J. Mater. Sci. Technol. ›› 2022, Vol. 110: 227-238.DOI: 10.1016/j.jmst.2021.09.034
• Research Article • Previous Articles Next Articles
Pengfei Jia, Bohan Chena, Shuguang Liua,c, Bo Lia, Chaoqun Xiaa,b, Xinyu Zhanga,*(), Mingzhen Maa, Riping Liua,*(
)
Received:
2021-08-01
Revised:
2021-08-27
Accepted:
2021-09-13
Published:
2021-11-26
Online:
2021-11-26
Contact:
Xinyu Zhang,Riping Liu
About author:
riping@ysu.edu.cn (R. Liu).Pengfei Ji, Bohan Chen, Shuguang Liu, Bo Li, Chaoqun Xia, Xinyu Zhang, Mingzhen Ma, Riping Liu. Controlling the mechanical properties and corrosion behavior of biomedical TiZrNb alloys by combining recrystallization and spinodal decomposition[J]. J. Mater. Sci. Technol., 2022, 110: 227-238.
Fig. 2. (a) X-ray diffraction (XRD) patterns of TiZrNb alloys; (b, b1) image quality (IQ) and inverse pole figure (IPF) map of TZN-600 alloy; (c, c1) IQ and IPF map of TZN-700 alloy; (d-f) and (d1-f1): IQ and pole figures for regions with GOS ≤ 2°, 2° 〈 GOS ≤ 5°, and GOS 〉 5° of TZN-700 alloy; (g, g1) IQ and IPF map of TZN-800 alloy; (h, h1) IQ and IPF map of TZN-900 alloy; (i) grain size distribution in TZN-800 and TZN-900 alloys. (Black areas in IPF map represent areas with low resolution or being screened.).
Empty Cell | E (GPa) | σ0.2 (MPa) | σb (MPa) | ε (%) | G (GPa) | r (pm) |
---|---|---|---|---|---|---|
TZN-CR | 73±1.5 | 1123.1 ± 22.1 | 1159.1 ± 24.8 | 12.9 ± 0.7 | - | - |
TZN-600 | 73±2 | 984.0 ± 19.2 | 1010.6 ± 17.3 | 14.8 ± 1.3 | - | - |
TZN-700 | 72±1 | 916.3 ± 21.6 | 938.3 ± 12.5 | 16.5 ± 1.1 | - | - |
TZN-800 | 60±1 | 876.1 ± 11.7 | 912.4 ± 15.6 | 20.3 ± 1.4 | - | - |
TZN-900 | 61±2 | 882.4 ± 16.9 | 932.7 ± 12.3 | 13.9 ± 1.8 | - | - |
Ti | - | 195 | - | - | 44 | 141.8 |
Zr | - | 280 | - | - | 33 | 155.1 |
Nb | - | 240 | - | - | 38 | 142.9 |
Table 1. Elastic modulus (E), yield strength (σ0.2), ultimate tensile strength (σb), and total elongation (%) of TiZrNb alloys, and σ0.2 atomic radius (r) and shear modulus (G) of Ti, Zr, and Nb metals.
Empty Cell | E (GPa) | σ0.2 (MPa) | σb (MPa) | ε (%) | G (GPa) | r (pm) |
---|---|---|---|---|---|---|
TZN-CR | 73±1.5 | 1123.1 ± 22.1 | 1159.1 ± 24.8 | 12.9 ± 0.7 | - | - |
TZN-600 | 73±2 | 984.0 ± 19.2 | 1010.6 ± 17.3 | 14.8 ± 1.3 | - | - |
TZN-700 | 72±1 | 916.3 ± 21.6 | 938.3 ± 12.5 | 16.5 ± 1.1 | - | - |
TZN-800 | 60±1 | 876.1 ± 11.7 | 912.4 ± 15.6 | 20.3 ± 1.4 | - | - |
TZN-900 | 61±2 | 882.4 ± 16.9 | 932.7 ± 12.3 | 13.9 ± 1.8 | - | - |
Ti | - | 195 | - | - | 44 | 141.8 |
Zr | - | 280 | - | - | 33 | 155.1 |
Nb | - | 240 | - | - | 38 | 142.9 |
Fig. 4. Representative transmission electron microscopy (TEM) images showing alloy morphology: (a, a1) TZN-CR alloy, (b) TZN-600 alloy, (c) TZN-700 alloy, (d) TZN-800 alloy, (e) TZN-900 alloy; (f) selected area diffraction pattern of β-phase matrix and nano-precipitated phase; (g) relationship between dislocations and precipitated phases; (h-h4) high-resolution TEM analysis of spinodal decomposition.
Fig. 6. Schematic diagrams: (a) dislocation motion without the effect of spinodal decomposition, (b) influence of spinodal decomposition on dislocation motion.
Ti alloys | E (GPa) | σ0.2 (MPa) | σb (MPa) | ε (%) | Refs. |
---|---|---|---|---|---|
CP-Ti (grade 4) | 104.1 | 485 | 550 | 15 | [ |
Ti-6Al-4 V ELI | 101-110 | 795-875 | 860-965 | 10-15 | [ |
Ti-6Al-7Nb | 114 | 880-950 | 900-1050 | 8.1-15 | [ |
Ti-13Nb-13Zr | 79-84 | 836-908 | 973-1037 | 10-16 | [ |
As casted Ti-25-40.7Zr-24.8-34Nb alloys | 62-65 | 682-810 | 704-758 | 9.9-14.8 | [ |
Cold rolded Ti-35.4Zr-28Nb alloy | 70-79 | 708-890 | 763-941 | 4-8 | [ |
Cold rolded + Annealing Ti-35.4Zr-28Nb alloy | 63 | 611 | 633 | 13 | [ |
TiZrNb alloy containing B | - | 621.3-739.1 | 622.3-764.1 | 7.8-11.6 | [ |
Table 2. Mechanical properties of Ti alloys developed and/or utilized as biomedical materials.
Ti alloys | E (GPa) | σ0.2 (MPa) | σb (MPa) | ε (%) | Refs. |
---|---|---|---|---|---|
CP-Ti (grade 4) | 104.1 | 485 | 550 | 15 | [ |
Ti-6Al-4 V ELI | 101-110 | 795-875 | 860-965 | 10-15 | [ |
Ti-6Al-7Nb | 114 | 880-950 | 900-1050 | 8.1-15 | [ |
Ti-13Nb-13Zr | 79-84 | 836-908 | 973-1037 | 10-16 | [ |
As casted Ti-25-40.7Zr-24.8-34Nb alloys | 62-65 | 682-810 | 704-758 | 9.9-14.8 | [ |
Cold rolded Ti-35.4Zr-28Nb alloy | 70-79 | 708-890 | 763-941 | 4-8 | [ |
Cold rolded + Annealing Ti-35.4Zr-28Nb alloy | 63 | 611 | 633 | 13 | [ |
TiZrNb alloy containing B | - | 621.3-739.1 | 622.3-764.1 | 7.8-11.6 | [ |
Empty Cell | Ecorr (mV) | Icorr (nA cm-2) | Rs (Ω cm2) | Rp × 106 (Ω cm2) | CPE × 10-5 (Ω-1 s-n cm-2) | n | Ceff × 10-5 (F cm-2) | χ2 (× 10-3) |
---|---|---|---|---|---|---|---|---|
TZN-ST | -604.2 ± 23.5 | 31.4 ± 0.2 | 5.366±0.311 | 1.234±0.091 | 2.256±0.134 | 0.9454±0.0104 | 2.901±0.323 | 1.104±0.097 |
TZN-CR | -492.6 ± 31.6 | 12.1 ± 0.4 | 5.673±0.272 | 1.751±0.107 | 1.960±0.083 | 0.9385±0.0119 | 2.602±0.263 | 1.288±0.102 |
TZN-800 | -405.4 ± 17.2 | 6.12±0.2 | 5.651±0.347 | 2.606±0.151 | 1.471±0.065 | 0.9486±0.0083 | 1.864±0.158 | 0.736±0.046 |
Table 3. Corrosion potential (Ecorr), corrosion current density (Icorr), electrochemical impedance spectroscopy (EIS) fitting results, effective capacitance (Ceff), and chi-squared (χ2) values of TZN-ST, TZN-CR and TZN-800 alloys.
Empty Cell | Ecorr (mV) | Icorr (nA cm-2) | Rs (Ω cm2) | Rp × 106 (Ω cm2) | CPE × 10-5 (Ω-1 s-n cm-2) | n | Ceff × 10-5 (F cm-2) | χ2 (× 10-3) |
---|---|---|---|---|---|---|---|---|
TZN-ST | -604.2 ± 23.5 | 31.4 ± 0.2 | 5.366±0.311 | 1.234±0.091 | 2.256±0.134 | 0.9454±0.0104 | 2.901±0.323 | 1.104±0.097 |
TZN-CR | -492.6 ± 31.6 | 12.1 ± 0.4 | 5.673±0.272 | 1.751±0.107 | 1.960±0.083 | 0.9385±0.0119 | 2.602±0.263 | 1.288±0.102 |
TZN-800 | -405.4 ± 17.2 | 6.12±0.2 | 5.651±0.347 | 2.606±0.151 | 1.471±0.065 | 0.9486±0.0083 | 1.864±0.158 | 0.736±0.046 |
Fig. 7. (a) Potentiodynamic polarization curves of TZN-ST, TZN-CR, and TZN-800 alloys; (b) corrosion potential (Ecorr) and corrosion current density (Icorr) of TZN-ST, TZN-CR, and TZN-800 alloys; (c) Nyquist plots of TZN-ST, TZN-CR, and TZN-800 alloys and equivalent circuit; (d) Bode plots of TZN-ST, TZN-CR, and TZN-800 alloys; (e) M-S plots of TZN-ST, TZN-CR, and TZN-800 alloys; (f) first derivative curve of the M-S plots.
Fig. 9. (a) X-ray photoelectron spectroscopy (XPS) survey spectra of TZN-ST, TZN-CR and TZN-800 alloys; (b-d) O intensity transition of TZN-ST, TZN-CR, and TZN-800 alloys from the surface of the passivation film towards the inside of passivation film by XPS depth profilometry; (e) compositional transition of TZN-ST, TZN-CR, and TZN-800 alloys from the surface of the passivation film towards the inside by XPS depth profilometry; (f) inverse pole figure (IPF) map of TZN-ST alloy.
Fig. 10. Schematic illustration of (a) cation vacancy migration without the influence of spinodal decomposition and (b) cation vacancy migration with the influence of spinodal decomposition.
Fig. 11. (a) The relative cell viability of MC3T3-E1 pre-osteoblasts cultured on TZN-800 alloy for 1, 4 and 7 days; (b-d) the live/dead staining images of MC3T3-E1 pre-osteoblasts cultured on TZN-800 alloy for (b) 1, (c) 4 and (d) 7 days.
[1] | United Nations, World Population Prospects: the 2012 Revision, Key Findings and Advance Tables, New York, 2013, pp. 1-50. |
[2] |
L.M. Bjursten, L. Emanuelsson, L.E. Ericson, P. Thomsen, J. Lausmaa, L. Mattsson, U. Rolander, B. Kasemo, Biomaterials 11 (1990) 596-601.
PMID |
[3] | P.F. Ji, B. Li, B.H. Chen, F. Wang, W. Ma, X.Y. Zhang, M.Z. Ma, R.P. Liu, Corros. Sci. 170 (2020) 108696. |
[4] |
S. Ozan, J. Lin, Y. Li, R. Ipek, C. Wen, Acta Biomater. 20 (2015) 176-187.
DOI URL |
[5] |
C. Lan, Y. Wu, L. Guo, H. Chen, F. Chen, J. Mater. Sci. Technol. 34 (2018) 788-792.
DOI URL |
[6] |
D. Cai, X. Zhao, L. Yang, R. Wang, G. Qin, D.F. Chen, E. Zhang, J. Mater. Sci. Technol. 81 (2021) 13-25.
DOI URL |
[7] | B. Abdallah, M. Kakhia, W. Alssadat, M.S. Rihawy, Iran J. Sci. Technol. A 43 (2018) 1957-1965. |
[8] |
M. Naddaf, B. Abdallah, M. Ahmad, M. A-Kharroub, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 381 (2016) 90-95.
DOI URL |
[9] |
C. Correa, A. Gil-Santos, J.A. Porro, M. Díaz, J.L. Ocaña, Mater. Des. 79 (2015) 106-114.
DOI URL |
[10] |
B. Abdallah, M. Kakhia, W. Alsadat, Int. J. Struct. Integr. 11 (2019) 819-831.
DOI URL |
[11] |
Y. Li, Y. Ding, K. Munir, J. Lin, M. Brandt, A. Atrens, Y. Xiao, J.R. Kanwar, C. Wen, Acta Biomater. 87 (2019) 273-284.
DOI URL |
[12] |
M. Niinomi, M. Nakai, J. Hieda, Acta Biomater. 8 (2012) 3888-3903.
DOI PMID |
[13] |
S. Ozan, J. Lin, Y. Li, R. Ipek, C. Wen, Acta Biomater. 20 (2015) 176-187.
DOI URL |
[14] |
M. Abdel-Hady Gepreel, M. Niinomi, J. Mech. Behav. Biomed. Mater. 20 (2013) 407-415.
DOI PMID |
[15] |
L. You, X. Song, Scr. Mater. 67 (2012) 57-60.
DOI URL |
[16] | J. Pang, H. Zhang, L. Zhang, Z. Zhu, H. Fu, H. Li, A. Wang, Z. Li, H. Zhang, J. Mater. Sci.Technol. 78 (2021) 74-80. |
[17] |
P. Ji, B. Chen, B. Li, Y. Tang, G. Zhang, X. Zhang, M. Ma, R. Liu, J. Mater. Sci. Technol. 69 (2021) 7-14.
DOI URL |
[18] |
L. Mishnaevsky, E. Levashov, R.Z. Valiev, J. Segurado, I. Sabirov, N. Enikeev, S. Prokoshkin, A.V. Solov’yov, A. Korotitskiy, E. Gutmanas, I. Gotman, E. Rabkin, S. Psakh’e, L. Dluhoš, M. Seefeldt, A. Smolin, Mater. Sci. Eng. R 81 (2014) 1-19.
DOI URL |
[19] |
J. Málek, F. Hnilica, J. Veselý, B. Smola, K. Kola ˇrík, J. Fojt, M. Vlach, V. Kodetová, Mater. Sci. Eng. A 675 (2016) 1-10.
DOI URL |
[20] |
Q. Li, J. Li, G. Ma, X. Liu, D. Pan, Mater. Des. 111 (2016) 421-428.
DOI URL |
[21] |
S. Ozan, J. Lin, Y. Li, Y. Zhang, K. Munir, H. Jiang, C. Wen, J. Mech. Behav. Biomed. Mater. 78 (2018) 224-234.
DOI URL |
[22] |
M.M. Khan, I. Shabib, W. Haider, Scr. Mater. 162 (2019) 223-229.
DOI URL |
[23] |
A. Sarmiento-González, J.R. Encinar, J.M. Marchante-Gayón, A. Sanz-Medel, Anal. Bioanal. Chem. 393 (2008) 335-343.
DOI URL |
[24] |
A. Sarmiento-González, J.M. Marchante-Gayón, J.M. Tejerina-Lobo, J. Paz-Jiménez, A. Sanz-Medel, Anal. Bioanal. Chem. 391 (2008) 2583-2589.
DOI PMID |
[25] |
M. Uo, K. Asakura, A. Yokoyama, M. Ishikawa, K. Tamura, Y. Totsuka, T. akasaka, F. Watari, Dent. Mater. J. 26 (2007) 268-273.
DOI URL |
[26] |
A. Hadadzadeh, F. Mokdad, M.A. Wells, D.L. Chen, Mater. Sci. Eng. A 709 (2018) 285-289.
DOI URL |
[27] |
L.G. Sun, G. Wu, Q. Wang, J. Lu, Mater. Today 38 (2020) 114-135.
DOI URL |
[28] |
X. Yan, Y. Zhang, Scr. Mater. 178 (2020) 329-333.
DOI URL |
[29] |
R.L. Fleischer, Acta Metal. 11 (1963) 203-209.
DOI URL |
[30] |
L.A. Gypen, A. Deruyttere, J. Mater. Sci. 12 (1977) 1034-1038.
DOI URL |
[31] | P. Koželj, S. Vrtnik, A. Jelen, S. Jazbec, Z. Jagli Či ´c, S. Maiti, M. Feuerbacher, W. Steurer, J. Dolinšek, Phys. Rev. Lett. 113 (2014) 107001. |
[32] | R.J. Arsenault, in:Treatise On Materials Science and Technology, vol. 6:Plastic Deformation of Materials,Academic Press, New York, 1975, pp. 1-99. |
[33] |
R. Labusch, Acta Metall. 20 (1972) 917.
DOI URL |
[34] |
O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, C.F. Woodward, J. Alloy. Compd. 509 (2011) 6043-6048.
DOI URL |
[35] |
R. Silva, G.S. Vacchi, C.L. Kugelmeier, I. G.R. Santos, A .A. M. Filho, D. C.C. Magal- hães, C. R.M. Afonso, V.L. Sordi, C.A.D. Rovere, J. Mater. Sci. Technol. 98 (2022) 123-135.
DOI |
[36] |
Y. Bu, Y. Wu, Z. Lei, X. Yuan, H. Wu, X. Feng, J. Liu, J. Ding, Y. Lu, H. Wang, Z. Lu, W. Yang, Mater. Today 46 (2021) 28-34.
DOI URL |
[37] |
A. Takahashi, T. Suzuki, A. Nomoto, T. Kumagai, Acta Mater. 146 (2018) 160-170.
DOI URL |
[38] |
T. Suzudo, Y. Nagai, D. Schwen, A. Caro, Acta Mater. 89 (2015) 116-122.
DOI URL |
[39] | T.J. Nichol, A. Datta, G. Aggen, Mater. Trans. A 11 (1980) 573-585. |
[40] |
C. Varvenne, G. P.M. Leyson, M. Ghazisaeidi, W.A. Curtin, Acta Mater. 124 (2017) 660-683.
DOI URL |
[41] | M. Niinomi, Mater. Sci. Eng. A 243 (1998) 231-236. |
[42] | N.G. Krishna, R.P. George, J. Philip, Corros. Sci. 172 (2020) 108678. |
[43] |
Y. Tsutsumi, D. Nishimura, H. Doi, N. Nomura, T. Hanawa, Mater. Sci. Eng. C 29 (2009) 1702-1708.
DOI URL |
[44] |
R. Chelariu, L.C. Trinca, C. Munteanu, G. Bolat, D. Sutiman, D. Mareci, R.M. Souto, Electrochim. Acta 248 (2017) 368-375.
DOI URL |
[45] |
E. McCafferty, Corros. Sci. 47 (2005) 3202-3215.
DOI URL |
[46] |
A. Carnot, I. Frateur, S. Zanna, B. Tribollet, I. Dubois-Brugger, P. Marcus, Corros. Sci. 45 (2003) 2513-2524.
DOI URL |
[47] |
C.H. Hsu, F. Mansfeld, Corrosion 57 (2012) 747-748.
DOI URL |
[48] | B. Hirschorn, M.E. Orazem, B. Tribollet, V. Vivier, I. Frateur, M. Musiani, Elec- trochim. Acta 55 (2010) 6218-6227. |
[49] |
Y. Li, J. Xu, Electrochim. Acta 233 (2017) 151-166.
DOI URL |
[50] |
G.D. Wilk, R.M. Wallace, J.M. Anthony, J. Appl. Phys. 89 (2001) 5243-5275.
DOI URL |
[51] |
L. Young, Can. J. Chem. 38 (1960) 1141-1147.
DOI URL |
[52] |
J. Jayaraj, A.R. Shankar, U.K. Mudali, Electrochim. Acta 85 (2012) 210-219.
DOI URL |
[53] |
Z. Jiang, X. Dai, H. Middleton, Mater. Chem. Phys. 126 (2011) 859-865.
DOI URL |
[54] |
D. Sazou, K. Saltidou, M. Pagitsas, Electrochim. Acta 76 (2012) 48-61.
DOI URL |
[55] |
J. Soltis, Corros. Sci. 90 (2015) 5-22.
DOI URL |
[56] |
J. Li, S.J. Li, Y.L. Hao, H.H. Huang, Y. Bai, Y.Q. Hao, Z. Guo, J.Q. Xue, R. Yang, Acta Biomater. 10 (2014) 2866-2875.
DOI PMID |
[57] | L. Liu, Y. Li, F. Wang, J. Mater. Sci. Technol. 26 (2010) 1-14. |
[58] |
J. Lu, Y. Zhang, W. Huo, W. Zhang, Y. Zhao, Y. Zhang, Appl. Surf. Sci. 434 (2018) 63-72.
DOI URL |
[59] |
R. Huang, Y. Han, Mater. Sci. Eng. C 33 (2013) 2353-2359.
DOI URL |
[60] |
D.D. Macdonald, J. Electrochem. Soc. 139 (1992) 3434-3449.
DOI URL |
[61] |
D.D. Macdonald, Electrochim. Acta 56 (2011) 1761-1772.
DOI URL |
[62] |
M. Metikos ˘-Hukovi ´c, A. Kwokal, J. Piljac, Biomaterials 24 (2003) 3765-3775.
PMID |
[63] |
L.F. Lin, C.Y. Chao, D.D. Macdonald, J. Electrochem. Soc. 128 (1981) 1194-1198.
DOI URL |
[64] |
M. Liu, D. Qiu, M.-. C. Zhao, G. Song, A. Atrens, Scr. Mater. 58 (2008) 421-424.
DOI URL |
[65] |
C. Xia, Z. Feng, S. Liu, X. Zhang, B. Zhang, B. Pan, X. Zhang, M. Ma, R. Liu, Corros. Sci. 127 (2017) 39-44.
DOI URL |
[1] | Wu Qi, Wenrui Wang, Xiao Yang, Lu Xie, Jiaming Zhang, Dongyue Li, Yong Zhang. Effect of Zr on phase separation, mechanical and corrosion behavior of heterogeneous CoCrFeNiZrx high-etropy alloy [J]. J. Mater. Sci. Technol., 2022, 109(0): 76-85. |
[2] | Zhe Shen, Zhongze Lin, Peijian Shi, Jiale Zhu, Tianxiang Zheng, Biao Ding, Yifeng Guo, Yunbo Zhong. Enhanced electrical, mechanical and tribological properties of Cu-Cr-Zr alloys by continuous extrusion forming and subsequent aging treatment [J]. J. Mater. Sci. Technol., 2022, 110(0): 187-197. |
[3] | J.C. Wang, Y.J. Liu, S.X. Liang, Y.S. Zhang, L.Q. Wang, T.B. Sercombe, L.C. Zhang. Comparison of microstructure and mechanical behavior of Ti-35Nb manufactured by laser powder bed fusion from elemental powder mixture and prealloyed powder [J]. J. Mater. Sci. Technol., 2022, 105(0): 1-16. |
[4] | Ahmad Zafari, Edward Wen Chiek Lui, Mogeng Li, Kenong Xia. Enhancing work hardening and ductility in additively manufactured β Ti: roles played by grain orientation, morphology and substructure [J]. J. Mater. Sci. Technol., 2022, 105(0): 131-141. |
[5] | Xuan Kong, Yang Liu, Minghui Chen, Tao Zhang, Qunchang Wang, Fuhui Wang. Heterostructured NiCr matrix composites with high strength and wear resistance [J]. J. Mater. Sci. Technol., 2022, 105(0): 142-152. |
[6] | Yan Liu, Jinshan Li, Bin Tang, William Yi Wang, Minjie Lai, Lei Zhu, Hongchao Kou. Formation mechanism of γ twins in β-solidified γ-TiAl alloys [J]. J. Mater. Sci. Technol., 2022, 105(0): 164-171. |
[7] | Zheng Zhang, Wenming Jiang, Guangyu Li, Junlong Wang, Feng Guan, Guoliang Jie, Zitian Fan. Effect of La on microstructure, mechanical properties and fracture behavior of Al/Mg bimetallic interface manufactured by compound casting [J]. J. Mater. Sci. Technol., 2022, 105(0): 214-225. |
[8] | Guanshui Ma, Dong Zhang, Peng Guo, Hao Li, Yang Xin, Zhenyu Wang, Aiying Wang. Phase orientation improved the corrosion resistance and conductivity of Cr2AlC coatings for metal bipolar plates [J]. J. Mater. Sci. Technol., 2022, 105(0): 36-44. |
[9] | Peng Gao, Shuo Sun, Heng Li, Ranming Niu, Shuang Han, Hongxiang Zong, Hao Wang, Jianshe Lian, Xiaozhou Liao. Ultra-strong and thermally stable nanocrystalline CrCoNi alloy [J]. J. Mater. Sci. Technol., 2022, 106(0): 1-9. |
[10] | Sen Yu, Zhe Yu, Dagang Guo, Hui Zhu, Minghua Zhang, Jianye Han, Zhentao Yu, Yemin Cao, Gui Wang. Enhanced bioactivity and interfacial bonding strength of Ti3Zr2Sn3Mo25Nb alloy through graded porosity and surface bioactivation [J]. J. Mater. Sci. Technol., 2022, 100(0): 137-149. |
[11] | Zhen Jiang, Ran Wei, Wenzhou Wang, Mengjia Li, Zhenhua Han, Shuhan Yuan, Kaisheng Zhang, Chen Chen, Tan Wang, Fushan Li. Achieving high strength and ductility in Fe50Mn25Ni10Cr15 medium entropy alloy via Al alloying [J]. J. Mater. Sci. Technol., 2022, 100(0): 20-26. |
[12] | Kaiju Lu, Ankur Chauhan, Dimitri Litvinov, Aditya Srinivasan Tirunilai, Jens Freudenberger, Alexander Kauffmann, Martin Heilmaier, Jarir Aktaa. Micro-mechanical deformation behavior of CoCrFeMnNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 100(0): 237-245. |
[13] | Hanchen Feng, Lei Cai, Linfeng Wang, Xiaodan Zhang, Feng Fang. Microstructure and strength in ultrastrong cold-drawn medium carbon steel [J]. J. Mater. Sci. Technol., 2022, 97(0): 89-100. |
[14] | Shiyu Wu, Dongxu Qiao, Haitao Zhang, Junwei Miao, Hongliang Zhao, Jun Wang, Yiping Lu, Tongmin Wang, Tingju Li. Microstructure and mechanical properties of CxHf0.25NbTaW0.5 refractory high-entropy alloys at room and high temperatures [J]. J. Mater. Sci. Technol., 2022, 97(0): 229-238. |
[15] | Tianci Xie, Hui Shi, Hongbin Wang, Qun Luo, Qian Li, Kuo-Chih Chou. Thermodynamic prediction of thermal diffusivity and thermal conductivity in Mg-Zn-La/Ce system [J]. J. Mater. Sci. Technol., 2022, 97(0): 147-155. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||