J. Mater. Sci. Technol. ›› 2022, Vol. 97: 264-271.DOI: 10.1016/j.jmst.2021.04.062
• Research Article • Previous Articles Next Articles
Young-Kyun Kim, Kee-Ahn Lee*()
Received:
2021-02-04
Revised:
2021-04-13
Accepted:
2021-04-29
Published:
2021-07-07
Online:
2021-07-07
Contact:
Kee-Ahn Lee
About author:
* E-mail address: keeahn@inha.ac.kr (K.-A. Lee).Young-Kyun Kim, Kee-Ahn Lee. Effect of carrier gas species on the microstructure and compressive deformation behaviors of ultra-strong pure copper manufactured by cold spray additive manufacturing[J]. J. Mater. Sci. Technol., 2022, 97: 264-271.
Carrier gas | Spray distance (mm) | Powder feed rate (rpm) | Nozzle pressure (bar) | Gas temp. (K) | Powder temp. (K) | Gun speed (mm s-1) | Substrate |
---|---|---|---|---|---|---|---|
N2 | 30 | 3 | 30 | 873 | 573 | 100 | Al |
He | 30 | 5 | 26 | 710 | 573 | 100 | Al |
Table 1 Spray parameters for manufacturing cold sprayed Cu materials with different carrier gasses.
Carrier gas | Spray distance (mm) | Powder feed rate (rpm) | Nozzle pressure (bar) | Gas temp. (K) | Powder temp. (K) | Gun speed (mm s-1) | Substrate |
---|---|---|---|---|---|---|---|
N2 | 30 | 3 | 30 | 873 | 573 | 100 | Al |
He | 30 | 5 | 26 | 710 | 573 | 100 | Al |
Fig. 5. EBSD recrystallized fraction maps of cold sprayed Cu: (a) carrier gas N2 and (b) carrier gas He (red-deformed area, yellow-substructure area and blue-fully recrystallized area).
Fig. 7. Microstructure after compressive deformation at a true strain of 0.9 of cold sprayed Cu manufactured by (a) carrier gas N2 and (b) carrier gas He.
Fig. 8. Misorientation angle distribution before and after compressive deformation of cold sprayed Cu: (a) N2, ${{\varepsilon }_{t}}=0$, (b) N2, ${{\varepsilon }_{t}}=0.9$, (c) He, ${{\varepsilon }_{t}}=0$, and (d) He, ${{\varepsilon }_{t}}=0.9$.
Carrier gas | ${{\hat{\sigma }}_{s}}$(MPa) | σs (MPa) | σ0 (MPa) | εc | εp | r | q |
---|---|---|---|---|---|---|---|
N2 | 432 | 376 | 340 | 0.05 | 0.24 | 0.01 | 4.934 |
He | 482 | 417 | 415 | 0.01 | 0.15 | 0.02 | 2.714 |
Table 2 Numerical values of the constants in Eq. (11) estimated by experimental data.
Carrier gas | ${{\hat{\sigma }}_{s}}$(MPa) | σs (MPa) | σ0 (MPa) | εc | εp | r | q |
---|---|---|---|---|---|---|---|
N2 | 432 | 376 | 340 | 0.05 | 0.24 | 0.01 | 4.934 |
He | 482 | 417 | 415 | 0.01 | 0.15 | 0.02 | 2.714 |
[1] |
H.J. Kim, C.H. Lee, S.Y. Hwang, Surf. Coat. Technol. 191 (2005) 335-340.
DOI URL |
[2] | J. Won, G. Bae, K. Kang, C. Lee, S.J. Kim, K.-.A. Lee, S. Lee, J. Therm. Spray Tech- nol. 23 (2014) 818-826. |
[3] |
G. Bae, Y. Xiong, S. Kumar, K. Kang, C. Lee, Acta Mater 57 (2009) 5654-5666.
DOI URL |
[4] | H.J. Kim, C.H. Lee, Y.G. Kweon, J. Weld. Join. 20 (2002) 53-60. |
[5] | J. Wu, Y. Tao, H. Jin, M. Li, T. Xiong, C. Sun, J. Coat. 2013 (2013) 1-7. |
[6] |
S.M.H. Gangaraj, A. Moridi, M. Guangliano, Surf. Eng. 31 (2015) 803-815.
DOI URL |
[7] |
N. Kang, P. Coddet, H. Liao, C. Coddet, J. Alloy. Compd. 686 (2016) 399-406.
DOI URL |
[8] | C. Cinca, J.M. Guilemany, J. Mater. Sci. Eng. 2 (2013) 1-6. |
[9] |
J.C. Lee, H.J. Kang, W.S. Chu, S.H. Ahn, CIRP Ann-Manuf. Technol. 56 (2007) 577-580.
DOI URL |
[10] | H. Wu, X. Xie, M. Liu, C. Verdy, Y. Zhang, H. Liao, S. Deng, Addit. Manuf. 35 (2020) 101356. |
[11] |
S. Bagherifard, S. Monti, M.V. Zuccoli, M. Riccio, J. Konds, M. Guagliano, Mater. Sci. Eng. A 721 (2018) 339-350.
DOI URL |
[12] |
Z. Mao, D.Z. Zhang, P. Wei, K. Zhang, Materials (Basel) 10 (2017) 333.
DOI URL |
[13] |
Y.-.K. Kim, S. Yang, K.-.A. Lee, Sci. Rep. 10 (2020) 8045.
DOI URL |
[14] |
S. Cadney, M. Brochu, P. Richer, B. Jodoin, Surf. Coat. Technol. 202 (2008) 2801-2806.
DOI URL |
[15] |
Y. Cormier, P. Dupuis, B. Jodoin, A. Corbeil, J. Therm. Spray Technol. 25 (2016) 170-182.
DOI URL |
[16] |
J.H. Cho, Y.M. Jin, D.Y. Park, H.J. Kim, I.H. Oh, K.A. Lee, Met. Mater. Int. 17 (2011) 157-166.
DOI URL |
[17] |
K.J. Hodder, H. Izadi, A.G. McDonald, A.P. Gerlich, Mater. Sci. Eng. A 556 (2012) 114-121.
DOI URL |
[18] |
A. Sova, D. Pervushin, I. Smurov, Surf. Coat. Technol. 205 (2010) 1108-1114.
DOI URL |
[19] |
D. Seo, K. Ogawa, K. Sakaguchi, N. Miyamoto, Y. Tsuzuki, Surf. Coat. Technol. 206 (2012) 2316-2324.
DOI URL |
[20] |
W. Li, C. Huang, M. Yu, H. Liao, Mater. Des. 46 (2013) 219-226.
DOI URL |
[21] | W. Wong, E. Irissou, A.N. Ryabinin, J.G. Legoux, S. Yue, J. Therm. Spray Techno. 20 (2011) 213-226. |
[22] |
X. Suo, S. Yin, M.P. Planche, T. Liu, H. Liao, Surf. Coat. Technol. 268 (2015) 90-93.
DOI URL |
[23] | M.J. Lee, H.J. Kim, I.H. Oh, K.A. Lee, Adv. Mater. Res. 690- 693 (2013) 2116-2119. |
[24] |
F. Gärtner, T. Stoltenhoff, J. Voyer, H. Kreye, S. Riekehr, M. Kocak, Surf. Coat. Technol. 200 (2006) 6770-6782.
DOI URL |
[25] |
Y.-.K. Kim, K.-.S. Kim, H.-.J. Kim, C.-.H. Park, K.-.A. Lee, J. Therm. Spray Technol. 26 (2017) 1498-1508.
DOI URL |
[26] |
Y.-.K. Kim, K.-.A. Lee, Korean J. Met. Mater. 58 (2020) 759-767.
DOI URL |
[27] | H.J. Kim, D.H. Jung, S.C. Bae, C.H. Lee, Korean J. Met. Mater. 43 (2005) 660-666. |
[28] | T. Ungar, J. Gubicza, P. Hanak, I. Alexandrov, Mater. Sci. Eng. A 319- 321 (2001) 274-278. |
[29] |
R.A. Renzetti, H.R.Z. Sandim, R.E. Bolmaro, P.A. Suzuki, A. Moslang, Mater. Sci. Eng. A 534 (2012) 142-146.
DOI URL |
[30] |
P.C. King, S.H. Zahiri, M. Jahedi, Met. Mater. Trans. A 40 (2009) 2115-2123.
DOI URL |
[31] |
K. Kim, M. Watanabe, S. Kuroda, Scr. Mater. 60 (2009) 710-713.
DOI URL |
[32] |
T. Sakai, H. Miura, A. Goloborodko, O. Stdikov, Acta Mater 57 (2009) 153-162.
DOI URL |
[33] |
K. Edalati, T. Fujioka, Z. Horita, Mater. Sci. Eng. A 497 (2008) 168-173.
DOI URL |
[34] |
Y.J. Li, X.H. Zeng, W. Blum, Acta Mater 52 (2004) 5009-5018.
DOI URL |
[35] |
H. Koivuluoto, M. Honkanen, P. Vuoristo, Surf. Coat. Technol. 204 (2010) 2353-2361.
DOI URL |
[36] |
K.H. Kim, M. Watanabe, J. Kawakita, S. Kuroda, Scr. Mater. 59 (2008) 768-771.
DOI URL |
[37] |
M.A.M. Bonab, M. Eskandari, J.A. Szpunar, Mater. Sci. Eng. A 620 (2015) 97-106.
DOI URL |
[38] |
N. Lugo, N. Llorca, J.J. Suol, J.M. Cabrera, J. Mater. Sci. 45 (2010) 2264-2273.
DOI URL |
[39] |
J. Wu, H. Fang, S. Yoon, H. Kim, C. Lee, Appl. Surf. Sci. 252 (2005) 1368-1377.
DOI URL |
[40] | T. Van Steenkiste, J.R. Smith, in: Proceedings of the International Thermal Spray Conference, Materials Park, OH, USA, Orlando, ASM Int., 2003, pp. 53-61. 5-8 May. |
[41] |
X.J. Ning, J.H. Jang, H.J. Kim, Appl. Surf. Sci. 253 (2007) 7449-7455.
DOI URL |
[42] |
J.C. Lee, J.Y. Suh, J.P. Ahn, Met. Mater. Trans. A 34 (2003) 625-632.
DOI URL |
[43] |
S. Hariprasad, S.M.L. Sastry, K.L. Jerina, Acta Mater 44 (1996) 383-389.
DOI URL |
[44] |
M.H. Shih, C.Y. Yu, P.W. Kao, C.P. Chang, Scr. Mater. 45 (2001) 793-799.
DOI URL |
[45] |
S. Billard, J.P. Fondere, B. Bacroix, G.F. Dirras, Acta Mater 54 (2006) 411-421.
DOI URL |
[46] | Y.J. Li, R. Valiev, W. Blum, Mater. Sci. Eng. A 410- 411 (2005) 451-456. |
[47] |
F. Tang, J.M. Schoenung, Mater. Sci. Eng. A 493 (2008) 101-103.
DOI URL |
[48] |
H.G.F. Wilsdorf, D.K. Wilsdorf, Mater. Sci. Eng. A 164 (1993) 1-14.
DOI URL |
[49] |
U.F. Kocks, H. Mecking, Prog. Mater. Sci. 48 (2003) 171-273.
DOI URL |
[50] |
Y. Estrin, H. Mecking, Acta Metall 32 (1984) 57-70.
DOI URL |
[51] |
A. Oudin, M.R. Barnett, P.D. Hodgson, Mater. Sci. Eng. A 367 (2004) 282-294.
DOI URL |
[52] |
W. Wei, K.X. Wei, G.J. Fan, Acta Mater 56 (2008) 4771-4779.
DOI URL |
[1] | Hanchen Feng, Lei Cai, Linfeng Wang, Xiaodan Zhang, Feng Fang. Microstructure and strength in ultrastrong cold-drawn medium carbon steel [J]. J. Mater. Sci. Technol., 2022, 97(0): 89-100. |
[2] | Shiyu Wu, Dongxu Qiao, Haitao Zhang, Junwei Miao, Hongliang Zhao, Jun Wang, Yiping Lu, Tongmin Wang, Tingju Li. Microstructure and mechanical properties of CxHf0.25NbTaW0.5 refractory high-entropy alloys at room and high temperatures [J]. J. Mater. Sci. Technol., 2022, 97(0): 229-238. |
[3] | Tianci Xie, Hui Shi, Hongbin Wang, Qun Luo, Qian Li, Kuo-Chih Chou. Thermodynamic prediction of thermal diffusivity and thermal conductivity in Mg-Zn-La/Ce system [J]. J. Mater. Sci. Technol., 2022, 97(0): 147-155. |
[4] | Ruifeng Dong, Xiaoyang Zhang, Chenhui Li, Yuhong Zhao, Jinzhong Tian, Li Wu, Hua Hou. Correlation between the mechanical properties and the 〈110〉 texture in a hot-rolled near β titanium alloy [J]. J. Mater. Sci. Technol., 2022, 97(0): 165-168. |
[5] | Pengyu Wen, Bin Hu, Jiansheng Han, Haiwen Luo. A strong and ductile medium Mn steel manufactured via ultrafast heating process [J]. J. Mater. Sci. Technol., 2022, 97(0): 54-68. |
[6] | Hongfeng Dong, Baozhong Li, BoBo Liu, Yang Zhang, Lei Sun, Kun Luo, Yingju Wu, Mengdong Ma, Bing Liu, Wentao Hu, Julong He, Dongli Yu, Bo Xu, Zhisheng Zhao, Yongjun Tian. Extraordinary high-temperature mechanical properties in binder-free nanopolycrystalline WC ceramic [J]. J. Mater. Sci. Technol., 2022, 97(0): 169-175. |
[7] | Yu Yin, Qiyang Tan, Qiang Sun, Wangrui Ren, Jingqi Zhang, Shiyang Liu, Yingang Liu, Michael Bermingham, Houwen Chen, Ming-Xing Zhang. Heterogeneous lamella design to tune the mechanical behaviour of a new cost-effective compositionally complicated alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 113-125. |
[8] | Shiwei Li, Jinglong Li, Junmiao Shi, Yu Peng, Xuan Peng, Xianjun Sun, Feng Jin, Jiangtao Xiong, Fusheng Zhang. Microstructure and mechanical properties of transient liquid phase bonding DD5 single-crystal superalloy to CrCoNi-based medium-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 140-150. |
[9] | Bijun Xie, Zhenxiang Yu, Haiyang Jiang, Bin Xu, Chunyang Wang, Jianyang Zhang, Mingyue Sun, Dianzhong Li, Yiyi Li. Effects of surface roughness on interfacial dynamic recrystallization and mechanical properties of Ti-6Al-3Nb-2Zr-1Mo alloy joints produced by hot-compression bonding [J]. J. Mater. Sci. Technol., 2022, 96(0): 199-211. |
[10] | Jinshuo Zhang, Guohua Wu, Liang Zhang, Xiaolong Zhang, Chunchang Shi, Xin Tong. Addressing the strength-ductility trade-off in a cast Al-Li-Cu alloy—Synergistic effect of Sc-alloying and optimized artificial ageing scheme [J]. J. Mater. Sci. Technol., 2022, 96(0): 212-225. |
[11] | Yinbao Tian, Junqi Shen, Shengsun Hu, Jian Gou, Yan Cui. Effects of cold metal transfer mode on the reaction layer of wire and arc additive-manufactured Ti-6Al-4V/Al-6.25Cu dissimilar alloys [J]. J. Mater. Sci. Technol., 2021, 74(0): 35-45. |
[12] | C.C. Zhang, H.L. Wei, T.T. Liu, L.Y. Jiang, T. Yang, W.H. Liao. Influences of residual stress and micro-deformation on microstructures and mechanical properties for Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy produced by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2021, 75(0): 174-183. |
[13] | Weiming Yang, Xinfa Sun, Haishun Liu, Changfeng Yu, Wenyu Li, Akihisa Inoue, Daniel Şopu, Jürgen Eckert, Chunguang Tang. Structural homology of the strength for metallic glasses [J]. J. Mater. Sci. Technol., 2021, 81(0): 123-130. |
[14] | Liang Deng, Long Zhang, Konrad Kosiba, René Limbach, Lothar Wondraczek, Gang Wang, Dongdong Gu, Uta Kühn, Simon Pauly. CuZr-based bulk metallic glass and glass matrix composites fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2021, 81(0): 139-150. |
[15] | Zihong Wang, Xin Lin, Nan Kang, Jing Chen, Hua Tan, Zhe Feng, Zehao Qin, Haiou Yang, Weidong Huang. Laser powder bed fusion of high-strength Sc/Zr-modified Al-Mg alloy: phase selection, microstructural/mechanical heterogeneity, and tensile deformation behavior [J]. J. Mater. Sci. Technol., 2021, 95(0): 40-56. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||