J. Mater. Sci. Technol. ›› 2021, Vol. 84: 230-238.DOI: 10.1016/j.jmst.2020.12.058
• Research Article • Previous Articles
Zijian Zhanga,b, En-Hou Hana,*(), Chao Xianga,c
Received:
2020-08-17
Revised:
2020-10-22
Accepted:
2020-12-11
Published:
2021-09-10
Online:
2021-01-30
Contact:
En-Hou Han
About author:
* E-mail address: ehhan@imr.ac.cn (E.-H. Han).Zijian Zhang, En-Hou Han, Chao Xiang. Irradiation behaviors of two novel single-phase bcc-structure high-entropy alloys for accident-tolerant fuel cladding[J]. J. Mater. Sci. Technol., 2021, 84: 230-238.
HEAs | Cr | Mo | Nb | Ti | V | Zr |
---|---|---|---|---|---|---|
Cr-HEA | 6.66 | 13.33 | 26.67 | 26.67 | 26.67 | - |
Zr-HEA | - | 15.38 | 30.77 | 30.77 | 15.38 | 7.70 |
Table 1 Nominal compositions (at.%) of the Cr-HEA and Zr-HEA.
HEAs | Cr | Mo | Nb | Ti | V | Zr |
---|---|---|---|---|---|---|
Cr-HEA | 6.66 | 13.33 | 26.67 | 26.67 | 26.67 | - |
Zr-HEA | - | 15.38 | 30.77 | 30.77 | 15.38 | 7.70 |
Fig. 2. (a) XRD patterns of the unirradiated and irradiated Cr-HEA at ion fluences of 1 × 1017 ions/cm2 and 5 × 1017 ions/cm2. (b) XRD patterns of the unirradiated and irradiated Zr-HEA at ion fluences of 5 × 1017 ions/cm2.
Fig. 3. SEM backscatter electron images of the unirradiated Cr-HEA (a) and Zr-HEA (b). The two HEAs both have an equiaxed microstructure with the grain size of 100?200 μm.
Fig. 7. (a) Nanoindentation hardness as a function of the indentation depth in the unirradiated and irradiated Cr-HEA at ion fluences of 1 × 1017 ions/cm2 and 5 × 1017 ions/cm2. (b) Nanoindentation hardness as a function of the indentation depth in the unirradiated and irradiated Zr-HEA at ion fluences of 5 × 1017 ions/cm2. (c) Average nanoindentation hardness as a function of the irradiation fluence in the unirradiated and irradiated Cr-HEA and Zr-HEA.
HEAs | Unirradiated | 1 × 1017 ions/cm2 | 5 × 1017 ions/cm2 | ||
---|---|---|---|---|---|
H0 | H0 | ΔH | H0 | ΔH | |
Cr-HEA | 7.75 ± 0.33 | 8.52 ± 0.14 | 0.77 ± 0.47 | 9.24 ± 0.24 | 1.49 ± 0.57 |
Zr-HEA | 7.09 ± 0.25 | - | - | 8.45 ± 0.20 | 1.36 ± 0.45 |
Table 2 Nanoindentation test results (GPa) of the Cr-HEA and Zr-HEA.
HEAs | Unirradiated | 1 × 1017 ions/cm2 | 5 × 1017 ions/cm2 | ||
---|---|---|---|---|---|
H0 | H0 | ΔH | H0 | ΔH | |
Cr-HEA | 7.75 ± 0.33 | 8.52 ± 0.14 | 0.77 ± 0.47 | 9.24 ± 0.24 | 1.49 ± 0.57 |
Zr-HEA | 7.09 ± 0.25 | - | - | 8.45 ± 0.20 | 1.36 ± 0.45 |
Fig. 8. Cross-section TEM BF images of the specimens irradiated by helium ion: (a) Cr-HEA at ion fluences of 1 × 1017 ions/cm2, (b) Cr-HEA at ion fluences of 5 × 1017 ions/cm2, (c) Zr-HEA at ion fluences of 5 × 1017 ions/cm2. There are considerable small white spots that represent helium bubbles. High-magnification TEM BF images of helium bubbles: (d) Cr-HEA at ion fluences of 5 × 1017 ions/cm2, (e) Zr-HEA at ion fluences of 5 × 1017 ions/cm2. The helium bubbles are marked by red arrows.
Fig. 9. Cross-section TEM BF images of the specimens irradiated by helium ion: (a) Cr-HEA at ion fluences of 1 × 1017 ions/cm2, (b) Cr-HEA at ion fluences of 5 × 1017 ions/cm2, (c) Zr-HEA at ion fluences of 5 × 1017 ions/cm2. Some irradiated-induced dislocation loops are marked by white arrows.
HEAs | Fluence (1017 ions/cm2) | Mean size (nm) | Density (1021 m-3) |
---|---|---|---|
Cr-HEA | 1 | 5.55 | 1.37 |
5 | 5.66 | 2.13 | |
Zr-HEA | 5 | 5.67 | 2.40 |
Table 3 Statistical results of dislocation of the Cr-HEA and Zr-HEA.
HEAs | Fluence (1017 ions/cm2) | Mean size (nm) | Density (1021 m-3) |
---|---|---|---|
Cr-HEA | 1 | 5.55 | 1.37 |
5 | 5.66 | 2.13 | |
Zr-HEA | 5 | 5.67 | 2.40 |
[1] |
S.J. Zinkle, G.S. Was, Acta Mater. 61 (2013) 735-758.
DOI URL |
[2] |
R.M. Boothby, J. Nucl. Mater. 230 (1996) 148-157.
DOI URL |
[3] |
A.F. Rowcliffe, L.K. Mansur, D.T. Hoelzer, R.K. Nanstad, J. Nucl. Mater. 392 (2009) 341-352.
DOI URL |
[4] |
I. Charit, JOM 70 (2017) 1-3.
DOI URL |
[5] |
Z. Duan, H. Yang, Y. Satoh, K. Murakami, S. Kano, Z. Zhao, J. Shen, H. Abe, Nucl. Eng. Des. 316 (2017) 131-150.
DOI URL |
[6] |
K.A. Terrani, S.J. Zinkle, L.L. Snead, J. Nucl. Mater. 448 (2014) 420-435.
DOI URL |
[7] | S.J. Zinkle, K.A. Terrani, L.L. Snead, Curr. Opin. Solid State Mater.Sci. 20 (2016) 401-410. |
[8] |
A.T. Motta, L.Q. Chen, JOM 64 (2012) 1403-1408.
DOI URL |
[9] |
K.A. Terrani, J. Nucl. Mater. 501 (2018) 13-30.
DOI URL |
[10] |
S.J. Zinkle, K.A. Terrani, J.C. Gehin, L.J. Ott, L.L. Snead, J. Nucl. Mater. 448 (2014) 374-379.
DOI URL |
[11] |
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6 (2004) 299-303.
DOI URL |
[12] |
B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A 375-377 (2004) 213-218.
DOI URL |
[13] |
W. Zhang, P.K. Liaw, Y. Zhang, Sci. China Mater. 61 (2018) 2-22.
DOI URL |
[14] |
Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater. Sci. 61 (2014) 1-93.
DOI URL |
[15] |
Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang, Mater. Today 19 (2016) 349-362.
DOI URL |
[16] |
D.B. Miracle, O.N. Senkov, Acta Mater. 122 (2017) 448-511.
DOI URL |
[17] |
B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345 (2014) 1153-1158.
DOI PMID |
[18] |
Y. Zou, H. Ma, R. Spolenak, Nat. Commun. 6 (2015) 7748.
DOI PMID |
[19] |
O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, C.F. Woodward, J. Alloys Compd. 509 (2011) 6043-6048.
DOI URL |
[20] | C. Xiang, J. Wang, H. Fu, E.H. Han, Z. Zhang, J. Chin. Soc. Corros. Prot. 36 (2016) 107-112. |
[21] |
Y.Y. Chen, U.T. Hong, H.C. Shih, J.W. Yeh, T. Duval, Corros. Sci. 47 (2005) 2679-2699.
DOI URL |
[22] |
H. Luo, Z. Li, A.M. Mingers, D. Raabe, Corros. Sci. 134 (2018) 131-139.
DOI URL |
[23] |
S. Shuang, Z.Y. Ding, D. Chung, S.Q. Shi, Y. Yang, Corros. Sci. 164 (2020) 108315.
DOI URL |
[24] |
F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, E.P. George, Acta Mater. 61 (2013) 5743-5755.
DOI URL |
[25] |
Z. Wu, Y. Gao, H. Bei, Acta Mater. 120 (2016) 108-119.
DOI URL |
[26] |
Y. Zhang, M.A. Tunes, M.L. Crespillo, F. Zhang, W.L. Boldman, P.D. Rack, L. Jiang, C. Xu, G. Greaves, S.E. Donnelly, L. Wang, W.J. Weber, Nanotechnology 30 (2019) 294004.
DOI URL |
[27] |
A. Poulia, E. Georgatis, A. Lekatou, A.E. Karantzalis, Int. J. Refract. Met. Hard Mater. 57 (2016) 50-63.
DOI URL |
[28] |
M.H. Chuang, M.H. Tsai, W.R. Wang, S.J. Lin, J.W. Yeh, Acta Mater. 59 (2011) 6308-6317.
DOI URL |
[29] |
Y. Yu, J. Wang, J. Li, J. Yang, H. Kou, W. Liu, J. Mater. Sci. Technol. 32 (2016) 470-476.
DOI URL |
[30] |
N.A.P.K. Kumar, C. Li, K.J. Leonard, H. Bei, S.J. Zinkle, Acta Mater. 113 (2016) 230-244.
DOI URL |
[31] |
L. Yang, H. Ge, J. Zhang, T. Xiong, Q. Jin, Y. Zhou, X. Shao, B. Zhang, Z. Zhu, S. Zheng, X. Ma, J. Mater. Sci. Technol. 35 (2019) 300-305.
DOI URL |
[32] |
Y. Lu, H. Huang, X. Gao, C. Ren, J. Gao, H. Zhang, S. Zheng, Q. Jin, Y. Zhao, C. Lu, T. Wang, T. Li, J. Mater. Sci. Technol. 35 (2019) 369-373.
DOI URL |
[33] | P.L. Andresen, G.S. Was, in: R.J.M. Konings (Ed.), Comprehensive Nuclear Materials, Elsevier, Oxford, 2012, pp. 177-205. |
[34] |
T. Egami, M. Ojha, O. Khorgolkhuu, D.M. Nicholson, G.M. Stocks, JOM 67 (2015) 2345-2349.
DOI URL |
[35] |
M. Moschetti, A. Xu, B. Schuh, A. Hohenwarter, J.P. Couzinié, J.J. Kruzic, D. Bhattacharyya, B. Gludovatz, JOM 72 (2019) 130-138.
DOI URL |
[36] |
C. Xiang, E.H. Han, Z.M. Zhang, H.M. Fu, J.Q. Wang, H.F. Zhang, G.D. Hu, Intermetallics 104 (2019) 143-153.
DOI |
[37] |
C. Xiang, H.M. Fu, Z.M. Zhang, E.H. Han, H.F. Zhang, J.Q. Wang, G.D. Hu, J. Alloys Compd. 818 (2020) 153352.
DOI URL |
[38] |
L. Vegard, Zeitschrift für Physik 5 (1921) 17-26.
DOI URL |
[39] |
Y. Long, K. Su, J. Zhang, X. Liang, H. Peng, X. Li, Materials 11 (2018) 669.
DOI URL |
[40] |
S. Sun, N. Qiu, K. Zhang, P. He, Y. Ma, F. Gou, Y. Wang, Scr. Mater. 161 (2019) 40-43.
DOI URL |
[41] |
H. Jiang, Z. Duan, X. Zhao, B. Zhang, P. Wang, Appl. Surf. Sci. 498 (2019) 143821.
DOI URL |
[42] |
T. Egami, W. Guo, P.D. Rack, T. Nagase, Metall. Mater. Trans. A 45 (2013) 180-183.
DOI URL |
[43] |
T.Y. Tsui, G.M. Pharr, J. Mater. Res. 14 (2012) 292-301.
DOI URL |
[44] | S.J. Zinkle, J.T. Busby, Mater. Today 12 (2009) 12-19. |
[45] |
X. Zhang, C. Zhang, Z. Ding, Y. Chen, L. Zhang, J. Nucl. Mater. 531 (2020) 152014.
DOI URL |
[46] |
Y. Liu, W. Liu, L. Yu, L. Chen, H. Sui, H. Duan, Crystals 10 (2020) 44.
DOI URL |
[47] |
X. Bai, S. Wu, P. Liaw, L. Shao, J. Gigax, Metals 7 (2017) 25.
DOI URL |
[48] |
C. Xu, L. Zhang, W. Qian, J. Mei, X. Liu, Nucl. Eng. Technol. 48 (2016) 758-764.
DOI URL |
[49] |
G. Lei, R. Xie, H. Huang, R. Liu, Q. Huang, J. Li, Y. Zhou, C. Li, Q. Lei, Q. Deng, Y. Wang, C. Wang, W. Zhang, L. Yan, M. Tang, J. Alloys Compd. 746 (2018) 153-158.
DOI URL |
[50] |
W.B. Liu, J.H. Zhang, Y.Z. Ji, L.D. Xia, H.P. Liu, D. Yun, C.H. He, C. Zhang, Z.G. Yang, J. Nucl. Mater. 500 (2018) 213-219.
DOI URL |
[51] |
J. Gan, E.P. Simonen, S.M. Bruemmer, L. Fournier, B.H. Sencer, G.S. Was, J. Nucl. Mater. 325 (2004) 94-106.
DOI URL |
[52] |
A. Etienne, M. Hernández-Mayoral, C. Genevois, B. Radiguet, P. Pareige, J. Nucl. Mater. 400 (2010) 56-63.
DOI URL |
[53] |
H.F. Huang, J.J. Li, D.H. Li, R.D. Liu, G.H. Lei, Q. Huang, L. Yan, J. Nucl. Mater. 454 (2014) 168-172.
DOI URL |
[54] | X.H. Li, J. Lei, G.G. Shu, Q.M. Wan, Methods Phys. Res. Sect. B 350 (2015) 14-19. |
[55] |
Z.C. Zheng, Y.X. Yu, W.P. Zhang, Z.Y. Shen, F.F. Luo, L.P. Guo, Y.Y. Ren, R. Tang, Acta Metall. Sin. (Engl. Lett.) 30 (2016) 89-96.
DOI URL |
[56] |
J.C. Haley, S.A. Briggs, P.D. Edmondson, K. Sridharan, S.G. Roberts, S. Lozano-Perez, K.G. Field, Acta Mater. 136 (2017) 390-401.
DOI URL |
[57] |
H. Yu, Z. Yao, Y. Idrees, H.K. Zhang, M.A. Kirk, M.R. Daymond, J. Nucl. Mater. 491 (2017) 232-241.
DOI URL |
[58] |
Q. Dong, Z. Yao, P. Saidi, M.R. Daymond, J. Nucl. Mater. 511 (2018) 43-55.
DOI URL |
[59] |
B.N. Singh, A.J.E. Foreman, H. Trinkaus, J. Nucl. Mater. 249 (1997) 103-115.
DOI URL |
[60] |
S.J. Zinkle, Y. Matsukawa, J. Nucl. Mater. 329-333 (2004) 88-96.
DOI URL |
[61] |
C.R.F. Azevedo, Eng. Failure Anal. 18 (2011) 1921-1942.
DOI URL |
[62] |
H.R. Higgy, F.H. Hammad, J. Nucl. Mater. 55 (1975) 177-186.
DOI URL |
[63] |
B.N. Singh, S.J. Zinkle, J. Nucl. Mater. 206 (1993) 212-229.
DOI URL |
[64] |
H. Wiedersich, P.R. Okamoto, N.Q. Lam, J. Nucl. Mater. 83 (1979) 98-108.
DOI URL |
[65] |
S.Q. Xia, Z. Wang, T.F. Yang, Y. Zhang, J. Iron Steel Res. Int. 22 (2015) 879-884.
DOI URL |
[1] | Gaopeng Xu, Kui Wang, Xianping Dong, Lei Yang, Mahmoud Ebrahimi, Haiyan Jiang, Qudong Wang, Wenjiang Ding. Review on corrosion resistance of mild steels in liquid aluminum [J]. J. Mater. Sci. Technol., 2021, 71(0): 12-22. |
[2] | Yan Chong, Tilak Bhattacharjee, Yanzhong Tian, Akinobu Shibata, Nobuhiro Tsuji. Deformation mechanism of bimodal microstructure in Ti-6Al-4V alloy: The effects of intercritical annealing temperature and constituent hardness [J]. J. Mater. Sci. Technol., 2021, 71(0): 138-151. |
[3] | Haoxue Yang, Jinshan Li, Xiangyu Pan, William Yi Wang, Hongchao Kou, Jun Wang. Nanophase precipitation and strengthening in a dual-phase Al0.5CoCrFeNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 72(0): 1-7. |
[4] | Qinchuan He, Hejun Li, Xuemin Yin, Jinhua Lu. Effects of PyC shell thickness on the microstructure, ablation resistance of SiCnws/PyC-C/C-ZrC-SiC composites [J]. J. Mater. Sci. Technol., 2021, 71(0): 55-66. |
[5] | Wen Zhang, Lei Chen, Chenguang Xu, Wenyu Lu, Yujin Wang, Jiahu Ouyang, Yu Zhou. Densification, microstructure and mechanical properties of multicomponent (TiZrHfNbTaMo)C ceramic prepared by pressureless sintering [J]. J. Mater. Sci. Technol., 2021, 72(0): 23-28. |
[6] | X.W. Liu, N. Gao, J. Zheng, Y. Wu, Y.Y. Zhao, Q. Chen, W. Zhou, S.Z. Pu, W.M. Jiang, Z.T. Fan. Improving high-temperature mechanical properties of cast CrFeCoNi high-entropy alloy by highly thermostable in-situ precipitated carbides [J]. J. Mater. Sci. Technol., 2021, 72(0): 29-38. |
[7] | Huajing Xiong, Jianan Fu, Jinyao Li, Rashad Ali, Hong Wang, Yifan Liu, Hua Su, Yuanxun Li, Woon-Ming Lau, Nasir Mahmood, Chunhong Mu, Xian Jian. Strain-regulated sensing properties of α-Fe2O3 nano-cylinders with atomic carbon layers for ethanol detection [J]. J. Mater. Sci. Technol., 2021, 68(0): 132-139. |
[8] | Yufang Zhao, Jinyu Zhang, YaQiang Wang, Shenghua Wu, Xiaoqing Liang, Kai Wu, Gang Liu, Jun Sun. The metastable constituent effects on size-dependent deformation behavior of nanolaminated micropillars: Cu/FeCoCrNi vs Cu/CuZr [J]. J. Mater. Sci. Technol., 2021, 68(0): 16-29. |
[9] | Yaxin Xu, Wenya Li, Longzhen Qu, Xiawei Yang, Bo Song, Rocco Lupoi, Shuo Yin. Solid-state cold spraying of FeCoCrNiMn high-entropy alloy: an insight into microstructure evolution and oxidation behavior at 700-900 °C [J]. J. Mater. Sci. Technol., 2021, 68(0): 172-183. |
[10] | Jingfeng Zou, Lifeng Ma, Weitao Jia, Qichi Le, Gaowu Qin, Yuan Yuan. Microstructural and mechanical response of ZK60 magnesium alloy subjected to radial forging [J]. J. Mater. Sci. Technol., 2021, 83(0): 228-238. |
[11] | Guoqiang Ma, Darcy A. Hughes, Andrew W. Godfrey, Qiang Chen, Niels Hansen, Guilin Wu. Microstructure and strength of a tantalum-tungsten alloy after cold rolling from small to large strains [J]. J. Mater. Sci. Technol., 2021, 83(0): 34-48. |
[12] | Qinqin Wei, Guoqiang Luo, Rong Tu, Jian Zhang, Qiang Shen, Yujie Cui, Yunwei Gui, Akihiko Chiba. High-temperature ultra-strength of dual-phase Re0.5MoNbW(TaC)0.5 high-entropy alloy matrix composite [J]. J. Mater. Sci. Technol., 2021, 84(0): 1-9. |
[13] | Dan Liu, Daoxin Liu, Junfeng Cui, Xingchen Xu, Kaifa Fan, Amin Ma, Yuting He, Sara Bagherifard. Deformation mechanism and in-situ TEM compression behavior of TB8 β titanium alloy with gradient structure [J]. J. Mater. Sci. Technol., 2021, 84(0): 105-115. |
[14] | Z.W. Yang, J.M. Lin, J.F. Zhang, Q.W. Qiu, Y. Wang, D.P. Wang, J. Song. An effective approach for bonding of TZM and Nb-Zr system: Microstructure evolution, mechanical properties, and bonding mechanism [J]. J. Mater. Sci. Technol., 2021, 84(0): 16-26. |
[15] | Tao Zheng, Xiaobing Hu, Feng He, Qingfeng Wu, Bin Han, Chen Da, Junjie Li, Zhijun Wang, Jincheng Wang, Ji-jung Kai, Zhenhai Xia, C.T. Liu. Tailoring nanoprecipitates for ultra-strong high-entropy alloys via machine learning and prestrain aging [J]. J. Mater. Sci. Technol., 2021, 69(0): 156-167. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||