 28-32.
DOI URL |
| [50] |
J. Zhao, M. Zaiser, X. Lu, B. Zhang, C. Huang, G. Kang, X. Zhang, Int. J. Plasticity 145 (2021) 103063.
DOI URL |
| [51] | G. Fan, H. Wu, L. Geng, Z. Zheng, X. Cui, D. Hu, Philos. Mag. Lett. 97 (2017) 241-248. |
| [52] |
M. Kobayashi, H. Miura, Curr. Opin. Solid State Mater. Sci. 24 (2020) 100835.
DOI URL |
| [53] | R.C. Chen, D. Dreossi, L. Mancini, R. Menk, L. Rigon, T.Q. Xiao, R. Longo, J. Syn- chrotron Radiat. 19 (2012) 836-845. |
| [54] |
M. Huang, G.H. Fan, L. Geng, G.J. Cao, Y. Du, H. Wu, T.T. Zhang, H.J. Kang, T.M. Wang, G.H. Du, H.L. Xie, Sci. Rep. 6 (2016) 38461.
DOI PMID |
| [55] | S. Suwas, R.K. Ray, in:Crystallographic Texture of Materials. Springer London, London, 2014, pp. 143-177. |
| [56] |
O.V. Mishin, A. Godfrey, D. Juul Jensen, N. Hansen, Acta Mater. 61 (2013) 5354-5364.
DOI URL |
| [57] |
T.Q. Mo, Z.J. Chen, H. Chen, C. Hu, W.J. He, Q. Liu, Mater. Sci. Eng. A 766 (2019) 138354.
DOI URL |
| [58] | W.B. Zhu, X.Q. Jiang, Q. Li, S.Y. Wang, Adv. Mater. Res. 1119 (2015) 514-518. |
| [59] |
C. Kwan, Z. Wang, S.B. Kang, Mater. Sci. Eng. A 480 (2008) 148-159.
DOI URL |
| [60] |
T. Hausöl, H.W. Höppel, M. Göken, J. Mater. Sci. 45 (2010) 4733-4738.
DOI URL |
| [61] |
J. Jiang, Y. Ding, F. Zuo, A. Shan, Scr. Mater. 60 (2009) 905-908.
DOI URL |
| [62] |
C.Y. Yu, P.L. Sun, P.W. Kao, C.P. Chang, Scr. Mater. 52 (2005) 359-363.
DOI URL |
| [63] |
N. Kamikawa, X. Huang, N. Tsuji, N. Hansen, Acta Mater. 57 (2009) 4198-4208.
DOI URL |
| [64] |
C.X. Huang, Y.F. Wang, X.L. Ma, S. Yin, H.W. Höppel, M. Göken, X.L. Wu, H.J. Gao, Y.T. Zhu, Mater. Today 21 (2018) 713-719.
DOI URL |
| [65] |
G. Fan, L. Geng, H. Wu, K. Miao, X. Cui, H. Kang, T. Wang, H. Xie, T. Xiao, Scr. Mater. 135 (2017) 63-67.
DOI URL |
| [66] |
C. Xu, G.H. Fan, T. Nakata, X. Liang, Y.Q. Chi, X.G. Qiao, G.J. Cao, T.T. Zhang, M. Huang, K.S. Miao, M.Y. Zheng, S. Kamado, H.L. Xie, Metall. Mater. Trans. A 49 (2018) 1931-1947.
DOI URL |
| [67] |
S. Jiang, R.L. Peng, Z. Hegedüs, T. Gnäupel-Herold, J.J. Moverare, U. Lienert, F. Fang, X. Zhao, L. Zuo, N. Jia, Acta Mater. 205 (2021) 116546.
DOI URL |
| [68] |
T. Yu, Y. Du, G. Fan, R. Xu, R. Barabash, N. Hansen, X. Huang, Y. Zhang, Acta Mater. 202 (2021) 149-158.
DOI URL |
| [69] |
W.H. Chen, W.J. He, Z.J. Chen, B. Jiang, Q. Liu,Int. J. Plasticity 133 (2020) 102806.
DOI URL |
| [70] | X. Wu, P. Jiang, L. Chen, F. Yuan, Y. Zhu, Proc. Natl. Acad. Sci. U. S. A. 111 (2014) 7197-7201. |
| [71] | H.K. Park, K. Ameyama, J. Yoo, H. Hwang, H.S. Kim, Mater. Res. Lett. 6 (2018) 261-267. |
| [72] | M.F. Ashby, Philos. Mag. 170 (2006) 399-424. |
| [73] |
D.S. Yang, H.W. Zhang, S. Zhang, M.K. Lu, Acta Mech. 226 (2014) 1549-1569.
DOI URL |
| [74] | S. Berbenni, V. Favier, M. Berveiller, Comput. Mater. Sci. 39 (2007) 96-105. |
| [75] |
Y. Tadano, K. Yoshida, M. Kuroda, Int. J. Mech. Sci. 72 (2013) 63-74.
DOI URL |
| [76] |
Y. Pang, D. Sun, Q. Gu, K.C. Chou, X. Wang, Q. Li, Cryst. Growth Des. 16 (2016) 2404-2415.
DOI URL |
| [77] | Q. Luo, Y. Guo, B. Liu, Y. Feng, J. Zhang, Q. Li, K. Chou, J. Mater. Sci.Technol. 44 (2020) 171-190. |
| [78] |
Y. Guo, B. Liu, W. Xie, Q. Luo, Q. Li, Scr. Mater. 193 (2021) 127-131.
DOI URL |
| [79] |
A. Pineau, A.A. Benzerga, T. Pardoen, Acta Mater. 107 (2016) 424-483.
DOI URL |
| [80] |
H. Wu, G. Fan, M. Huang, L. Geng, X. Cui, H. Xie, Int. J. Plasticity 89 (2017) 96-109.
DOI URL |
| [81] |
K. Miao, D. Li, G. Tang, C. Xu, L. Geng, J. Zhang, X. Leng, H. Kang, T. Wang, S. Yan, H. Xie, T. Xiao, G. Fan, Mater. Charact. 144 (2018) 42-47.
DOI URL |
| [82] | Y. Yin, Q. Tan, Q. Sun, W. Ren, J. Zhang, S. Liu, Y. Liu, M. Bermingham, H. Chen, M.X. Zhang, J. Mater. Sci.Technol. 96 (2022) 113-125. |
| [83] |
F. Scheyvaerts, P.R. Onck, C. Tekog ˇlu, T. Pardoen, J. Mech. Phys. Solids 59 (2011) 373-397.
DOI URL |
| [84] |
M. Huang, C. Xu, G. Fan, E. Maawad, W. Gan, L. Geng, F. Lin, G. Tang, H. Wu, Y. Du, D. Li, K. Miao, T. Zhang, X. Yang, Y. Xia, G. Cao, H. Kang, T. Wang, T. Xiao, H. Xie, Acta Mater. 153 (2018) 235-249.
DOI URL |
| [1] | Congying Xiang, Min Shen, Chongze Hu, Lok Wing Wong, Hongbo Nie, Huasheng Lei, Jian Luo, Jiong Zhao, Zhiyang Yu. Atomistic observation of in situ fractured surfaces at a V-doped WC-Co interface [J]. J. Mater. Sci. Technol., 2022, 110(0): 103-108. |
| [2] | Xinfa Tian, Hejun Li, Xiaohong Shi, Hongjiao Lin, Ningning Yan, Tao Feng. Morphologies evolution and mechanical behaviors of SiC nanowires reinforced C/(PyC-SiC)n multilayered matrix composites [J]. J. Mater. Sci. Technol., 2022, 96(0): 190-198. |
| [3] | Nan Xu, Chun Wang, Liuquan Yang, Eric Kumi Barimah, Gin Jose, Anne Neville, Ardian Morina. Nano-scale coating wear measurement by introducing Raman-sensing underlayer [J]. J. Mater. Sci. Technol., 2022, 96(0): 285-294. |
| [4] | Hao Ding, Xiping Cui, Zhiqi Wang, Tao Zhao, Yuchen Wang, Yuanyuan Zhang, Hongtao Chen, Lujun Huang, Geng Lin, Junfeng Chen. A new strategy for fabrication of unique heterostructured titanium laminates and visually tracking their synchronous evolution of strain partitions versus microstructure [J]. J. Mater. Sci. Technol., 2022, 107(0): 70-81. |
| [5] | Xiao Zhang, Pei Wang, Dianzhong Li, Yiyi Li. Multi-scale study on the heterogeneous deformation behavior in duplex stainless steel [J]. J. Mater. Sci. Technol., 2021, 72(0): 180-188. |
| [6] | Guangrong Li, Chunhua Tang, Guanjun Yang. Dynamic-stiffening-induced aggravated cracking behavior driven by metal-substrate-constraint in a coating/substrate system [J]. J. Mater. Sci. Technol., 2021, 65(0): 154-163. |
| [7] | Diao-Feng Li, Ya-Long Yang, Yong Shen, Jian Xu. Bending fatigue behavior of thin Zr61Ti2Cu25Al12 bulk metallic glass beams for compliant mechanisms application [J]. J. Mater. Sci. Technol., 2021, 89(0): 1-15. |
| [8] | Yanke Liu, Yulong Cai, Chenggang Tian, Guoliang Zhang, Guoming Han, Shihua Fu, Chuanyong Cui, Qingchuan Zhang. Experimental investigation of a Portevin-Le Chatelier band in Ni‒Co-based superalloys in relation to γʹ precipitates at 500 ℃ [J]. J. Mater. Sci. Technol., 2020, 49(0): 35-41. |
| [9] | Yafei Wang, Rui Chen, Xu Cheng, Yanyan Zhu, Jikui Zhang, Huaming Wang. Effects of microstructure on fatigue crack propagation behavior in a bi-modal TC11 titanium alloy fabricated via laser additive manufacturing [J]. J. Mater. Sci. Technol., 2019, 35(2): 403-408. |
| [10] | Liu Guoliang, Yang Shanwu, Ding Jianwen, Han Wentuo, Zhou Lujun, Zhang Mengqi, Zhou Shanshan, Misra R.D.K., Wan Farong, Shang Chengjia. Formation and evolution of layered structure in dissimilar welded joints between ferritic-martensitic steel and 316L stainless steel with fillers [J]. J. Mater. Sci. Technol., 2019, 35(11): 2665-2681. |
| [11] | Lianghua Lin, Zhiyi Liu, Wenjuan Liu, Yaru Zhou, Tiantian Huang. Effects of Ag Addition on Precipitation and Fatigue Crack Propagation Behavior of a Medium-Strength Al-Zn-Mg Alloy [J]. J. Mater. Sci. Technol., 2018, 34(3): 534-540. |
| [12] | Huang Qianqian, Liu Shunli, Li Kewen, Hussain Imtiaz, Yao Fang, Fu Guodong. Sodium Alginate/Carboxyl-Functionalized Graphene Composite Hydrogel Via Neodymium Ions Coordination [J]. J. Mater. Sci. Technol., 2017, 33(8): 821-826. |
| [13] | Cai Yulong, Yang Suli, Fu Shihua, Zhang Di, Zhang Qingchuan. Investigation of Portevin-Le Chatelier Band Strain and Elastic Shrinkage in Al-Based Alloys Associated with Mg Contents [J]. J. Mater. Sci. Technol., 2017, 33(6): 580-586. |
| [14] | Dongjie Li, Shanping Lu, Dianzhong Li, Yiyi Li. Effect of Structural Parameters of Double Shielded TIG Torch on the Fusion Zone Profile for 0Cr13Ni5Mo Martensitic Stainless Steel [J]. J. Mater. Sci. Technol., 2014, 30(9): 922-927. |
| [15] | Z.M. Song, L.M. Lei, B. Zhang, X. Huang, G.P. Zhang. Microstructure Dependent Fatigue Cracking Resistance Ti–6.5Al–3.5Mo–1.5Zr–0.3Si Alloy [J]. J Mater Sci Technol, 2012, 28(7): 614-621. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
