J. Mater. Sci. Technol. ›› 2021, Vol. 81: 43-50.DOI: 10.1016/j.jmst.2020.12.012
• Research Article • Previous Articles Next Articles
Zenan Maa,b, Jiawei Lib,*(), Jijun Zhangc, Aina Heb, Yaqiang Dongb, Guoguo Tanb, Mingqiang Ningb, Qikui Manb, Xincai Liua,*(
)
Received:
2020-10-09
Revised:
2020-11-17
Accepted:
2020-12-10
Published:
2021-01-09
Online:
2021-01-09
Contact:
Jiawei Li,Xincai Liu
About author:
liuxincai@nbu.edu.cn (X. Liu).Zenan Ma, Jiawei Li, Jijun Zhang, Aina He, Yaqiang Dong, Guoguo Tan, Mingqiang Ning, Qikui Man, Xincai Liu. Ultrathin, flexible, and high-strength Ni/Cu/metallic glass/Cu/Ni composite with alternate magneto-electric structures for electromagnetic shielding[J]. J. Mater. Sci. Technol., 2021, 81: 43-50.
Fig. 1. Fabrication and characterization of Ni/Cu/MG. (a) Schematic fabricating process and illustration. (b-e) Surface morphologies of MG, Ni/MG, Cu/MG and Ni/Cu/MG, respectively. (f-i) Enlarged images of (b-e). (j) Cross-sectional image. (k-m) Elemental distribution images.
Fig. 2. TEM microstructure of Ni/Cu/MG. (a) Cross-sectional bright-field image. The inset in (a) shows the SAED pattern. (b) HRTEM image, indicating the interdiffusion of Ni, Cu and MG.
Fig. 4. (a) EMI SE and (b) SET, SEA and SER of MG, Ni/MG, Cu/MG and Ni/Cu/MG. The dash lines are guides for eyes. (c) EMI shielding mechanism of Ni/Cu/MG.
Fig. 5. Power flow intensity distribution map. (a) Ni/Cu/MG. (b) Cu/MG. (c, d) Ni/MG with electroless Ni plating for 3 min and 7 min, respectively. All the power flow intensity is normalized, and the color from red to blue represents the EMWs vary from strong to weak.
Fig. 6. (a) Stress-strain curves of MG, Ni/MG, Cu/MG and Ni/Cu/MG at a strain rate of 10-4 m/s. (b) EMI SE/t versus tensile strength. Metals: blue triangle; Carbon materials: black squares; MXenes: orange diamond; Others: green circle; This work: red pentagram.
Fig. 7. Thermal management performance of Ni/Cu/MG. (a) Surface temperature as a function of time and applied voltage. (b) Variation of resistance with temperature. (c) Temperature-time curve at a constant voltage of 0.2 V. The inset in (c) displays the infrared thermal imaging photos during heating. The temperature in the inset represents the average temperature of the entire sample surface.
[1] |
P. Kumar, U. Narayan Maiti, A. Sikdar, T. Kumar Das, A. Kumar, V. Sudarsan, Polym. Rev. 59 (2019) 687-738.
DOI URL |
[2] |
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong, C.M. Koo, Y. Gogotsi, Science 353 (2016) 1137-1140.
DOI PMID |
[3] | J.J. Zhang, J.W. Li, G.G. Tan, R.C. Hu, J.Q. Wang, C.T. Chang, X.M. Wang, ACSAppl. Mater. Interfaces 9 (2017) 42192-42199. |
[4] |
S.H. Lee, S. Yu, F. Shahzad, J.P. Hong, W.N. Kim, C. Park, S.M. Hong, C.M. Koo, Compos. Sci. Technol. 144 (2017) 57-62.
DOI URL |
[5] |
P. He, X.X. Wang, Y.Z. Cai, J.C. Shu, Q.L. Zhao, J. Yuan, M.S. Cao, Nanoscale 11 (2019) 6080-6088.
DOI URL |
[6] |
D. Wanasinghe, F. Aslani, Compos. Pt. B Eng. 176 (2019) 107207.
DOI URL |
[7] |
J. Chen, X. Liao, W. Xiao, J. Yang, Q. Jiang, G. Li, ACS Sustain. Chem. Eng. 7 (2019) 9904-9915.
DOI |
[8] | M.G. Jang, S.C. Ryu, K.J. Juhn, S.K. Kim, W.N. Kim, J. Appl. Polym. Sci. 136 (2018) 47302. |
[9] |
W.J. Long, Y.C. Gu, H. Ma, H.D. Li, F. Xing, Compos. Pt. B Eng. 168 (2019)25-33.
DOI URL |
[10] |
J. Luo, L. Wang, X. Huang, B. Li, Z. Guo, X. Song, L. Lin, L.C. Tang, H. Xue, J. Gao, ACS Appl. Mater. Interfaces 11 (2019) 10883-10894.
DOI URL |
[11] |
B.A. Zhao, C.B. Park, J. Mater. Chem. C 5 (2017) 6954-6961.
DOI URL |
[12] |
H. Abbasi, M. Antunes, J.I. Velasco, Prog. Mater. Sci. 103 (2019) 319-373.
DOI URL |
[13] |
A. Iqbal, F. Shahzad, K. Hantanasirisakul, M.K. Kim, J. Kwon, J. Hong, H. Kim, D. Kim, Y. Gogotsi, C.M. Koo, Science 369 (2020) 446-450.
DOI URL |
[14] |
A. Iqbal, P. Sambyal, C.M. Koo, Adv. Funct. Mater. 30 (2020) 2000883.
DOI URL |
[15] |
S. Li, Z. Xu, Y. Dong, D. Liu, G. Sui, Compos. Pt. A Appl. Sci. Manuf. 131 (2020)105798.
DOI URL |
[16] |
S. Li, J. Li, N. Ma, D. Liu, G. Sui, ACS Sustain. Chem. Eng. 7 (2019) 13970-13980.
DOI URL |
[17] |
Y. Xu, Y. Li, W. Hua, A.M. Zhang, J.J. Bao, ACS Appl. Mater. Interfaces 8 (2016)24131-24142.
DOI URL |
[18] |
K. Zhang, H.O. Yu, K.X. Yu, Y. Gao, M. Wang, J. Li, S.Y. Guo, Compos. Sci. Technol. 156 (2018) 136-143.
DOI URL |
[19] |
Y.J. Tan, J. Li, Y. Gao, J. Li, S.Y. Guo, M. Wang, Appl. Surf. Sci. 458 (2018)236-244.
DOI URL |
[20] |
Y. Li, B. Shen, D. Yi, L.H. Zhang, W.T. Zhai, X.C. Wei, W.G. Zheng, Compos. Sci. Technol. 138 (2017) 209-216.
DOI URL |
[21] |
Y.D. Xu, Y.Q. Yang, D.X. Yan, H.J. Duan, G.Z. Zhao, Y.Q. Liu, ACS Appl. Mater. Interfaces 10 (2018) 19143-19152.
DOI URL |
[22] |
J. Yang, X. Liao, G. Wang, J. Chen, F. Guo, W. Tang, W. Wang, Z. Yan, G. Li, Chem. Eng. J. 390 (2020) 124589.
DOI URL |
[23] |
A. Sheng, W. Ren, Y. Yang, D.X. Yan, H. Duan, G. Zhao, Y. Liu, Z.M. Li, Compos. Pt. A Appl. Sci. Manuf. 129 (2020) 105692.
DOI URL |
[24] |
Z. Gao, Z. Jia, K. Wang, X. Liu, L. Bi, G. Wu, Chem. Eng. J. 402 (2020)125951.
DOI URL |
[25] | C. Liang, Y. Liu, Y. Ruan, H. Qiu, P. Song, J. Kong, H. Zhang, J. Gu, Compos. Pt. AAppl. Sci. Manuf. 139 (2020) 106143. |
[26] |
T. Hou, B. Wang, M. Ma, A. Feng, Z. Huang, Y. Zhang, Z. Jia, G. Tan, H. Cao, G. Wu, Compos. Pt. B Eng. 180 (2020) 107577.
DOI URL |
[27] |
Q. Zhao, Y. Liu, E.W. Abel, Mater. Chem. Phys. 87 (2004) 332-335.
DOI URL |
[28] |
G.M. Weng, J. Li, M. Alhabeb, C. Karpovich, H. Wang, J. Lipton, K. Maleski, J. Kong, E. Shaulsky, M. Elimelech, Y. Gogotsi, A.D. Taylor, Adv. Funct. Mater. 28 (2018) 1803360.
DOI URL |
[29] |
D.X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu, P.G. Ren, J.H. Wang, Z.-M. Li, Adv. Funct. Mater. 25 (2015) 559-566.
DOI URL |
[30] |
F. Qin, H.X. Peng, Prog. Mater. Sci. 58 (2013) 183-259.
DOI URL |
[31] |
B. Zhao, C.X. Zhao, R.S. Li, S.M. Hamidinejad, C.B. Park, ACS Appl. Mater. Interfaces 9 (2017) 20873-20884.
DOI URL |
[32] |
K. Sushmita, T.V. Menon, S. Sharma, A.C. Abhyankar, G. Madras, S. Bose, J. Phys. Chem. C 123 (2019) 2579-2590.
DOI |
[33] |
B. Zhao, B. Fan, G. Shao, W. Zhao, R. Zhang, ACS Appl. Mater. Interfaces 7 (2015) 18815-18823.
DOI URL |
[34] |
X. Ma, Q. Zhang, Z. Luo, X. Lin, G. Wu, Mater. Des. 89 (2016) 71-77.
DOI URL |
[35] |
J. Liu, H.B. Zhang, R. Sun, Y. Liu, Z. Liu, A. Zhou, Z.Z. Yu, Adv. Mater. 29 (2017)1702367.
DOI URL |
[36] |
J. Liu, Z. Liu, H.B. Zhang, W. Chen, Z. Zhao, Q.W. Wang, Z.Z. Yu, Adv. Electron. Mater. 6 (2019) 1901094.
DOI URL |
[37] |
W. Chen, L.X. Liu, H.B. Zhang, Z.Z. Yu, ACS Nano 14 (2020) 16643-16653.
DOI URL |
[38] |
Z. Ma, S. Kang, J. Ma, L. Shao, Y. Zhang, C. Liu, A. Wei, X. Xiang, L. Wei, J. Gu, ACS Nano 14 (2020) 8368-8382.
DOI URL |
[39] |
R. Pandey, S. Tekumalla, M. Gupta, J. Alloys Compd. 770 (2019) 473-482.
DOI URL |
[40] |
Y. Liu, X.Y. Jian, X.L. Su, F. Luo, J. Xu, J.B. Wang, X.H. He, Y.H. Qu, J. Alloys Compd. 740 (2018) 68-76.
DOI URL |
[41] |
N. He, M. Liu, J. Qi, J. Tong, W. Sao, X. Yang, L. Shi, G. Tong, Chem. Eng. J. 378 (2019) 122160.
DOI URL |
[42] |
S.M. Yang, Y.Y. Chang, Y.C. Hsieh, Y.J. Lee, J. Appl. Polym. Sci. 110 (2008)1403-1410.
DOI URL |
[43] |
B. Zhao, S. Zeng, X. Li, X. Guo, Z. Bai, B. Fan, R. Zhang, J. Mater. Chem. C 8 (2020) 500-509.
DOI URL |
[44] |
L. Wang, X. Shi, J. Zhang, Y. Zhang, J. Gu, J. Mater. Sci. Technol. 52 (2020)119-126.
DOI URL |
[45] | B. Zhao, R. Wang, Y. Li, Y. Ren, X. Li, X. Guo, R. Zhang, C.B. Park, J. Mater. Chem.C 8 (2020) 7401-7410. |
[46] | B. Zhao, Y. Li, Q. Zeng, L. Wang, J. Ding, R. Zhang, R. Che, Small 16 (2020) e2003502. |
[47] | B. Zhao, J. Deng, C. Zhao, C. Wang, Y.G. Chen, M. Hamidinejad, R. Li, C.B. Park, J.Mater. Chem. C 8 (2020) 58-70. |
[48] |
Y. Yang, M. Li, Y. Wu, T. Wang, E.S. Choo, J. Ding, B. Zong, Z. Yang, J. Xue, Nanoscale 8 (2016) 15989-15998.
DOI URL |
[49] |
M.M. Ahmmad, Y. Sumi, J. Mar. Sci. Technol. 15 (2009) 1-15.
DOI URL |
[50] |
W. He, R. Zhang, Y. Cheng, C. Zhang, X. Zhou, Z. Liu, X. Hu, Z. Liu, J. Sun, Y. Wang, D. Qian, Z. Liu, Sci. China Mater. 63 (2020) 1318-1329.
DOI URL |
[51] |
Z. Ma, S. Kang, J. Ma, L. Shao, A. Wei, C. Liang, J. Gu, B. Yang, D. Dong, L. Wei, Z. Ji, ACS Nano 13 (2019) 7578-7590.
DOI URL |
[52] |
R. Zhou, P. Li, Z. Fan, D. Du, J. Ouyang, J. Mater. Chem. C 5 (2017)1544-1551.
DOI URL |
[53] |
W.L. Johnson, G. Kaltenboeck, M.D. Demetriou, J.P. Schramm, X. Liu, K. Samwer, C.P. Kim, D.C. Hofmann, Science 332 (2011) 828-833.
DOI URL |
[54] |
H. Yao, Z. Zhou, L. Wang, Z. Tan, D. He, L. Zhao, Coatings 7 (2017) 173.
DOI URL |
[1] | Pengfei Ji, Bohan Chen, Bo Li, Yihao Tang, Guofeng Zhang, Xinyu Zhang, Mingzhen Ma, Riping Liu. Influence of Nb addition on microstructural evolution and compression mechanical properties of Ti-Zr alloys [J]. J. Mater. Sci. Technol., 2021, 69(0): 7-14. |
[2] | Yanli Lu, Yi Wang, Yifan Wang, Meng Gao, Yao Chen, Zheng Chen. First-principles study on the mechanical, thermal properties and hydrogen behavior of ternary V-Ni-M alloys [J]. J. Mater. Sci. Technol., 2021, 70(0): 83-90. |
[3] | Xiaojie Zhou, Yuan Yao, Jian Zhang, Xiaomin Chen, Weiying Huang, Jing Pan, Haoran Wang, Maopeng Weng. A high-performance Mg-4.9Gd-3.2Y-1.1Zn-0.5Zr alloy via multidirectional forging after analyzing its compression behavior [J]. J. Mater. Sci. Technol., 2021, 70(0): 156-167. |
[4] | Qingqing Li, Yong Zhang, Jie Chen, Bugao Guo, Weicheng Wang, Yuhai Jing, Yong Liu. Effect of ultrasonic micro-forging treatment on microstructure and mechanical properties of GH3039 superalloy processed by directed energy deposition [J]. J. Mater. Sci. Technol., 2021, 70(0): 185-196. |
[5] | S.Z. Wu, T. Nakata, G.Z. Tang, C. Xu, X.J. Wang, X.W. Li, X.G. Qiao, M.Y. Zheng, L. Geng, S. Kamado, G.H. Fan. Effect of forced-air cooling on the microstructure and age-hardening response of extruded Mg-Gd-Y-Zn-Zr alloy full with LPSO lamella [J]. J. Mater. Sci. Technol., 2021, 73(0): 66-75. |
[6] | Qingkai Shen, Xiangdong Kong, Xizhang Chen. Fabrication of bulk Al-Co-Cr-Fe-Ni high-entropy alloy using combined cable wire arc additive manufacturing (CCW-AAM): Microstructure and mechanical properties [J]. J. Mater. Sci. Technol., 2021, 74(0): 136-142. |
[7] | Md. R.U. Ahsan, Xuesong Fan, Gi-Jeong Seo, Changwook Ji, Mark Noakes, Andrzej Nycz, Peter K. Liaw, Duck Bong Kim. Microstructures and mechanical behavior of the bimetallic additively-manufactured structure (BAMS) of austenitic stainless steel and Inconel 625 [J]. J. Mater. Sci. Technol., 2021, 74(0): 176-188. |
[8] | Yinbao Tian, Junqi Shen, Shengsun Hu, Jian Gou, Yan Cui. Effects of cold metal transfer mode on the reaction layer of wire and arc additive-manufactured Ti-6Al-4V/Al-6.25Cu dissimilar alloys [J]. J. Mater. Sci. Technol., 2021, 74(0): 35-45. |
[9] | C.C. Zhang, H.L. Wei, T.T. Liu, L.Y. Jiang, T. Yang, W.H. Liao. Influences of residual stress and micro-deformation on microstructures and mechanical properties for Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy produced by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2021, 75(0): 174-183. |
[10] | Weiming Yang, Xinfa Sun, Haishun Liu, Changfeng Yu, Wenyu Li, Akihisa Inoue, Daniel Şopu, Jürgen Eckert, Chunguang Tang. Structural homology of the strength for metallic glasses [J]. J. Mater. Sci. Technol., 2021, 81(0): 123-130. |
[11] | Liang Deng, Long Zhang, Konrad Kosiba, René Limbach, Lothar Wondraczek, Gang Wang, Dongdong Gu, Uta Kühn, Simon Pauly. CuZr-based bulk metallic glass and glass matrix composites fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2021, 81(0): 139-150. |
[12] | Lin Yuan, Jiangtao Xiong, Yajie Du, Jin Ren, Junmiao Shi, Jinglong Li. Microstructure and mechanical properties in the TLP joint of FeCoNiTiAl and Inconel 718 alloys using BNi2 filler [J]. J. Mater. Sci. Technol., 2021, 61(0): 176-185. |
[13] | Jinfeng Ling, Dandan Huang, Kewu Bai, Wei Li, Zhentao Yu, Weimin Chen. High-throughput development and applications of the compositional mechanical property map of the β titanium alloys [J]. J. Mater. Sci. Technol., 2021, 71(0): 201-210. |
[14] | Xiang Peng, Shihao Xu, Dehua Ding, Guanglan Liao, Guohua Wu, Wencai Liu, Wenjiang Ding. Microstructural evolution, mechanical properties and corrosion behavior of as-cast Mg-5Li-3Al-2Zn alloy with different Sn and Y addition [J]. J. Mater. Sci. Technol., 2021, 72(0): 16-22. |
[15] | Wen Zhang, Lei Chen, Chenguang Xu, Wenyu Lu, Yujin Wang, Jiahu Ouyang, Yu Zhou. Densification, microstructure and mechanical properties of multicomponent (TiZrHfNbTaMo)C ceramic prepared by pressureless sintering [J]. J. Mater. Sci. Technol., 2021, 72(0): 23-28. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||