J. Mater. Sci. Technol. ›› 2021, Vol. 84: 219-229.DOI: 10.1016/j.jmst.2020.12.059
• Research Article • Previous Articles Next Articles
Min Cheol Joa, Selim Kima, Dong Woo Suhb, Hong Kyu Kimc, Yong Jin Kimc, Seok Su Sohnd,*(), Sunghak Leea,*(
)
Received:
2020-10-13
Revised:
2020-12-21
Accepted:
2020-12-26
Published:
2021-09-10
Online:
2021-02-05
Contact:
Seok Su Sohn,Sunghak Lee
About author:
shlee@postech.ac.kr (S. Lee).Min Cheol Jo, Selim Kim, Dong Woo Suh, Hong Kyu Kim, Yong Jin Kim, Seok Su Sohn, Sunghak Lee. Enhancement of ballistic performance enabled by transformation-induced plasticity in high-strength bainitic steel[J]. J. Mater. Sci. Technol., 2021, 84: 219-229.
Fig. 1. Dilatometric data of the heat-treatment condition for the 3h specimen. The specimen was heated to 950 ℃ at a rate of 5 ℃/s, held at 950 ℃ for 27 min, cooled rapidly to 300 ℃ at 100 ℃/s held at 300 ℃ for 3 h, then air-cooled to room temperature.
Fig. 2. EBSD inverse pole figure (IPF) and phase maps for the (a, b) 30m, (c, d) 3h, and (e, f) 24h specimens. The measured volume fractions of RA (Vγ) are 19.0%, 13.2%, and 9.8% in the 30m, 3h, and 24h specimens, respectively.
Fig. 4. SEM images and EBSD image quality (IQ) + phase maps for the (a-c) 30m, (d-f) 3h, and (g-i) 24h specimens. (b, e, h) High-magnification SEM images of areas marked in (a, d, g), presenting overall features of bainitic microstructure. (c, f, i) EBSD IQ + phase maps for the identical areas to (b, e, h) in order to clearly identify the RA and island-type martensite (M).
Fig. 5. Overall V50 ballistic impact test data, presenting that the V50 values for the 30m, 3h, and 24h specimens are 440.3, 394.1, and 388.0 m/s, respectively.
Quasi-static Compression | Dynamic Compression | |||||
---|---|---|---|---|---|---|
Specimen | Yield Strength (MPa) | Maximum Strength (MPa) | Yield Strength (MPa) | Maximum Strength (MPa) | Fracture Strain (%) | Vickers Hardness (HV) |
30m | 1288 ± 15 | 3222 ± 13 | 1704 ± 31 | 3157 ± 18 | 44.1 ± 1.0 | 468 ± 4 |
3h | 1294 ± 11 | 3111 ± 8 | 1709 ± 29 | 2937 ± 14 | 41.0 ± 0.8 | 472 ± 3 |
24h | 1399 ± 13 | 3208 ± 10 | 1840 ± 39 | 2960 ± 21 | 38.4 ± 1.5 | 486 ± 3 |
Table 1 Hardness and quasi-static and dynamic compressive tests results of the 30m, 3h, and 24h specimens.
Quasi-static Compression | Dynamic Compression | |||||
---|---|---|---|---|---|---|
Specimen | Yield Strength (MPa) | Maximum Strength (MPa) | Yield Strength (MPa) | Maximum Strength (MPa) | Fracture Strain (%) | Vickers Hardness (HV) |
30m | 1288 ± 15 | 3222 ± 13 | 1704 ± 31 | 3157 ± 18 | 44.1 ± 1.0 | 468 ± 4 |
3h | 1294 ± 11 | 3111 ± 8 | 1709 ± 29 | 2937 ± 14 | 41.0 ± 0.8 | 472 ± 3 |
24h | 1399 ± 13 | 3208 ± 10 | 1840 ± 39 | 2960 ± 21 | 38.4 ± 1.5 | 486 ± 3 |
Fig. 6. Photographs and optical micrographs of the half-sectional area of the complete penetrated specimens for the (a, b) 30m, (c, d) 3h, and (e, f) 24h specimens.
Fig. 8. (a) Schematic diagram showing an interrupted dynamic compressive test using a stopper ring. Optical micrographs of the half-sectioned area of the dynamically-compressed specimens at sequential strains of 32.5%-42.5% for the (b-d) 30m, (e-g) 3h, and (h,i) 24h specimens. (j) Schematic diagram of the strains for the maximum stress, the ASB formation, the cracking, the complete fracture during the dynamic compressive tests.
Fig. 9. TEM bright-field (BF) images and selected area diffraction (SAD) patterns of the (a, b) interior area of ASBs and (c, d) exterior area near the ASBs collected from red-boxed areas of Figs. 8(c) and 6(b), respectively, for the 30m specimen.
Fig. 10. (a) Volume fraction of martensite (VM) transformed from the RA as a function of dynamic compressive strain. (b) Hardness plot as a function of dynamic compressive strain. (c) Calculated C content in RA (Cγ) and measured Vγ for the 30m, 3h, and 24h specimens.
Steel specimen | Ca(wt.%) | Mnb(wt.%) | Mob (wt.%) | Crb (wt.%) | Size of RA (μm) | MS0c (℃) | MSc (℃) |
---|---|---|---|---|---|---|---|
30m | 1.33 | 0.58 | 0.25 | 0.62 | 1.6 | -103 | -399 |
3h | 1.53 | 0.63 | 0.24 | 0.61 | 1.3 | -201 | -567 |
24h | 1.74 | 0.62 | 0.27 | 0.61 | 1.2 | -299 | -695 |
Table 2 Calculated values of martensite-start temperature (MS) of retained austenite (RA) of the 30m, 3h, and 24h specimens.
Steel specimen | Ca(wt.%) | Mnb(wt.%) | Mob (wt.%) | Crb (wt.%) | Size of RA (μm) | MS0c (℃) | MSc (℃) |
---|---|---|---|---|---|---|---|
30m | 1.33 | 0.58 | 0.25 | 0.62 | 1.6 | -103 | -399 |
3h | 1.53 | 0.63 | 0.24 | 0.61 | 1.3 | -201 | -567 |
24h | 1.74 | 0.62 | 0.27 | 0.61 | 1.2 | -299 | -695 |
[1] | H.K.D.H. Bhadeshia, Mater. Sci.Forum 500-501 (2005) 63-74. |
[2] |
F.G. Caballero, H.K.D.H. Bhadeshia, K.J.A. Mawella, D.G. Jones, P. Brown, Mater. Sci. Technol. 18 (2002) 279-284.
DOI URL |
[3] |
Y. Wang, K. Zhang, Z. Guo, N. Chen, Y. Rong, Mater. Sci. Eng. A 552 (2012) 288-294.
DOI URL |
[4] |
C. Garcia-Mateo, F.G. Caballero, J. Chao, C. Capdevila, C. Garcia de Andres, J. Mater. Sci. 44 (2009) 4617-4624.
DOI URL |
[5] |
F.G. Caballero, M.J. Santofimia, C. Capdevila, C. García-Mateo, C. García de Andres, ISIJ Int. 46 (2006) 1479-1488.
DOI URL |
[6] | F.G. Caballero, H.K.D.H. Bhadeshia, Curr. Opin. Solid State Mater.Sci. 8 (2004) 251-257. |
[7] |
C. Garcia-Mateo, F.G. Caballero, T. Sourmail, M. Kuntz, J. Cornide, V. Smanio, R. Elvira, Mater. Sci. Eng. A 549 (2012) 185-192.
DOI URL |
[8] |
C. Garcia-Mateo, F.G. Caballero, ISIJ Int. 45 (2005) 1736-1740.
DOI URL |
[9] |
J. Kang, F.C. Zhang, X.W. Yang, B. Lv, K.M. Wu, Mater. Sci. Eng. A 686 (2017) 150-159.
DOI URL |
[10] |
J.-B. Seol, D.Raabe, P.-P. Choi, Y.-R. Im, C.-G. Park, Acta Mater. 60 (2012) 6183-6199.
DOI URL |
[11] | H.K.D.H. Bhadeshia, D.V. Edmonds, Met. Sci. 17 (1983) 411-419. |
[12] |
K. Sugimoto, T. Iida, J. Sakaguchi, T. Kashima, ISIJ Int. 40 (2000) 902-908.
DOI URL |
[13] | T. De Cock, J.P. Ferrer, C. Capdevila, F.G. Caballero, V. López, C. García de Andrés, Scr.Mater. 55 (2006) 441-443. |
[14] |
K.-I. Sugimoto, M. Tsunezawa, T. Hojo, S. Ikeda, ISIJ Int. 44 (2004) 1608-1614.
DOI URL |
[15] |
K.-I. Sugimoto, H. Tanino, J. Kobayashi, Mater. Sci. Eng. A 688 (2017) 237-243.
DOI URL |
[16] |
Y. Huang, Q. Li, X. Huang, W. Huang, Mater. Sci. Eng. A 678 (2016) 339-346.
DOI URL |
[17] |
M.C. Jo, S. Kim, D.W. Suh, S.S. Hong, H.K. Kim, S.S. Sohn, S. Lee, Mater. Sci. Eng. A 778 (2020), 139118.
DOI URL |
[18] |
B. Mishra, P.K. Jena, B. Ramakrishna, V. Madhu, T.B. Bhat, N.K. Gupta, Int. J. Impact Eng. 44 (2012) 17-28.
DOI URL |
[19] |
S. Ryan, H. Li, M. Edgerton, D. Gallardy, S.J. Cimpoeru, Int. J. Impact Eng. 94 (2016) 60-73.
DOI URL |
[20] |
A.G. Odeshi, S. Al-ameeri, S. Mirfakhraei, F. Yazdani, M.N. Bassim, Theor. Appl. Fract. Mech. 45 (2006) 18-24.
DOI URL |
[21] |
S.N. Dikshit, V.V. Kutumbarao, G. Sundararajan, Int. J. Impact Eng. 16 (1995) 293-320.
DOI URL |
[22] |
D.L. Zou, B.F. Luan, Q. Liu, L.J. Chai, J.W. Chen, Mater. Sci. Eng. A 558 (2012) 517-524.
DOI URL |
[23] |
Z. Li, S. Zhao, B. Wang, S. Cui, R. Chen, R.Z. Valiev, M.A. Meyers, Acta Mater. 181 (2019) 408-422.
DOI URL |
[24] |
A. Azimi, G.M. Owolabi, H. Fallahdoost, N. Kumar, G. Warner, Met. Mater. Int. 25 (2019) 900-911.
DOI |
[25] |
M.C. Jo, S. Kim, D.W. Kim, H.K. Park, S.S. Hong, H.K. Kim, H.S. Kim, S.S. Sohn, S. Lee, J. Alloy. Comp. 845 (2020), 155540.
DOI URL |
[26] |
S.-H. Song, R.G. Faulkner, P.E.J. Flewitt, R.F. Smith, P. Marmy, Mater. Sci. Eng. A 281 (2000) 75-81.
DOI URL |
[27] | C. Garcia-Mateo, F.G. Caballero, H.K.D.H. Bhadeshia, Mater. Sci.Forum 500-501 (2005) 495-502. |
[28] |
M.N. Yoozbashi, S. Yazdani, Mater. Sci. Eng. A 527 (2010) 3200-3205.
DOI URL |
[29] | W. Steven, A.G. Haynes, J. Iron Steel Inst. 183 (1956) 349-359. |
[30] |
A.P. Bentley, G.C. Smith, Metall. Trans. A 17 (1986) 1593-1600.
DOI URL |
[31] | D.J. Dyson, B. Holmes, J. Iron Steel Inst. 208 (1970) 469-474. |
[32] |
S.S. Babu, E.D. Specht, S.A. David, E. Karapetrova, P. Zschack, M. Peet, H.K.D.H. Bhadeshia, Metall. Mater. Trans. A 36 (2005) 3281-3289.
DOI URL |
[33] | MIL-STD-662F, Department of Defense Test Method Standard, V50 Ballistic Test for Armor, 1997. |
[34] |
S.M. Hasan, A. Mandal, S.B. Singh, D. Chakrabarti, Mater. Sci. Eng. A 751 (2019) 142-153.
DOI URL |
[35] |
G. Gao, H. Zhang, X. Gui, Z. Tan, B. Bai, Y. Weng, Acta Mater. 101 (2015) 31-39.
DOI URL |
[36] |
C. Hofer, F. Winkelhofer, H. Clemens, S. Primig, Mater. Sci. Eng. A 664 (2016) 236-246.
DOI URL |
[37] |
F. HajyAkbary, J. Sietsma, G. Miyamoto, T. Furuhara, M.J. Santofimia, Acta Mater. 104 (2016) 72-83.
DOI URL |
[38] | E.J. Rapacki, K. Frank, R.B. Leavy, M.J. Keele, J.J. Prifti, Armor steel hardness influence on kinetic energy penetration, in: Proceedings of the 15th InternationalSymposium on Ballistics, Jerusalem, Israel, 1995. |
[39] | W.A. Gooch, D.D. Showalter, M.S. Burkins, V. Thorn, S.J. Cimpoeru, R. Barnett, Ballistic testing of Australian bisalloy steel for armor applications, in: 23rd International Symposium on Ballistics, Tarragona, Spain, 2007, pp.1181-1188. |
[40] | W.A. Gooch, M.S. Burkins, R. Squillacioti, R.-M. Stockman Koch, H. Oscarsson, C. Nash, Ballistic testing of Swedish steel armox plate for U.S. armor applications, in: 21st International Symposium on Ballistics, Adelaide, Australia, 2004. |
[41] |
W.-S. Lee, C.-Y. Liu, Mater. Sci. Eng. A 426 (2006) 101-113.
DOI URL |
[42] | L.W. Meyer, T. Halle, N. Herzig, L. Krüger, S.V. Razorenov, J. Phys. Iv 134 (2006) 75-80. |
[43] |
L. Lan, C. Qiu, D. Zhao, X. Gao, L. Du, Mater. Sci. Eng. A 529 (2011) 192-200.
DOI URL |
[44] | Y. Me-Bar, D. Shechtman, Mater. Sci. Eng. 58 (1983) 181-188. |
[45] |
M.C. Jo, S. Kim, D.W. Suh, S.S. Hong, H.K. Kim, S.S. Sohn, S. Lee, Mater. Sci. Eng. A 792 (2020), 139818.
DOI URL |
[46] |
F.G. Caballero, M.K. Miller, C. Garcia-Mateo, C. Capdevila, S.S. Babu, Acta Mater. 56 (2008) 188-199.
DOI URL |
[47] |
T. Demir, M. Übeyli, R.O. Yıldırım, Mater. Des. 29 (2008) 2009-2016.
DOI URL |
[48] | J. Manganello, K.H. Abbott, J. Mater. 7 (1972) 231-239. |
[49] |
P.K. Jena, B. Mishra, M. RameshBabu, A. Babu, A.K. Singh, K. SivaKumar, T.B. Bhat, Int. J. Impact Eng. 37 (2010) 242-249.
DOI URL |
[50] |
H. Lan, L. Du, N. Zhou, X. Liu, Acta Metall. Sin. 27 (2014) 19-26.
DOI URL |
[51] |
J. Chakraborty, P.P. Chattopadhyay, D. Bhattacharjee, I. Manna, Metall. Mater. Trans. A 41 (2010) 2871-2879.
DOI URL |
[52] |
E. Abbasi, W.M. Rainforth, Mater. Sci. Eng. A 651 (2016) 822-830.
DOI URL |
[53] |
S. Zaefferer, J. Ohlert, W. Bleck, Acta Mater. 52 (2004) 2765-2778.
DOI URL |
[54] |
J. Pešička, R. Kužel, A. Dronhofer, G. Eggeler, Acta Mater. 51 (2003) 4847-4862.
DOI URL |
[55] |
H. Shirazi, G. Miyamoto, S.H. Nedjad, T. Chiba, M.N. Ahmadabadi, T. Furuhara, Acta Mater. 144 (2018) 269-280.
DOI URL |
[56] |
T. Furuhara, K. Kobayashi, T. Maki, ISIJ Int. 44 (2004) 1937-1944.
DOI URL |
[57] |
S.H. He, B.B. He, K.Y. Zhu, R. Ding, H. Chen, M.X. Huang, Scr. Mater. 168 (2019) 23-27.
DOI URL |
[58] |
L.P. Kubin, A. Mortensen, Scr. Mater. 48 (2003) 119-125.
DOI URL |
[59] |
J. Cornide, G. Miyamoto, F.G. Caballero, T. Furuhara, M.K. Miller, C. Garcia-Mateo, Solid State Phenom. 172-174 (2011) 117-122.
DOI URL |
[60] |
L. Lan, M. Yu, C. Qiu, Mater. Sci. Eng. A 742 (2019) 442-450.
DOI URL |
[61] |
N. Takayama, G. Miyamoto, T. Furuhara, Acta Mater. 145 (2018) 154-164.
DOI URL |
[62] | T. Gladman, The Physical Metallurgy of Microalloyed Steels, the Institute of Materials, London, 1997. |
[63] |
H. Song, S.S. Sohn, J.-H. Kwak, B.-J. Lee, S. Lee, Metall. Mater. Trans. A 47 (2016) 2674-2685.
DOI URL |
[64] |
S.S. Sohn, B.-J. Lee, S. Lee, N.J. Kim, J.-H. Kwak, Acta Mater. 61 (2013) 5050-5066.
DOI URL |
[65] |
J. Park, M.C. Jo, H.J. Jeong, S.S. Sohn, J.-H. Kwak, H.S. Kim, S. Lee, Sci. Rep. 7 (2017) 15726.
DOI URL |
[66] |
Z.H. Cai, H. Ding, R.D.K. Misra, Z.Y. Ying, Acta Mater. 84 (2015) 229-236.
DOI URL |
[67] |
J.A. Jiménez, M. Carsí, O.A. Ruano, G. Frommeyer, Mater. Sci. Eng. A 508 (2009) 195-199.
DOI URL |
[68] |
J.-K. Hwang, Met. Mater. Int. 26 (2020) 603-616.
DOI URL |
[69] |
Q. Xue, G.T. Gray III, B.L. Henrie, S.A. Maloy, S.R. Chen, Metall. Mater. Trans. A 36 (2005) 1471-1486.
DOI URL |
[1] | Yu Han, Huabing Li, Hao Feng, Kemei Li, Yanzhong Tian, Zhouhua Jiang. Simultaneous enhancement in strength and ductility of Fe50Mn30Co10Cr10 high-entropy alloy via nitrogen alloying [J]. J. Mater. Sci. Technol., 2021, 65(0): 210-215. |
[2] | Ran Wei, Kaisheng Zhang, Liangbin Chen, Zhenhua Han, Tan Wang, Chen Chen, Jianzhong Jiang, Tingwei Hu, Fushan Li. Novel Co-free high performance TRIP and TWIP medium-entropy alloys at cryogenic temperatures [J]. J. Mater. Sci. Technol., 2020, 57(0): 153-158. |
[3] | Yu CHEN, Guoyi TANG, Fangyu CHEN, Pinghe LI, Sunbing ZHOU. Research on Retained Austenite for Advanced Aluminum-containing Hot-rolled TRIP Steel [J]. J Mater Sci Technol, 2005, 21(06): 813-816. |
[4] | Chunzheng DUAN, Minjie WANG. Adiabatic Shear Bands in 30CrNi¬3MoV Structural Steel Induced during High Speed Cutting [J]. J Mater Sci Technol, 2004, 20(06): 775-778. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||