J. Mater. Sci. Technol. ›› 2021, Vol. 84: 208-218.DOI: 10.1016/j.jmst.2021.02.007
• Invited Review • Previous Articles Next Articles
Shuang Tiana,b, Henny C. van der Meib,*(), Yijin Renc, Henk J. Busscherb,*(
), Linqi Shia,*(
)
Received:
2020-10-31
Revised:
2020-12-07
Accepted:
2020-12-22
Published:
2021-09-10
Online:
2021-02-09
Contact:
Henny C. van der Mei,Henk J. Busscher,Linqi Shi
About author:
shilinqi@nankai.edu.cn (L. Shi).Shuang Tian, Henny C. van der Mei, Yijin Ren, Henk J. Busscher, Linqi Shi. Recent advances and future challenges in the use of nanoparticles for the dispersal of infectious biofilms[J]. J. Mater. Sci. Technol., 2021, 84: 208-218.
Fig. 1. Sequential steps and consequences of biofilm dispersal. (a) Undisturbed biofilm, in which bacteria are glued together by their self-produced EPS matrix. (b) Dispersant action, continuing from the outside of the biofilm, disrupting the EPS matrix and leading to less dense regions in a biofilm. (c) Ongoing dispersant action into deeper layers and detachment of biofilm inhabitants. (d) Biofilm remaining after dispersal, with lower bacterial density than undisturbed biofilm in which antimicrobials can more readily penetrate.
Fig. 2. eDNA and DNase and their roles in biofilm dispersal. (a) eDNA acting as a biofilm glue. (b) Disruption of EPS by DNase I coating attacking the eDNA component of the EPS matrix to prevent bacterial adhesion to a substratum surface. (c) Average thickness of P. aeruginosa and S. aureus biofilms on DNase I coated surfaces. Panels (a?c) are reprinted with permission [30]. Copyright 2013, Wiley-VCH. (d) Pre-exposure of existing S. aureus biofilms to DNase rendered staphylococcal susceptibility to killing by different antimicrobials. Reprinted with permission [35]. Copyright 2011, Springer Nature.
Fig. 3. Enzyme inactivation and artificial enzymes. (a) Factors controlling inactivation of biofilm dispersing enzymes. (b) Preparation scheme of a DNase-mimetic artificial enzyme by confining multiple multinuclear AuNPs covered with Ce complexes on the surface of Fe3O4/SiO2 nanoparticles. (c) Effects of exposing an existing S. aureus biofilm grown for different periods to natural DNase I and DNase-mimetic artificial enzyme (DMAE) on biofilm mass. (d) Same as panel (c), now for biofilm thickness. Panels (b-d) are reprinted with permission [50]. Copyright 2016, Wiley-VCH.
Fig. 4. Biofilm disruption and dispersal by ROS. (a) Different types of ROS. (b) EPS biofilm matrix components oxidized by ROS. (c) EPS degradation within S. mutans biofilms and glucan breakdown by a combination of catalytic nanoparticles (CAT-NP) and H2O2 yielding ROS generation. Reprinted with permission [54]. Copyright 2016, Elsevier. (d) Dispersal of existing P. aeruginosa, E. coli, S. marcescens and L. monocytogenes biofilms by ROS generating iron oxide (Fe3O4) nanoparticles at different concentrations in suspension. Reprinted with permission [55]. Copyright 2018, Frontiers Media S.A.
Nanoparticles with intrinsic dispersant properties | ||||
---|---|---|---|---|
Type of nanoparticle | Mechanism | Bacterial strain | Refs. | |
Citrate-capped gold nanospheres | Induce structural changes in the biofilm, leading to dispersal | Legionella pneumophila | [ | |
Citrate-coated platinum nanoparticles | Reduce biovolume to induce biofilm dispersal | L. pneumophila | [ | |
PEG-coated gold nanoparticles | Reduce biovolume to induce biofilm dispersal | L. pneumophila | [ | |
PEG-coated iron oxide nanoparticles | Reduce biovolume to induce biofilm dispersal | L. pneumophila | [ | |
Iron oxide nanoparticles | Decrease intracellular c-di-GMP levels to disperse biofilms | P. aeruginosa | [ | |
Iron oxide nanoparticles | Generate ROS by interaction with bacteria to disperse biofilms | S. marcescens, E. coli, P. aeruginosa and L. monocytogenes | [ | |
Ferumoxytol nanoparticles | EPS matrix degradation by generating free radicals from H2O2 | S. mutans | [ | |
Graphene quantum dots | Disrupt amyloid fibrils to disperse biofilms | S. aureus | [ | |
2,3-dimethylmaleic-anhydride modified carbon-dots | Reduce volumetric-bacterial-density to disperse non-EPS-producing biofilms | S. epidermidis | [ | |
Cationic dextran-block copolymer nanoparticles | Interpose in between bacteria and the biofilm matrix to cause dispersal | S. aureus, vancomycin-resistant Enterococci, and Enterococcus faecalis | [ | |
Cationic, poly(2-(dimethylamino)ethyl methacrylate) based micelles | Penetrate biofilms to disrupt the EPS matrix | E. coli, P. aeruginosa, B. subtilis and S. aureus | [ | |
Cationic polymer micelles bearing silver ions | Interact with acidic moieties of EPS to solubilize the matrix | P. aeruginosa | [ | |
Zwitterionic, mixed-shell polymeric micelles | Interact with major EPS components to disperse biofilms | S. aureus | [ | |
DNase-mimetic artificial enzymes based on multinuclear metal complexes | Cleave eDNA to disperse biofilms | S. aureus | [ | |
A silver-binding peptide fused to Dispersin B | Hydrolyze PNAG in the matrix to disperse biofilms | S. epidermidis | [ | |
Dispersant-loaded nanoparticle carriers | ||||
Type of nanoparticle | Nanoparticle loading | Mechanism | Bacterial strain | Refs. |
Nanostructured lipid carriers | DNase | Degrade eDNA to disrupt the biofilm matrix | P. aeruginosa and S. aureus | [ |
Nanocapsules | DNase | Degrade eDNA to disperse biofilms | S. aureus | [ |
Chitosan hydrogel | Dispersin B | Dispersin B degrades PNAG to detach biofilm | S. aureus, S. epidermidis and Aggregatibacter actinomycetemcomitans | [ |
Alginate | CaO2 and hemin-loading graphene | Convert H2O into ROS to degrade matrix components in biofilms | S. aureus | [ |
Graphene-mesoporous silica nanosheets | Ascorbic acid and ferromagnetic nanoparticles | Catalyze ascorbic acid forming -OH to disperse biofilms | S. aureus and E. coli | [ |
Hybrid micelles | D-tyrosine | Affect amyloid fibers to disperse biofilms | P. aeruginosa | [ |
Chitin-based nanocomposite containing D-amino acids and iron oxide nanoparticles | D-tyrosine, D-tryptophan, and D-phenylalanine | D-amino acids disrupt biofilms | S. aureus | [ |
Polymeric nanoparticle | NO | Sustained release of NO to disperse biofilms | P. aeruginosa | [ |
Polydopamine-coated iron oxide nanoparticles | NO | Localized NO release to disperse biofilms | P. aeruginosa | [ |
Polymer/gold hybrid nanoparticles | NO | NO triggered dispersal of biofilms | P. aeruginosa | [ |
Polyethylenimine/ diazeniumdiolate -doped PLGA nanoparticles | NO | NO triggered dispersal of MRSA biofilms in vitro and in vivo | methicillin-resistant S. aureus | [ |
Micelles | NO | Visible light triggered release of NO to disperse biofilms | P. aeruginosa | [ |
Liposomes | Biosurfactants isolated from Lactobacillus gasseri | Biosurfactants dispersed biofilms | S. aureus | [ |
Dispersant-coated nanoparticles | ||||
Type of nanoparticle | Nanoparticle coating | Mechanism | Bacterial strain | Refs. |
Poly(L-lysine) coated PLGA nanoparticles | DNase | Disperse biofilm by degrading eDNA | P. aeruginosa | [ |
Chitosan nanoparticles | DNase | Disperse biofilm by degrading eDNA | P. aeruginosa | [ |
Gold nanoparticles | DNase | Disperse biofilm by degrading eDNA | S. aureus, S. epidermidis, E. coli, and P. aeruginosa | [ |
Silica nanobeads | Proteinase K | Degrade proteins in biofilm matrix | P. fluorescens | [ |
Gold nanoparticles | Proteinase K | Degrade proteins in biofilm matrix | P. fluorescens | [ |
Silver nanoparticles | D-cysteine | “Disperse-then-kill” | E. coli, P. aeruginosa and S. aureus | [ |
Table 1 Summary of uncoated and surface-coated nanoparticles as dispersant and dispersant loaded nanoparticles for use against biofilms of different bacterial strains.
Nanoparticles with intrinsic dispersant properties | ||||
---|---|---|---|---|
Type of nanoparticle | Mechanism | Bacterial strain | Refs. | |
Citrate-capped gold nanospheres | Induce structural changes in the biofilm, leading to dispersal | Legionella pneumophila | [ | |
Citrate-coated platinum nanoparticles | Reduce biovolume to induce biofilm dispersal | L. pneumophila | [ | |
PEG-coated gold nanoparticles | Reduce biovolume to induce biofilm dispersal | L. pneumophila | [ | |
PEG-coated iron oxide nanoparticles | Reduce biovolume to induce biofilm dispersal | L. pneumophila | [ | |
Iron oxide nanoparticles | Decrease intracellular c-di-GMP levels to disperse biofilms | P. aeruginosa | [ | |
Iron oxide nanoparticles | Generate ROS by interaction with bacteria to disperse biofilms | S. marcescens, E. coli, P. aeruginosa and L. monocytogenes | [ | |
Ferumoxytol nanoparticles | EPS matrix degradation by generating free radicals from H2O2 | S. mutans | [ | |
Graphene quantum dots | Disrupt amyloid fibrils to disperse biofilms | S. aureus | [ | |
2,3-dimethylmaleic-anhydride modified carbon-dots | Reduce volumetric-bacterial-density to disperse non-EPS-producing biofilms | S. epidermidis | [ | |
Cationic dextran-block copolymer nanoparticles | Interpose in between bacteria and the biofilm matrix to cause dispersal | S. aureus, vancomycin-resistant Enterococci, and Enterococcus faecalis | [ | |
Cationic, poly(2-(dimethylamino)ethyl methacrylate) based micelles | Penetrate biofilms to disrupt the EPS matrix | E. coli, P. aeruginosa, B. subtilis and S. aureus | [ | |
Cationic polymer micelles bearing silver ions | Interact with acidic moieties of EPS to solubilize the matrix | P. aeruginosa | [ | |
Zwitterionic, mixed-shell polymeric micelles | Interact with major EPS components to disperse biofilms | S. aureus | [ | |
DNase-mimetic artificial enzymes based on multinuclear metal complexes | Cleave eDNA to disperse biofilms | S. aureus | [ | |
A silver-binding peptide fused to Dispersin B | Hydrolyze PNAG in the matrix to disperse biofilms | S. epidermidis | [ | |
Dispersant-loaded nanoparticle carriers | ||||
Type of nanoparticle | Nanoparticle loading | Mechanism | Bacterial strain | Refs. |
Nanostructured lipid carriers | DNase | Degrade eDNA to disrupt the biofilm matrix | P. aeruginosa and S. aureus | [ |
Nanocapsules | DNase | Degrade eDNA to disperse biofilms | S. aureus | [ |
Chitosan hydrogel | Dispersin B | Dispersin B degrades PNAG to detach biofilm | S. aureus, S. epidermidis and Aggregatibacter actinomycetemcomitans | [ |
Alginate | CaO2 and hemin-loading graphene | Convert H2O into ROS to degrade matrix components in biofilms | S. aureus | [ |
Graphene-mesoporous silica nanosheets | Ascorbic acid and ferromagnetic nanoparticles | Catalyze ascorbic acid forming -OH to disperse biofilms | S. aureus and E. coli | [ |
Hybrid micelles | D-tyrosine | Affect amyloid fibers to disperse biofilms | P. aeruginosa | [ |
Chitin-based nanocomposite containing D-amino acids and iron oxide nanoparticles | D-tyrosine, D-tryptophan, and D-phenylalanine | D-amino acids disrupt biofilms | S. aureus | [ |
Polymeric nanoparticle | NO | Sustained release of NO to disperse biofilms | P. aeruginosa | [ |
Polydopamine-coated iron oxide nanoparticles | NO | Localized NO release to disperse biofilms | P. aeruginosa | [ |
Polymer/gold hybrid nanoparticles | NO | NO triggered dispersal of biofilms | P. aeruginosa | [ |
Polyethylenimine/ diazeniumdiolate -doped PLGA nanoparticles | NO | NO triggered dispersal of MRSA biofilms in vitro and in vivo | methicillin-resistant S. aureus | [ |
Micelles | NO | Visible light triggered release of NO to disperse biofilms | P. aeruginosa | [ |
Liposomes | Biosurfactants isolated from Lactobacillus gasseri | Biosurfactants dispersed biofilms | S. aureus | [ |
Dispersant-coated nanoparticles | ||||
Type of nanoparticle | Nanoparticle coating | Mechanism | Bacterial strain | Refs. |
Poly(L-lysine) coated PLGA nanoparticles | DNase | Disperse biofilm by degrading eDNA | P. aeruginosa | [ |
Chitosan nanoparticles | DNase | Disperse biofilm by degrading eDNA | P. aeruginosa | [ |
Gold nanoparticles | DNase | Disperse biofilm by degrading eDNA | S. aureus, S. epidermidis, E. coli, and P. aeruginosa | [ |
Silica nanobeads | Proteinase K | Degrade proteins in biofilm matrix | P. fluorescens | [ |
Gold nanoparticles | Proteinase K | Degrade proteins in biofilm matrix | P. fluorescens | [ |
Silver nanoparticles | D-cysteine | “Disperse-then-kill” | E. coli, P. aeruginosa and S. aureus | [ |
Fig. 5. Examples of the use of nanoparticles for biofilm dispersal. (a) Scanning electron micrographs of graphene quantum dots (GQD)-mediated staphylococcal biofilm dispersal, showing patches that are entirely devoid of biofilm after GQD exposure and remaining biofilms arranged in a pattern that presumably reflects drying artifacts due to low cohesivity of the EPS matrix after exposure to GQD. Reprinted with permission [86]. Copyright 2019, American Chemical Society. (b) Zwitterionic micelles dispersed existing S. aureus biofilms in vitro (green-fluorescence: bacteria, red-fluorescence: EPS). Reprinted with permission [23]. Copyright 2020, Science Publishing Group. (c) Confocal laser scanning microscopy images of methicillin-resistant S. aureus (MRSA) biofilms exposed to cationic dextran-block copolymeric nanoparticles, showing biofilm dispersal over time (Green fluorescence: bacteria, red fluorescence: DA95B5 dispersant). Reprinted with permission [24]. Copyright 2018, American Chemical Society. (d) Volumetric bacterial densities of S. epidermidis biofilms after 4 h exposure to buffer or suspensions with 125 μg mL-1 carbon-dots without 2,3-dimethylmaleic-anhydride (DMMA) (C-dots) or CDMMA-dots (CDMMA-dots) at pH 7.4 and pH 5.0. Reprinted with permission [87]. Copyright 2020, Elsevier.
Fig. 6. Protective encapsulation of dispersants in nanoparticle carriers. (a) Advantages of the use of dispersant loaded nanocarriers above non-encapsulated dispersants. (b) Sustained NO release from polymer/gold hybrid nanoparticles in a phosphate buffer (pH 6.8). Reprinted with permission [98]. Copyright 2014, Royal Society of Chemistry. (c) Relative activity of free recombinant Dispersin B (DspB) and DspB loaded in chitosan nanoparticles as a function of temperature. Activity was assessed from the ability of DspB to enzymatically release of p-nitrophenolate from 4-nitrophenyl-N-acetyl β-D-glucosaminide. (d) Relative activity upon storage at 37 ℃ of free Dispersin B and Dispersin B loaded in chitosan nanoparticles as a function of time. (c and d) Reprinted with permission [93]. Copyright 2015, Elsevier.
Fig. 7. Spreading of infection in a murine model after dispersal of a subcutaneous, bioluminescent P. aeruginosa biofilm using glycoside hydrolase (GH) as a dispersant in absence of simultaneously administered antibiotics. Infection is visualized using bioluminescent imaging. Reprinted with permission [112]. Copyright 2018, Springer Nature.
Fig. 8. Biofilm dispersants enhance efficacy of existing antibiotics. (a) Breaking the biofilm barrier by dispersant action makes remaining biofilms more penetrable to antibiotics. (b) Survival of S. aureus in biofilms pre-exposed DNase loaded nanocapsules (nDNase) and subsequently exposed to ciprofloxacin (CPFX). For control, similarly encapsulated bovine serum albumin (nBSA) was employed for pre-exposure. Reprinted with permission [92]. Copyright 2020, Royal Society of Chemistry. (c) Log10 CFU (colony forming units) of S. epidermidis in biofilms after pre-exposure to buffer or carbon dots with or without DMMA (C-dots and CDMMA-dots, respectively) at different pH followed by 72 h growth in medium supplemented with vancomycin at different multiple concentrations of its minimal bactericidal concentration (MBC). Reprinted with permission [87]. Copyright 2020, Elsevier. (d) Effect of gentamicin-NO (GEN-NO) nanoparticles on P. aeruginosa biofilm viability after combined release of NO and gentamicin. Reprinted with permission [96]. Copyright 2016, Royal Society of Chemistry.
[1] |
S. Gandra, D.M. Barter, R. Laxminarayan, Clin. Microbiol. Infect. 20 (2014) 973-980.
DOI URL |
[2] |
S.B. Levy, B. Marshall, Nat. Med. 10 (2004) S122-129.
DOI URL |
[3] |
H.C. Flemming, J. Wingender, Nat. Rev. Microbiol. 8 (2010) 623-633.
DOI URL |
[4] |
R. Boudjemaa, R. Briandet, M. Revest, C. Jacqueline, J. Caillon, M.P. Fontaine-Aupart, K. Steenkeste, Antimicrob. Agents Chemother. 60 (2016) 4983-4990.
DOI PMID |
[5] |
D. Davies, Nat. Rev. Drug Discov. 2 (2003) 114-122.
PMID |
[6] |
J. Kim, J.S. Hahn, M.J. Franklin, P.S. Stewart, J. Yoon, J. Antimicrob. Chemother. 63 (2009) 129-135.
DOI URL |
[7] |
O. Ciofu, E. Rojo-Molinero, M.D. Macia, A. Oliver, Apmis 125 (2017) 304-319.
DOI PMID |
[8] |
T. Yu, G. Jiang, R. Gao, G. Chen, Y. Ren, J. Liu, H.C. van der Mei, H.J. Busscher, Expert Opin. Drug Deliv. 17 (2020) 1151-1164.
DOI URL |
[9] |
H. Van Acker, T. Coenye, J. Biol. Chem. 291 (2016) 12565-12572.
DOI URL |
[10] |
M.C. Enright, D.A. Robinson, G. Randle, E.J. Feil, H. Grundmann, B.G. Spratt, Proc. Natl. Acad. Sci. USA 99 (2002) 7687-7692.
DOI URL |
[11] |
R. Barrangou, Curr. Opin. Immunol. 32 (2015) 36-41.
DOI PMID |
[12] | A. Fabbretti, R. Capuni, A.M. Giuliodori, L. Cimarelli, A. Miano, V. Napolioni, A. La Teana, R. Spurio, mSphere 4 (2019) e00554-00519. |
[13] |
M.S. Ramirez, M.E. Tolmasky, Drug Resist. Updates 13 (2010) 151-171.
DOI URL |
[14] |
L.J.V. Piddock, Lancet Infect. Dis. 12 (2012) 249-253.
DOI PMID |
[15] | J.L. Lister, A.R. Horswill, Front. Cell. Infect. Microbiol. 4 (2014) 178. |
[16] | S.T. Rutherford, B.L. Bassler, Cold Spring Harbor Perspect. Med. 2 (2012), a012427. |
[17] | D. Roizman, C. Vidaillac, M. Givskov, L. Yang, Antimicrob. Agents Chemother. 61 (2017) e01088-17. |
[18] |
Q. Ma, Z. Yang, M. Pu, W. Peti, T.K. Wood, Environ. Microbiol. 13 (2011) 631-642.
DOI URL |
[19] |
T.T. Huynh, D. McDougald, J. Klebensberger, B. Al Qarni, N. Barraud, S.A. Rice, S. Kjelleberg, D. Schleheck, PLoS One 7 (2012), e42874.
DOI URL |
[20] |
K. Sauer, M.C. Cullen, A.H. Rickard, L.A.H. Zeef, D.G. Davies, P. Gilbert, J. Bacteriol. 186 (2004) 7312-7326.
PMID |
[21] |
S. An, J. Wu, L.H. Zhang, Appl. Environ. Microbiol. 76 (2010) 8160-8173.
DOI URL |
[22] |
Y. Liu, H.J. Busscher, B. Zhao, Y. Li, Z. Zhang, H.C. van der Mei, Y. Ren, L. Shi, ACS Nano 10 (2016) 4779-4789.
DOI URL |
[23] | S. Tian, L. Su, Y. Liu, J. Cao, G. Yang, Y. Ren, F. Huang, J. Liu, Y. An, H.C. van der Mei, H.J. Busscher, L. Shi, Sci. Adv. 6 (2020) eabb1112. |
[24] |
J. Li, K. Zhang, L. Ruan, S.F. Chin, N. Wickramasinghe, H. Liu, V. Ravikumar, J. Ren, H. Duan, L. Yang, M.B. Chan-Park, Nano Lett. 18 (2018) 4180-4187.
DOI URL |
[25] |
K.P. Rumbaugh, K. Sauer, Nat. Rev. Microbiol. 18 (2020) 571-586.
DOI PMID |
[26] |
D. Fleming, K.P. Rumbaugh, Microorganisms 5 (2017) 15.
DOI URL |
[27] |
C. Guilhen, C. Forestier, D. Balestrino, Mol. Microbiol. 105 (2017) 188-210.
DOI PMID |
[28] |
H.G. Abdelhady, S. Allen, M.C. Davies, C.J. Roberts, S.J. Tendler, P.M. Williams, Nucleic Acids Res. 31 (2003) 4001-4005.
PMID |
[29] |
K.C. Rice, E.E. Mann, J.L. Endres, E.C. Weiss, J.E. Cassat, M.S. Smeltzer, K.W. Bayles, Proc. Natl. Acad. Sci. USA 104 (2007) 8113-8118.
DOI URL |
[30] |
J.J.T.M. Swartjes, T. Das, S. Sharifi, G. Subbiahdoss, P.K. Sharma, B.P. Krom, H.J. Busscher, H.C. van der Mei, Adv. Funct. Mater. 23 (2013) 2843-2849.
DOI URL |
[31] |
R. Nijland, M.J. Hall, J.G. Burgess, PLoS One 5 (2010), e15668.
DOI URL |
[32] |
C.B. Whitchurch, T. Tolker-Nielsen, P.C. Ragas, J.S. Mattick, Science 295 (2002) 1487.
PMID |
[33] |
G.V. Tetz, N.K. Artemenko, V.V. Tetz, Antimicrob. Agents Chemother. 53 (2009) 1204-1209.
DOI URL |
[34] | K.E. Cherny, K. Sauer, J. Bacteriol. 201 (2019) e00059-19. |
[35] |
J.B. Kaplan, K. LoVetri, S.T. Cardona, S. Madhyastha, I. Sadovskaya, S. Jabbouri, E.A. Izano, J. Antibiot. 65 (2012) 73-77.
DOI URL |
[36] |
J.B. Kaplan, J. Dent. Res. 89 (2010) 205-218.
DOI PMID |
[37] |
Y. Itoh, X. Wang, B.J. Hinnebusch, J.F. Preston, T. Romeo, J. Bacteriol. 187 (2005) 382-387.
DOI URL |
[38] | D. Fleming, L. Chahin, K. Rumbaugh, Antimicrob. Agents Chemother. 61 (2017) e01998-16. |
[39] |
S. Yu, T. Su, H. Wu, S. Liu, D. Wang, T. Zhao, Z. Jin, W. Du, M.J. Zhu, S.L. Chua, L. Yang, D. Zhu, L. Gu, L.Z. Ma, Cell Res. 25 (2015) 1352-1367.
DOI URL |
[40] |
D. Pecharki, F.C. Petersen, A.A. Scheie, Microbiology 154 (2008) 932-938.
DOI URL |
[41] |
J.H. Park, J.H. Lee, M.H. Cho, M. Herzberg, J. Lee, FEMS Microbiol. Lett. 335 (2012) 31-38.
DOI URL |
[42] |
J.H. Park, J.H. Lee, C.J. Kim, J.C. Lee, M.H. Cho, J. Lee, Biotechnol. Lett. 34 (2012) 655-661.
DOI URL |
[43] |
D.P. Pires, L. Melo, D. Vilas Boas, S. Sillankorva, J. Azeredo, Curr. Opin. Microbiol. 39 (2017) 48-56.
DOI PMID |
[44] |
L. Mi, Y. Liu, C. Wang, T. He, S. Gao, S. Xing, Y. Huang, H. Fan, X. Zhang, W. Yu, Z. Mi, Y. Tong, C. Bai, F. Han, Virus Genes 55 (2019) 394-405.
DOI URL |
[45] |
Y. Lin, J. Ren, X. Qu, Acc. Chem. Res. 47 (2014) 1097-1105.
DOI URL |
[46] |
Z. Chen, C. Zhao, E. Ju, H. Ji, J. Ren, B.P. Binks, X. Qu, Adv. Mater. 28 (2016) 1682-1688.
DOI URL |
[47] |
M. Diez-Castellnou, F. Mancin, P. Scrimin, J. Am. Chem. Soc. 136 (2014) 1158-1161.
DOI PMID |
[48] |
G.Y. Tonga, Y. Jeong, B. Duncan, T. Mizuhara, R. Mout, R. Das, S.T. Kim, Y.C. Yeh, B. Yan, S. Hou, V.M. Rotello, Nat. Chem. 7 (2015) 597-603.
DOI URL |
[49] |
X. Zhang, L. Wang, J. Xu, D. Chen, L. Shi, Y. Zhou, Z. Shen, Acta Polym. Sin. 50 (2019) 973-987.
DOI |
[50] |
Z. Chen, H. Ji, C. Liu, W. Bing, Z. Wang, X. Qu, Angew. Chem. Int. Ed. 55 (2016) 10732-10736.
DOI URL |
[51] |
Z. Yan, W. Bing, C. Ding, K. Dong, J. Ren, X. Qu, Nanoscale 10 (2018) 17656-17662.
DOI URL |
[52] |
H. Ji, K. Dong, Z. Yan, C. Ding, Z. Chen, J. Ren, X. Qu, Small 12 (2016) 6200-6206.
DOI URL |
[53] |
L. Gao, K.M. Giglio, J.L. Nelson, H. Sondermann, A.J. Travis, Nanoscale 6 (2014) 2588-2593.
DOI URL |
[54] |
L. Gao, Y. Liu, D. Kim, Y. Li, G. Hwang, P.C. Naha, D.P. Cormode, H. Koo, Biomaterials 101 (2016) 272-284.
DOI URL |
[55] |
N.A. Al-Shabib, F.M. Husain, F. Ahmed, R.A. Khan, M.S. Khan, F.A. Ansari, M.Z. Alam, M.A. Ahmed, M.S. Khan, M.H. Baig, J.M. Khan, S.A. Shahzad, M. Arshad, A. Alyousef, I. Ahmad, Front. Microbiol. 9 (2018) 2567.
DOI PMID |
[56] |
N. Barraud, M.J. Kelso, S.A. Rice, S. Kjelleberg, Curr. Pharm. Des. 21 (2015) 31-42.
DOI URL |
[57] |
N. Barraud, D. Schleheck, J. Klebensberger, J.S. Webb, D.J. Hassett, S.A. Rice, S. Kjelleberg, J. Bacteriol. 191 (2009) 7333-7342.
DOI URL |
[58] |
A.F. Engelsman, B.P. Krom, H.J. Busscher, M. van Dam, R.J. Ploeg, H.C. van der Mei, Acta Biomater. 5 (2009) 1905-1910.
DOI PMID |
[59] |
H.T. Duong, K. Jung, S.K. Kutty, S. Agustina, N.N. Adnan, J.S. Basuki, N. Kumar, T.P. Davis, N. Barraud, C. Boyer, Biomacromolecules 15 (2014) 2583-2589.
DOI PMID |
[60] |
G. Batoni, G. Maisetta, S. Esin, Biochim. Biophys. Acta Biochim. Biophys. Acta 1858 (2016) 1044-1060.
DOI URL |
[61] |
C. de la Fuente-Nunez, F. Reffuveille, E.F. Haney, S.K. Straus, R.E. Hancock, PLoS Pathog. 10 (2014), e1004152.
DOI URL |
[62] |
A. Bleem, R. Francisco, J.D. Bryers, V. Daggett, NPJ Biofilms Microbiomes 3 (2017) 16.
DOI URL |
[63] |
N. Paranjapye, V. Daggett, J. Mol. Biol. 430 (2018) 3764-3773.
DOI PMID |
[64] | C.M. Waters, B.L. Bassler, Annu. Rev. Cell Dev.Biol. 21 (2005) 319-346. |
[65] |
W.L. Ng, B.L. Bassler, Annu. Rev. Genet. 43 (2009) 197-222.
DOI URL |
[66] |
R. Frei, A.S. Breitbach, H.E. Blackwell, Angew. Chem. Int. Ed. 51 (2012) 5226-5229.
DOI URL |
[67] |
J.W. Zhou, H.Z. Luo, H. Jiang, T.K. Jian, Z.Q. Chen, A.Q. Jia, J. Agric. Food Chem. 66 (2018) 1620-1628.
DOI URL |
[68] |
K.T. Yuyama, W.R. Abraham, Med. Chem. 13 (2016) 3-12.
DOI URL |
[69] |
D.G. Davies, C.N. Marques, J. Bacteriol. 191 (2009) 1393-1403.
DOI PMID |
[70] |
B.R. Boles, A.R. Horswill, PLoS Pathog. 4 (2008), e1000052.
DOI URL |
[71] |
I. Kolodkin-Gal, D. Romero, S. Cao, J. Clardy, R. Kolter, R. Losick, Science 328 (2010) 627-629.
DOI PMID |
[72] |
D. Romero, E. Sanabria-Valentin, H. Vlamakis, R. Kolter, Chem. Biol. 20 (2013) 102-110.
DOI URL |
[73] |
E.Z. Ron, E. Rosenberg, Environ. Microbiol. 3 (2001) 229-236.
PMID |
[74] | M.E. Davey, N.C. Caiazza, G.A. O’Toole, J.Bacteriol. 185 (2003) 1027-1036. |
[75] |
L. Bonnichsen, N. Bygvraa Svenningsen, M. Rybtke, I. de Bruijn, J.M. Raaijmakers, T. Tolker-Nielsen, O. Nybroe, Microbiology 161 (2015)2289-2297.
DOI PMID |
[76] |
I.M. Banat, M.A. De Rienzo, G.A. Quinn, Appl. Microbiol. Biotechnol. 98 (2014) 9915-9929.
DOI URL |
[77] |
Y. Irie, G.A. O'Toole, M.H. Yuk, FEMS Microbiol. Lett. 250 (2005) 237-243.
DOI URL |
[78] |
M.A. De Rienzo, P.J. Martin, Curr. Microbiol. 73 (2016) 183-189.
DOI PMID |
[79] |
K. Sambanthamoorthy, X. Feng, R. Patel, S. Patel, C. Paranavitana, BMC Microbiol. 14 (2014) 197.
DOI PMID |
[80] |
T. Bottcher, I. Kolodkin-Gal, R. Kolter, R. Losick, J. Clardy, J. Am. Chem. Soc. 135 (2013) 2927-2930.
DOI URL |
[81] |
Y. Wu, X. Quan, X. Si, X. Wang, Appl. Microbiol. Biotechnol. 100 (2016) 5619-5629.
DOI URL |
[82] |
A.R. Stojak, T. Raftery, S.J. Klaine, T.L. McNealy, Nanotoxicology 5 (2011) 730-742.
DOI PMID |
[83] |
T.D. Raftery, P. Kerscher, A.E. Hart, S.L. Saville, B. Qi, C.L. Kitchens, O.T. Mefford, T.L. McNealy, Nanotoxicology 8 (2014) 477-484.
DOI PMID |
[84] |
T.K. Nguyen, H.T. Duong, R. Selvanayagam, C. Boyer, N. Barraud, Sci. Rep. 5 (2015) 18385.
DOI URL |
[85] | Y. Liu, P.C. Naha, G. Hwang, D. Kim, Y. Huang, A. Simon-Soro, H.I. Jung, Z. Ren, Y. Li, S. Gubara, F. Alawi, D. Zero, A.T. Hara, D.P. Cormode, H. Koo, Nat.Commun. 9 (2018) 2920. |
[86] |
Y. Wang, U. Kadiyala, Z. Qu, P. Elvati, C. Altheim, N.A. Kotov, A. Violi, J.S. Van Epps, ACS Nano 13 (2019) 4278-4289.
DOI URL |
[87] |
Y. Wu, H.C. van der Mei, H.J. Busscher, Y. Ren, Colloids Surf. B 193 (2020), 111114.
DOI URL |
[88] |
D. Borisova, E. Haladjova, M. Kyulavska, P. Petrov, S. Pispas, S. Stoitsova, T. Paunova-Krasteva, Eng. Life Sci. 18 (2018) 943-948.
DOI PMID |
[89] |
T. Paunova-Krasteva, E. Haladjova, P. Petrov, A. Forys, B. Trzebicka, T. Topouzova-Hristova, S.R. Stoitsova, Biofouling 36 (2020) 679-695.
DOI PMID |
[90] |
K.J. Chen, C.K. Lee, Int. J. Biol. Macromol. 118 (2018) 419-426.
DOI URL |
[91] |
G.A. Islan, P.C. Tornello, G.A. Abraham, N. Duran, G.R. Castro, Colloids Surf. B 143 (2016) 168-176.
DOI URL |
[92] |
C. Liu, Y. Zhao, W. Su, J. Chai, L. Xu, J. Cao, Y. Liu, J. Mater. Chem. B 8 (2020) 4395-4401.
DOI URL |
[93] |
Y. Tan, S. Ma, C. Liu, W. Yu, F. Han, Microbiol. Res. 178 (2015) 35-41.
DOI URL |
[94] |
M. Chen, J. Wei, S. Xie, X. Tao, Z. Zhang, P. Ran, X. Li, Nanoscale 11 (2019) 1410-1422.
DOI URL |
[95] |
E.C. Abenojar, S. Wickramasinghe, M. Ju, S. Uppaluri, A. Klika, J. George, W. Barsoum, S.J. Frangiamore, C.A. Higuera-Rueda, A.C.S. Samia, ACS Infect. Dis. 4 (2018) 1246-1256.
DOI PMID |
[96] |
T.K. Nguyen, R. Selvanayagam, K.K.K. Ho, R. Chen, S.K. Kutty, S.A. Rice, N. Kumar, N. Barraud, H.T.T. Duong, C. Boyer, Chem. Sci. 7 (2016) 1016-1027.
DOI URL |
[97] | N.N.M. Adnan, Z. Sadrearhami, A. Bagheri, T.K. Nguyen, E.H.H. Wong, K.K.K. Ho, M. Lim, N. Kumar, C. Boyer, Macromol. Rapid Commun. 39 (2018), e1800159. |
[98] |
H.T.T. Duong, N.N.M. Adnan, N. Barraud, J.S. Basuki, S.K. Kutty, K. Jung, N. Kumar, T.P. Davis, C. Boyer, J. Mater. Chem. B 2 (2014) 5003-5011.
DOI PMID |
[99] |
N. Hasan, J. Cao, J. Lee, M. Naeem, S.P. Hlaing, J. Kim, Y. Jung, B.L. Lee, J.W. Yoo, Mater. Sci. Eng. C 103 (2019), 109741.
DOI URL |
[100] |
Z. Shen, K. He, Z. Ding, M. Zhang, Y. Yu, J. Hu, Macromolecules 52 (2019) 7668-7677.
DOI URL |
[101] |
B. Giordani, P.E. Costantini, S. Fedi, M. Cappelletti, A. Abruzzo, C. Parolin, C. Foschi, G. Frisco, N. Calonghi, T. Cerchiara, F. Bigucci, B. Luppi, B. Vitali, Eur. J. Pharm. Biopharm. 139 (2019) 246-252.
DOI PMID |
[102] |
A. Baelo, R. Levato, E. Julian, A. Crespo, J. Astola, J. Gavalda, E. Engel, M.A. Mateos-Timoneda, E. Torrents, J. Control. Rel. 209 (2015) 150-158.
DOI PMID |
[103] |
K.K. Patel, A.K. Agrawal, M.M. Anjum, M. Tripathi, N. Pandey, S. Bhattacharya, R. Tilak, S. Singh, Appl. Nanosci. 10 (2019) 563-575.
DOI URL |
[104] |
Y. Xie, W. Zheng, X. Jiang, ACS Appl. Mater. Interfaces 12 (2020) 9041-9049.
DOI URL |
[105] |
M. Zanoni, O. Habimana, J. Amadio, E. Casey, Biotechnol. Bioeng. 113 (2016) 501-512.
DOI URL |
[106] |
O. Habimana, M. Zanoni, S. Vitale, T. O’Neill, D. Scholz, B. Xu, E. Casey, J. Colloid Interface Sci. 526 (2018) 419-428.
DOI URL |
[107] |
L. Huang, Y. Lou, D. Zhang, L. Ma, H. Qian, Y. Hu, P. Ju, D. Xu, X. Li, Chem. Eng. J. 381 (2020), 122662.
DOI URL |
[108] |
S.C. Hayden, G. Zhao, K. Saha, R.L. Phillips, X. Li, O.R. Miranda, V.M. Rotello, M.A. El-Sayed, I. Schmidt-Krey, U.H. Bunz, J. Am. Chem. Soc. 134 (2012) 6920-6923.
DOI URL |
[109] |
X. Duan, Y. Li, Small 9 (2013) 1521-1532.
DOI URL |
[110] |
P. Uppuluri, J.L. Lopez-Ribot, PLoS Pathog. 12 (2016), e1005397.
DOI URL |
[111] |
T. Bjarnsholt, O. Ciofu, S. Molin, M. Givskov, N. Hoiby, Nat. Rev. Drug Discov. 12 (2013) 791-808.
DOI PMID |
[112] |
D. Fleming, K. Rumbaugh, Sci. Rep. 8 (2018) 10738.
DOI PMID |
[113] |
S.L. Chua, Y. Liu, J.K. Yam, Y. Chen, R.M. Vejborg, B.G. Tan, S. Kjelleberg, T. Tolker-Nielsen, M. Givskov, L. Yang, Nat. Commun. 5 (2014) 4462.
DOI URL |
[114] |
O.E. Petrova, K. Sauer, Curr. Opin. Microbiol. 30 (2016) 67-78.
DOI PMID |
[115] |
N.K. Henry, C.A. McLimans, A.J. Wright, R.L. Thompson, W.R. Wilson, J.A. Washington, J. Clin. Microbiol. 17 (1983) 864-869.
PMID |
[116] |
A. Bacconi, G.S. Richmond, M.A. Baroldi, T.G. Laffler, L.B. Blyn, H.E. Carolan, M.R. Frinder, D.M. Toleno, D. Metzgar, J.R. Gutierrez, C. Massire, M. Rounds, N.J. Kennel, R.E. Rothman, S. Peterson, K.C. Carroll, T. Wakefield, D.J. Ecker, R. Sampath, P.H. Gilligan, J. Clin. Microbiol. 52 (2014) 3164-3174.
DOI PMID |
[117] |
J.H. Kang, BioChip J. 14 (2020) 63-71.
DOI URL |
[118] |
C.J. Karvellas, J.G. Abraldes, S. Zepeda-Gomez, D.C. Moffat, Y. Mirzanejad, G. Vazquez-Grande, E.K. Esfahani, A. Kumar, Aliment. Pharmacol. Ther. 44 (2016) 755-766.
DOI URL |
[119] | C. Potera, Environ. Health Perspect. 118 (2010), A288-A288. |
[120] |
N. Hoiby, O. Ciofu, T. Bjarnsholt, Future Microbiol. 5 (2010) 1663-1674.
DOI URL |
[121] |
B. Frederiksen, T. Pressler, A. Hansen, C. Koch, N. Hoiby, Acta Paediatr. 95 (2006) 1070-1074.
PMID |
[122] | K. Cathie, R. Howlin, M. Carroll, S. Clarke, G. Connett, V. Cornelius, T. Daniels, C. Duignan, L. Hall-Stoodley, J. Jefferies, M. Kelso, S. Kjelleberg, J. Legg, S. Pink, G. Rogers, R. Salib, P. Stoodley, P. Sukhtankar, J. Webb, S. Faust, Arch. Dis. Child. 99 (2014), A159-A159. |
[1] | Mi Wu, Wen Liu, Jinrong Yao, Zhengzhong Shao, Xin Chen. Silk microfibrous mats with long-lasting antimicrobial function [J]. J. Mater. Sci. Technol., 2021, 63(0): 203-209. |
[2] | Jie Liu, Li Li, Run Zhang, Zhi Ping Xu. Development of CaP nanocomposites as photothermal actuators for doxorubicin delivery to enhance breast cancer treatment [J]. J. Mater. Sci. Technol., 2021, 63(0): 73-80. |
[3] | Qian Wu, Xiangmei Liu, Bo Li, Lei Tan, Yong Han, Zhaoyang Li, Yanqin Liang, Zhenduo Cui, Shengli Zhu, Shuilin Wu, Yufeng Zheng. Eco-friendly and degradable red phosphorus nanoparticles for rapid microbial sterilization under visible light [J]. J. Mater. Sci. Technol., 2021, 67(0): 70-79. |
[4] | Wenjuan Wang, Yan Zhao, Yongguang Zhang, Ning Liu, Zhumabay Bakenov. Nickel embedded porous macrocellular carbon derived from popcorn as sulfur host for high-performance lithium-sulfur batteries [J]. J. Mater. Sci. Technol., 2021, 74(0): 69-77. |
[5] | Le Thai Duy, Ji-Ye Baek, Ye-Ji Mun, Hyungtak Seo. Patternable production of SrTiO3 nanoparticles using 1-W laser directly on flexible humidity sensor platform based on ITO/SrTiO3/CNT [J]. J. Mater. Sci. Technol., 2021, 71(0): 186-194. |
[6] | Huawei Rong, Tong Gao, Yun Zheng, Lingwei Li, Dake Xu, Xuefeng Zhang, Yanglong Hou, Mi Yan. Fe3O4@silica nanoparticles for reliable identification and magnetic separation of Listeria monocytogenes based on molecular-scale physiochemical interactions [J]. J. Mater. Sci. Technol., 2021, 84(0): 116-123. |
[7] | Xianliang Hou, Shun Yao, Zhen Wang, Changqing Fang, Tiehu Li. Enhancement of the mechanical properties of polylactic acid/basalt fiber composites via in-situ assembling silica nanospheres on the interface [J]. J. Mater. Sci. Technol., 2021, 84(0): 182-190. |
[8] | Wang Yang, Bo Jiang, Zhihui Liu, Rui Li, Liqiang Hou, Zhengxuan Li, Yongli Duan, Xingru Yan, Fan Yang, Yongfeng Li. Magnetic coupling engineered porous dielectric carbon within ultralow filler loading toward tunable and high-performance microwave absorption [J]. J. Mater. Sci. Technol., 2021, 70(0): 214-223. |
[9] | Dong Zhao, Xiaoyang Wang, Ling Chang, Wenli Pei, Chun Wu, Fei Wang, Luran Zhang, Jianjun Wang, Qiang Wang. Synthesis of super-fine L10-FePt nanoparticles with high ordering degree by two-step sintering under high magnetic field [J]. J. Mater. Sci. Technol., 2021, 73(0): 178-185. |
[10] | Jing Li, Zhenqiang Feng, Ning Gu, Fang Yang. Superparamagnetic iron oxide nanoparticles assembled magnetic nanobubbles and their application for neural stem cells labeling [J]. J. Mater. Sci. Technol., 2021, 63(0): 124-132. |
[11] | Mengting Cao, Fengli Yang, Quan Zhang, Juhua Zhang, Lu Zhang, Lingfeng Li, Xiaohao Wang, Wei-Lin Dai. Facile construction of highly efficient MOF-based Pd@UiO-66-NH2@ZnIn2S4 flower-like nanocomposites for visible-light-driven photocatalytic hydrogen production [J]. J. Mater. Sci. Technol., 2021, 76(0): 189-199. |
[12] | Tianyan Zhong, Huangxin Li, Tianming Zhao, Hongye Guan, Lili Xing, Xinyu Xue. Self-powered/self-cleaned atmosphere monitoring system from combining hydrovoltaic, gas sensing and photocatalytic effects of TiO2 nanoparticles [J]. J. Mater. Sci. Technol., 2021, 76(0): 33-40. |
[13] | Wenshen Wang, Fenfen Li, Shibo Li, Yi Hu, Mengran Xu, Yuanyuan Zhang, Muhammad Imran Khan, Shaozhen Wang, Min Wu, Weiping Ding, Bensheng Qiu. M2 macrophage-targeted iron oxide nanoparticles for magnetic resonance image-guided magnetic hyperthermia therapy [J]. J. Mater. Sci. Technol., 2021, 81(0): 77-87. |
[14] | Zhuo Chen, Shun Chen, Yufei Xiong, Yuping Yang, Yang Zhang, Lijie Dong. Flexible coatings with microphase separation structure attained by copolymers and ultra-fine nanoparticles for endurable antifouling [J]. J. Mater. Sci. Technol., 2021, 82(0): 179-186. |
[15] | Yuan-Yun Zhao, Feng Qian, Wenfeng Shen, Chengliang Zhao, Jianguo Wang, Chunxiao Xie, Fengling Zhou, Chuntao Chang, Yanjun Li. Facile synthesis of metal and alloy nanoparticles by ultrasound-assisted dealloying of metallic glasses [J]. J. Mater. Sci. Technol., 2021, 82(0): 144-152. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||