J. Mater. Sci. Technol. ›› 2021, Vol. 91: 40-57.DOI: 10.1016/j.jmst.2021.02.049
• Research Article • Previous Articles Next Articles
Weigui Zhanga, Kun Lib,c,*(
), Runqiang Chid, Susheng Tane, Peijie Lif
Received:2020-12-10
Revised:2020-12-10
Accepted:2020-12-10
Published:2021-11-20
Online:2021-11-20
Contact:
Kun Li
About author:*E-mail address: kun.li@cqu.edu.cn (K. Li).Weigui Zhang, Kun Li, Runqiang Chi, Susheng Tan, Peijie Li. Insights into microstructural evolution and deformation behaviors of a gradient textured AZ31B Mg alloy plate under hypervelocity impact[J]. J. Mater. Sci. Technol., 2021, 91: 40-57.
Fig. 1. EBSD analysis of the as-received AZ31B Mg plate. (a) Orientation map (OM); (b) pole figures (PFs) on the planes of {0002} and {10-10} (The PFs are converted to the ED-TD plane for the comparison with the following XRD macrotexture).
Fig. 2. Normal view and corresponding cross-section view of the impact craters in AZ31B Mg alloy targets at the impact velocity of 1.6 km/s (a-c), 3.8 km/s (d-f) and 4.4 km/s (g-i). (The impact direction relative to the target is noted in (c))
Fig. 5. Metallographic morphologies around the crater in AZ31B Mg alloy target plate impacted at the velocity of 1.6 km/s: (a) residual microstructure along the entire crater cross-section; (b, c) enlarged view of microstructure in the left and right sides of the crater wall showing abundant shear bands; (d) enlarged view of microstructure in the bottom of the crater along the impact direction.
Fig. 7. Metallographic morphologies around the crater in AZ31B Mg alloy target plate impacted at the velocity of 3.8 km/s near the upper side of the crater wall (a), near the central side of the crater wall (b), near the lower side of the crater wall (c), near the bottom of the crater along the impact direction (d) and near the macrocracks (e).
Fig. 8. Metallographic morphologies around the crater in AZ31B Mg alloy target plate impacted at the velocity of 4.4 km/s near the upper side of the crater wall (a), near the central side of the crater wall (b), near the lower side of the crater wall (c), near the bottom of the crater along the impact direction (d), and (e) near the lower side of the crater wall.
Fig. 12. The macrotexture evolution at {0002} and {10-10} planes around the crater wall impacted at the velocity of 3.8 km/s: (a, b) the upper region of the crater, (c, d) the middle region of the crater and (e, f) the lower region of the crater.
Fig. 13. The macrotexture evolution at {0002} and {10-10} planes around the crater wall impacted at the velocity of 4.4 km/s: (a, b) the upper region of the crater, (c, d) the middle region of the crater and (e, f) the lower region of the crater.
Fig. 14. Schmid factor (SF) analysis of dislocation slip and twinning systems in the gradient textured AZ31B Mg alloy plate: (a) basal <a> slip, (b) prismatic <a> slip, (c) pyramidal <c+a> slip, (d) {10-12}〈10-11〉 extension twinning, and (e) {10-11}〈10-12〉 compression twinning.
Fig. 15. Bright field TEM micrographs of the gradient textured AZ31B Mg alloy target plate impacted at the velocity of 3.8 km/s: (a-c) one observed area in A location corresponding to the upper location, (d-f) another observed area in A location corresponding to the upper location and (g-i) the observed area in B location corresponding to the middle location in Fig. 11.
Fig. 16. Bright field TEM micrographs of the gradient textured AZ31B Mg alloy target plate impacted at the velocity of 4.4 km/s: (a-d) the observed area in A location corresponding to the upper location, and (e-h) the observed area in B location corresponding to the middle location in Fig. 11.
| [1] | J. Zukas, High Velocity Impact Dynamics, John Wiley & Sons, New York, 1990. |
| [2] | M.A. Meyers, Dynamic Behavior of Materials, Wiley, New York, 1994. |
| [3] | M. Easton, A. Beer, M. Barnett, C. Davies, G. Dunlop, Y. Durandet, S. Blacket, T. Hilditch, P. Beggs, JOM 60 (2008) 57-62. |
| [4] | S.N. Mathaudhu, E.A. Nyberg , in: Proceedings to Magnesium Technology Sym- posium, 2010 Seattle, U.S.February14-18. |
| [5] | T.M. Pollock, Science 328 (2010) 986-987. |
| [6] | Q. Luo, C. Zhai, Q.F. Gu, W.F. Zhu, Q. Li. J. Alloys Compd. 814(2020) 152297. |
| [7] | L.E. Murr, A. Ayala, C.S. Niou, Mater. Sci. Eng. A 216 (1996) 69-79. |
| [8] | L.E. Murr, S.A. Quinones, E. Ferreyra, A. Ayala, O.L. Valerio, F. Horz, R.P. Bern- hard, Mater. Sci. Eng. A 256 (1998) 166-182. |
| [9] | L. Zhen, G.A. Li, J.S. Zhou, D.Z. Yang, Mater. Sci. Eng. A 391 (2005) 354-366. |
| [10] | K. Tanaka, M. Nishida, H. Ogawa, M. Akahori, F. Aikawa, Int. J. Impact Eng. 35(2008) 1821-1826. |
| [11] | Y.C. Ye, P.J Li, L.S. Novikov, V.S. Avilkina, L.J. He, Acta Mater 58 (2010) 2520-2526. |
| [12] | M. Nishida, K. Hayashi, J. Nakagawa, Y. Ito, Int. J. Impact Eng. 42(2012) 37-47. |
| [13] | G.A. Li, L. Zhen, C. Lin, R.S. Gao, X. Tan, C.Y. Xu, Mater. Sci. Eng. A 395 (2005) 98-101. |
| [14] | K.A. Iyer, K.L. Poormon, R.M. Deacon, D.S. Mehoke, P.K. Swaminathan, R.C. Brown, Proc. Eng 58 (2013) 127-137. |
| [15] | Z.X. Zheng, D.Z. Zhu, X. Ding, X.Q. Li, W.P. Chen, Mater. Des. 108(2016) 86-92. |
| [16] | I. Ulacia, N.V. Dudamell, F. Ga lvez, S. Yi, M.T. Pe rez-Prado, I. Hurtado, Acta Mater. 58(2010) 2988-2998. |
| [17] | N.V. Dudamell, I. Ulacia, F. Ga ´lvez, S. Yi, J. Bohlen, D. Letzig, I. Hurtado, M.T. Pe rez-Prado, Acta Mater. 59(2011) 6949-6962. |
| [18] | A. Pandey, F. Kabirian, J.H. Hwang, S.H. Choi, A.S. Khan, Int. J. Plast. 68(2015) 111-131. |
| [19] | W.Q. Song, P. Beggs, M. Easton, Mater. Des. 30(2009) 642-648. |
| [20] | C.S. Meredith, J.T. Lloyd, T. Sano, Mater. Sci. Eng. A 673 (2016) 73-82. |
| [21] | B. Li, S.P. Joshi, O. Almagri, Q. Ma, K.T. Ramesh, T. Mukai, Acta Mater. 60(2012) 1818-1826. |
| [22] | D. Orlovab, M. Hockauf, L.W. Meyerd, Y. Estrin, Philos. Mag. Lett. 93(2013) 541-549. |
| [23] | S. Agnew, W. Whittington, A. Oppedal, H. El Kadiri, M. Shaeffer, K.T. Ramesh, J. Bhattacharyya, R. Delorme, B. Davis, JOM 66 (2014) 277-290. |
| [24] | H. Asgari, A.G. Odeshi, J.A. Szpunar, L.J. Zeng, E. Olsson, D.Y. Li, Mater. Sci. Eng. A 623 (2015) 10-21. |
| [25] | R.L. Woodward. J. Mater. Sci. 15(1980) 2117-2120. |
| [26] | M.F. Abdullah, S. Abdullah, M.Z. Omar, Z. Sajuri, R, M Sohaimi, Adv.Mech. Eng. 7(2015) 1-13. |
| [27] | X.Y. Shi, A.A. Luo, S.C. Sutton, L. Zeng, S.Y. Wang, X.Q. Zeng, D.J. Li, W.J. Ding, J. Alloys Compd. 650(2015) 622-632. |
| [28] | G.A Graham, A.T. Kears, M.M. Grady, I.P. Wright, A.D. Griffiths, A.M. Mcdonnell. Int. J. Impact Eng. 23(1999) 95-100. |
| [29] | D.L. Zou, L. Zhen, Y. Zhu, C.Y. Xu, W.Z. Shao, B.J. Pang, Mater. Sci. Eng. A 527 (2010) 3323-3328. |
| [30] | D.L. Zou, L. Zhen, Y. Zhu, C.Y. Xu, W.Z. Shao, B.J. Pang, Mater. Des. 31(2010) 3708-3715. |
| [31] | Y.L. Guo, Q. Luo, B. Liu, Q. Li, Scr. Mater. 178(2020) 422-427. |
| [32] | M. Nishida, K. Ishida, F. Kodama, K. Hayashi, Y. Akahoshi, K. Hokamoto, T. Mayama, M. Yamasaki, Y. Kawamura, Procedia Eng. 173(2017) 65-72. |
| [33] | M. Nishida, F. Kodama, K. Hayashi, Y. Akahoshi, K. Hokamoto, Y. Kawamura, Proceeding to the 12th International Conference on the Mechanical and Phys- ical Behaviour of Materials under Dynamic Loading, 2018 Arcachon, France- September 09-14. |
| [34] | Q. Xue, X.Z. Liao, Y.T. Zhu, G.T. Gray, Mater. Sci. Eng. A 410 (2005) 252-256. |
| [35] | D.L. Yin, K.F. Zhang, G.F. Wang, Mater. Sci. Eng. A 392 (2005) 320-325. |
| [36] | L.E. Murr, E.V. Esquivel. J. Mater. Sci. 39(2004) 1153-1168. |
| [37] | W.G. Zhang, S. Liu, K. Li, P.J. Li, J.F. Qi, Z. Wang, Y. Chen, H.S. Zhang, L. Meng. J. Alloys Compd. 749(2018) 23-39. |
| [38] | W.G. Zhang, Y.C. Ye, L.J. He, P.J. Li, H.S. Zhang. J. Alloys Compd. 696(2017) 1067-1079. |
| [39] | B.G Cour-Palais. Int.J. Impact Eng. 5(1987) 221-237. |
| [40] | R. Kinslow, High Velocity Impact Phenomena, Academic Press, New York, 1970. |
| [41] | Y.H. Sun, C.C. Shi, Z. Liu, D.S. Wen, Shock Vib(2015) 1-15 2015. |
| [42] | D.A. Shockey, D.R. Curran, P.S. De Carli, , J.Appl. Phys. 46(1975) 3766-3775. |
| [43] | L. Zhen, D.L. Zou, C.Y. Xu, W.Z. Shao, Mater. Sci. Eng. A 527 (2010) 5728-5733. |
| [44] | D.L. Zou, L. Zhen, C.Y. Xu, W.Z. Shao, Mater. Charact. 62(2011) 496-502. |
| [45] | G.A. Li, L. Zhen, C. Lin, R.S. Gao, X. Tan, C.Y. Xu, Mater. Sci. Eng. A 395 (2005) 98-101. |
| [46] | B. Gonzalez, L.E. Murr, O.L. Valerio, E.V. Esquivel, H. Lopez, Mater. Charact. 49(2003) 359-366. |
| [47] | G.A. Li, L. Zhen, H.T. Li, X. Tan, Mater. Sci. Eng. A 384 (2004) 12-18. |
| [48] | M.L. Liu, Z.Q. Su Proc. SPIE 9438(2015) 94381R. |
| [49] | O.L. Valerio-Flores, L.E. Murr, V.S. Hernanedz, S.A. Quinones J. Mater. Sci. 39(2004) 6271-6289. |
| [50] | K. Tanaka, M. Nishida, N. Takada, Int. J. Impact Eng. 33(2006) 788-798. |
| [51] | F. Feng, S.Y. Huang, Z.H. Meng, J.H. Hu, Y. Lei, M.C. Zhou, Z.Z. Yang, Mater. Sci. Eng. A 594(2014) 334-343. |
| [52] | L. Meng, An EBSD Micro-texture Study on Hot and Warm Deformation Behav- iors of Magnesium Alloys, University of Science and Technology Beijing, Bei-jing, 2008. |
| [53] | Y.L. Guo, B. Liu, W. Xie, Q. Luo, Q. Li, Scr. Mater. 193(2021) 127-131. |
| [54] | Q. Luo, Y.L. Guo, Bin. Liu, Y.J. Feng, J.Y. Zhang, J. Mater. Sci. Technol. 44(2020) 171-190. |
| [1] | Guan-Qiang Wang, Ming-Song Chen, Hong-Bin Li, Y.C. Lin, Wei-Dong Zeng, Yan-Yong Ma. Methods and mechanisms for uniformly refining deformed mixed and coarse grains inside a solution-treated Ni-based superalloy by two-stage heat treatment [J]. J. Mater. Sci. Technol., 2021, 77(0): 47-57. |
| [2] | Peng Liu, Rui Zhang, Yong Yuan, Chuanyong Cui, Faguang Liang, Xi Liu, Yuefeng Gu, Yizhou Zhou, Xiaofeng Sun. Microstructural evolution of a Ni-Co based superalloy during hot compression at γ′ sub-/super-solvus temperatures [J]. J. Mater. Sci. Technol., 2021, 77(0): 66-81. |
| [3] | Pengfei Ji, Bohan Chen, Bo Li, Yihao Tang, Guofeng Zhang, Xinyu Zhang, Mingzhen Ma, Riping Liu. Influence of Nb addition on microstructural evolution and compression mechanical properties of Ti-Zr alloys [J]. J. Mater. Sci. Technol., 2021, 69(0): 7-14. |
| [4] | Yinling Zhang, Zhuo Chen, Shoujiang Qu, Aihan Feng, Guangbao Mi, Jun Shen, Xu Huang, Daolun Chen. Multiple α sub-variants and anisotropic mechanical properties of an additively-manufactured Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2021, 70(0): 113-124. |
| [5] | Xiaojie Zhou, Yuan Yao, Jian Zhang, Xiaomin Chen, Weiying Huang, Jing Pan, Haoran Wang, Maopeng Weng. A high-performance Mg-4.9Gd-3.2Y-1.1Zn-0.5Zr alloy via multidirectional forging after analyzing its compression behavior [J]. J. Mater. Sci. Technol., 2021, 70(0): 156-167. |
| [6] | Hui Jiang, Dongxu Qiao, Wenna Jiao, Kaiming Han, Yiping Lu, Peter K. Liaw. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 119-124. |
| [7] | Luyan Yang, Shuangming Li, Kai Fan, Yang Li, Yanhui Chen, Wei Li, Deli Kong, Pengfei Cao, Haibo Long, Ang Li. Twin crystal structured Al-10 wt.% Mg alloy over broad velocity conditions achieved by high thermal gradient directional solidification [J]. J. Mater. Sci. Technol., 2021, 71(0): 152-162. |
| [8] | Xiao Zhang, Pei Wang, Dianzhong Li, Yiyi Li. Multi-scale study on the heterogeneous deformation behavior in duplex stainless steel [J]. J. Mater. Sci. Technol., 2021, 72(0): 180-188. |
| [9] | Yeshun Huang, Xinguang Wang, Chuanyong Cui, Zihao Tan, Jinguo Li, Yanhong Yang, Jinlai Liu, Yizhou Zhou, Xiaofeng Sun. Effect of thermal exposure on the microstructure and creep properties of a fourth-generation Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 69(0): 180-187. |
| [10] | Mingxiang Liu, Changjiang Song, Zhenshan Cui. Crystallographic texture evolution and martensite transformation in the strain hardening process of a ferrite-based low density steel [J]. J. Mater. Sci. Technol., 2021, 78(0): 247-259. |
| [11] | Hongwang Zhang, Yiming Zhao, Yuhui Wang, Chunling Zhang, Yan Peng. On the microstructural evolution pattern toward nano-scale of an AISI 304 stainless steel during high strain rate surface deformation [J]. J. Mater. Sci. Technol., 2020, 44(0): 148-159. |
| [12] | Miao Cao, Qi Zhang, Ke Huang, Xinjian Wang, Botao Chang, Lei Cai. Microstructural evolution and deformation behavior of copper alloy during rheoforging process [J]. J. Mater. Sci. Technol., 2020, 42(0): 17-27. |
| [13] | Liang Lan, Xinyuan Jin, Shuang Gao, Bo He, Yonghua Rong. Microstructural evolution and stress state related to mechanical properties of electron beam melted Ti-6Al-4V alloy modified by laser shock peening [J]. J. Mater. Sci. Technol., 2020, 50(0): 153-161. |
| [14] | Jun Jiang, Pengwan Chen, Weifu Sun. Monitoring micro-structural evolution during aluminum sintering and understanding the sintering mechanism of aluminum nanoparticles: A molecular dynamics study [J]. J. Mater. Sci. Technol., 2020, 57(0): 92-100. |
| [15] | Y.H. Gao, L.F. Cao, J. Kuang, J.Y. Zhang, G. Liu, J. Sun. Dual effect of Cu on the Al3Sc nanoprecipitate coarsening [J]. J. Mater. Sci. Technol., 2020, 37(0): 38-45. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
