J. Mater. Sci. Technol. ›› 2021, Vol. 84: 200-207.DOI: 10.1016/j.jmst.2021.02.006
• Research Article • Previous Articles Next Articles
Jiansen Pana, Qingmei Penga, Guoliang Zhanga, Qingyi Xiea, Xiangjun Gonga,b,*(), Pei-Yuan Qianc, Chunfeng Maa,**(
), Guangzhao Zhanga
Received:
2020-09-28
Revised:
2020-10-29
Accepted:
2020-11-03
Published:
2021-09-10
Online:
2021-02-09
Contact:
Xiangjun Gong,Chunfeng Ma
About author:
** E-mail addresses: msmcf@scut.edu.cn (C. Ma).Jiansen Pan, Qingmei Peng, Guoliang Zhang, Qingyi Xie, Xiangjun Gong, Pei-Yuan Qian, Chunfeng Ma, Guangzhao Zhang. Antifouling mechanism of natural product-based coatings investigated by digital holographic microscopy[J]. J. Mater. Sci. Technol., 2021, 84: 200-207.
Fig. 4. (a) Density distribution (heat maps) of instantaneous 3D velocities and distances from the surface (z) for Pseudomonas sp. Color bars represent the relative density of data points with a logarithmic scale. (b) The adhesion number (Nb) and (c) population density (Nall) of Pseudomonas sp. upon the coating surfaces with varying contents of butenolide.
Fig. 5. Ratio (Nsub/Nall) between the subdiffusive (υ<1) and total density of Pseudomonas sp. in z = 0-5 μm upon the coating surfaces with butenolide.
Fig. 6. Typical 3D trajectories of Pseudomonas sp. upon the surfaces of coating: (a) without antifoulant (0 wt.%) and (b) with 20 wt.% butenolide. (c) Three-dimensional velocity (V3D) of Pseudomonas sp. swimming actively (υ ≥ 1) near the surface as a function of distance from the surface (z) at 0-2 min, where V3D is obtained by calculating the arithmetic mean of all velocities distributed at z = 1, 5, 10, 20 and 30 μm. (d) Flick frequency (Ff) of Pseudomonas sp.
Fig. 7. Time dependence of: (a) Pseudomonas sp. density distribution of instantaneous 3D velocities and distances (z) from three coating surfaces, (b) the number of bacteria adhered onto three coating surfaces, and (c) the ratio (Nsub/Nall) between the subdiffusive (υ < 1) and total density of Pseudomonas sp. in z = 0-5 μm upon the three coating surfaces.
Fig. 8. Antibacterial activity of coatings with different contents of butenolide and positive control: (a) the newly obtained suspension from the coated panels after ultrasonic treatment, (b) the resulted suspension after immersing the coated panels for 24 h.
[1] |
M. Lejars, A. Margaillan, C. Bressy, Chem. Rev. 112 (2012) 4347-4390.
DOI URL |
[2] |
Q. Xie, J. Pan, C. Ma, G. Zhang, Soft Matter 15 (2019) 1087-1107.
DOI URL |
[3] |
T.H. Duong, J.F. Briand, A. Margaillan, C. Bressy, ACS Appl. Mater. Interfaces 7 (2015) 15578-15586.
DOI URL |
[4] |
K. Thomas, K. Raymond, J. Chadwick, M. Waldock, Appl. Organomet. Chem. 13 (1999) 453-460.
DOI URL |
[5] |
Q. Xie, C. Ma, C. Liu, J. Ma, G. Zhang, ACS Appl. Mater. Interfaces 7 (2015) 21030-21037.
DOI URL |
[6] |
E. Martinelli, C. Pretti, M. Oliva, A. Glisenti, G. Galli, Polymer 145 (2018) 426-433.
DOI URL |
[7] |
J. Hearin, K.Z. Hunsucker, G. Swain, A. Stephens, H. Gardner, K. Lieberman, M. Harper, Biofouling 31 (2015) 625-638.
DOI PMID |
[8] |
H. Wake, H. Takahashi, T. Takimoto, H. Takayanagi, K. Ozawa, H. Kadoi, M. Okochi, T. Matsunaga, Biotechnol. Bioeng. 95 (2006) 468-473.
DOI URL |
[9] |
I. Kviatkovski, H. Mamane, A. Lakretz, I. Sherman, D. Beno-Moualem, D. Minz, Lett. Appl. Microbiol. 67 (2018) 278-284.
DOI PMID |
[10] |
M. Legg, M.K. Yücel, I. Garcia De Carellan, V. Kappatos, C. Selcuk, T.H. Gan, Ocean Eng. 103 (2015) 237-247.
DOI URL |
[11] |
S.M. Evans, A.C. Birchenough, M.S. Brancato, Mar. Pollut. Bull. 40 (2000) 204-211.
DOI URL |
[12] |
I.K. Konstantinou, T.A. Albanis, Environ. Int. 30 (2004) 235-248.
PMID |
[13] |
Y. Xu, H. He, S. Schulz, X. Liu, N. Fusetani, H. Xiong, X. Xiao, P.Y. Qian, Bioresour. Technol. 101 (2010) 1331-1336.
DOI URL |
[14] |
R.N. Aguila-Ramírez, C.J. Hernández-Guerrero, B. González-Acosta, G. Id-Daoud, S. Hewitt, J. Pope, C. Hellio, Int. Biodeterior. Biodegradation 90 (2014) 64-70.
DOI URL |
[15] |
H. Dahms, S. Dobretsov, Mar. Drugs 15 (2017) 265-280.
DOI URL |
[16] |
S.C.K. Lau, P.Y. Qian, Biofouling 16 (2000) 47-58.
DOI URL |
[17] |
D. Lai, Z. Geng, Z. Deng, L.V. Ofwegen, P. Proksch, W. Lin, J. Agric. Food Chem. 61 (2013) 4585-4592.
DOI URL |
[18] |
T.L. Norcy, H. Niemann, P. Proksch, I. Linossier, K. Vallée-Réhel, C. Hellio, F. Faÿ, Int. J. Mol. Sci. 18 (2017) 1520.
DOI URL |
[19] |
D.Q. Feng, J. He, S.Y. Chen, P. Su, C.H. Ke, W. Wang, Mar. Biotechnol. 20 (2018) 623-638.
DOI URL |
[20] |
H. Etoh, T. Kondoh, R. Noda, I.P. Singh, Y. Sekiwa, K. Morimitsu, K. Kubota, Biosci. Biotechnol. Biochem. 66 (2002) 1748-1750.
DOI URL |
[21] |
Y.F. Zhang, H. Zhang, L. He, C. Liu, Y. Xu, P.Y. Qian, ACS Chem. Biol. 7 (2012) 1049-1058.
DOI URL |
[22] |
Y.F. Zhang, K. Xiao, K.H. Chandramouli, Y. Xu, K. Pan, W.X. Wang, P.Y. Qian, PLoS One 6 (2011), e23803.
DOI URL |
[23] |
L. Chen, R. Ye, Y. Xu, Z. Gao, D.W.T. Au, P.Y. Qian, Aquat. Toxicol. 149 (2014) 116-125.
DOI URL |
[24] |
P.Y. Qian, Z. Li, Y. Xu, Y. Li, N. Fusetani, Biofouling 31 (2015) 101-122.
DOI URL |
[25] |
L. Chen, Y. Xu, W. Wang, P.Y. Qian, Chemosphere 119 (2015) 1075-1083.
DOI URL |
[26] |
H.Y. Chiang, J. Pan, C. Ma, P.Y. Qian, Biofouling 36 (2020) 200-209.
DOI PMID |
[27] |
J. Pan, Q. Xie, H.Y. Chiang, Q. Peng, P.Y. Qian, C. Ma, G. Zhang, ACS Sustain. Chem. Eng. 8 (2020) 1671-1678.
DOI URL |
[28] |
W. Ding, C. Ma, W. Zhang, H.Y. Chiang, C. Tam, Y. Xu, G. Zhang, P.Y. Qian, Biofouling 34 (2018) 111-122.
DOI PMID |
[29] |
C. Ma, W. Zhang, G. Zhang, P.Y. Qian, ACS Sustain. Chem. Eng. 5 (2017) 6304-6309.
DOI URL |
[30] |
X. Zhou, M. Qi, G. Huang, C. Ma, L. Bao, X. Gong, G. Zhang, E.Y. Zeng, Biointerphases 14 (2019), 011005.
DOI URL |
[31] |
Q. Peng, X. Zhou, Z. Wang, Q. Xie, C. Ma, G. Zhang, Langmuir 35 (2019) 12257-12263.
DOI URL |
[32] |
M. Qi, Q. Song, J. Zhao, C. Ma, G. Zhang, X. Gong, Langmuir 33 (2017) 13098-13104.
DOI URL |
[33] |
M. Qi, X. Gong, B. Wu, G. Zhang, Langmuir 33 (2017) 3525-3533.
DOI URL |
[34] |
K. Son, J.S. Guasto, R. Stocker, Nat. Phys. 9 (2013) 494-498.
DOI URL |
[35] |
L. Xie, T. Altindal, S. Chattopadhyay, X.L. Wu, Proc. Natl. Acad. Sci. 108 (2011) 2246-2251.
DOI URL |
[36] |
M.E. Callow, A.R. Jennings, A.B. Brennan, C.E. Seegert, A. Gibson, L. Wilson, A. Feinberg, R. Baney, J.A. Callow, Biofouling 18 (2002) 229-236.
DOI URL |
[37] |
Y.H. An, R.J. Friedman, J. Biomed. Mater. Res. 43 (1998) 338-348.
DOI URL |
[38] |
P. Sartori, E. Chiarello, G. Jayaswal, M. Pierno, G. Mistura, P. Brun, A. Tiribocchi, E. Orlandini, Phys. Rev. E 97 (2018), 022610.
DOI URL |
[39] |
J.P. Hermandez-Ortiz, C.G. Stoltz, M.D. Graham, Phys. Rev. Lett. 95 (2005), 204501.
DOI URL |
[40] |
M. Molaei, M. Barry, R. Stocker, J. Sheng, Phys. Rev. Lett. 113 (2014), 068103.
DOI URL |
[41] |
V. Silva, C. Silva, P. Soares, E.M. Garrido, F. Borges, J. Garrido, Molecules 25 (2020) 991.
DOI URL |
[42] |
M.D. Hoffman, L.I. Zucker, P.J. Brown, D.T. Kysela, Y.V. Brun, S.C. Jacobson, Anal. Chem. 87 (2015) 12032-12039.
DOI URL |
[43] |
H. Kang, S. Shim, S.J. Lee, J. Yoon, K.H. Ahn, Environ. Sci. Technol. 45 (2011) 5769-5774.
DOI URL |
[44] | W.T. Xu, Preparation and Properties of Polyurethane With Degradation and Hydrolyzation, M.D. Thesis, South China University of Technology, 2015 (in Chinese). |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||