J. Mater. Sci. Technol. ›› 2021, Vol. 79: 101-108.DOI: 10.1016/j.jmst.2020.11.042
• Research Article • Previous Articles Next Articles
Dan Liua,b,c, Hongying Yangc, Jianhui Lia, Jiaqi Lib, Yizhe Dongb, Chuntian Yangb, Yuting Jinb, Lekbach Yassirb, Zhong Lib, David Hernandezd, Dake Xub,*(
), Fuhui Wangb, Jessica A. Smithd
Received:2020-09-07
Revised:2020-11-04
Accepted:2020-11-17
Published:2020-12-09
Online:2020-12-09
Contact:
Dake Xu
About author:* E-mail address: xudake@mail.neu.edu.cn (D. Xu).1These authors contributed equally to this work.
Dan Liu, Hongying Yang, Jianhui Li, Jiaqi Li, Yizhe Dong, Chuntian Yang, Yuting Jin, Lekbach Yassir, Zhong Li, David Hernandez, Dake Xu, Fuhui Wang, Jessica A. Smith. Electron transfer mediator PCN secreted by aerobic marine Pseudomonas aeruginosa accelerates microbiologically influenced corrosion of TC4 titanium alloy[J]. J. Mater. Sci. Technol., 2021, 79: 101-108.
Fig. 1. EOCP (a) and 1/Rp (b) measurements overtime of the TC4 titanium alloy coupons inoculated in either sterile medium or medium with P. aeruginosa.
Fig. 2. Bode and Nyquist plots, physical models and corresponding equivalent circuits for TC4 titanium alloy coupons incubated in sterile medium or inoculated with P. aeruginosa: (a, b) Bode and Nyquist plots from the sterile medium, (c, d) Bode and Nyquist plots in the presence of P. aeruginosa, (e, f) physical models and the corresponding equivalent circuits in the sterile and P. aeruginosa inoculations, respectively.
| Duration (d) | RS (Ω cm2) | Qf (×10-5 Ω -1 sn cm-2) | nf | Rf (× 105 Ω cm 2) | Qdl (× 10-5 Ω -1 sn cm-2) | ndl | Rct (kΩ cm2) | Σχ2(× 10-4) |
|---|---|---|---|---|---|---|---|---|
| Sterile medium | ||||||||
| 1 | 19.3 ± 1.3 | 2.3 ± 0.5 | 0.94 ± 0.05 | 869 ± 49 | 8.7 ± 1.5 | |||
| 4 | 16.1 ± 0.3 | 2.8 ± 0.1 | 0.91 ± 0.01 | 1263 ± 68 | 3.2 ± 1.6 | |||
| 7 | 17.4 ± 0.8 | 2.7 ± 0.1 | 0.91 ± 0.02 | 1164 ± 94 | 5.9 ± 0.1 | |||
| 14 | 16.2 ± 0.7 | 2.5 ± 0.2 | 0.91 ± 0.02 | 1098 ± 41 | 6.2 ± 1.3 | |||
| Medium with P. aeruginosa | ||||||||
| 1 | 13.5 ± 4.9 | 2.3 ± 0.3 | 0.92 ± 0.01 | 3.9 ± 0.7 | 3.5 ± 0.1 | 0.91 ± 0.06 | 660 ± 42 | 2.6 ± 0.7 |
| 4 | 11.8 ± 2.2 | 5.8 ± 1.6 | 0.91 ± 0.03 | 4.2 ± 0.9 | 7.1 ± 0.6 | 0.86 ± 0.06 | 1042 ± 79 | 6.1 ± 0.3 |
| 7 | 12.1 ± 2.8 | 2.8 ± 0.7 | 0.88 ± 0.07 | 4.5 ± 0.2 | 4.1 ± 0.4 | 0.78 ± 0.04 | 893 ± 26 | 4.9 ± 0.1 |
| 14 | 14.4 ± 0.1 | 2.2 ± 0.1 | 0.93 ± 0.01 | 4.1 ± 0.1 | 3.7 ± 0.8 | 0.69 ± 0.01 | 795 ± 38 | 3.6 ± 0.5 |
Table 1 Electrochemical model impedance parameters of TC4 titanium alloy incubated in sterile medium or medium with P. aeruginosa.
| Duration (d) | RS (Ω cm2) | Qf (×10-5 Ω -1 sn cm-2) | nf | Rf (× 105 Ω cm 2) | Qdl (× 10-5 Ω -1 sn cm-2) | ndl | Rct (kΩ cm2) | Σχ2(× 10-4) |
|---|---|---|---|---|---|---|---|---|
| Sterile medium | ||||||||
| 1 | 19.3 ± 1.3 | 2.3 ± 0.5 | 0.94 ± 0.05 | 869 ± 49 | 8.7 ± 1.5 | |||
| 4 | 16.1 ± 0.3 | 2.8 ± 0.1 | 0.91 ± 0.01 | 1263 ± 68 | 3.2 ± 1.6 | |||
| 7 | 17.4 ± 0.8 | 2.7 ± 0.1 | 0.91 ± 0.02 | 1164 ± 94 | 5.9 ± 0.1 | |||
| 14 | 16.2 ± 0.7 | 2.5 ± 0.2 | 0.91 ± 0.02 | 1098 ± 41 | 6.2 ± 1.3 | |||
| Medium with P. aeruginosa | ||||||||
| 1 | 13.5 ± 4.9 | 2.3 ± 0.3 | 0.92 ± 0.01 | 3.9 ± 0.7 | 3.5 ± 0.1 | 0.91 ± 0.06 | 660 ± 42 | 2.6 ± 0.7 |
| 4 | 11.8 ± 2.2 | 5.8 ± 1.6 | 0.91 ± 0.03 | 4.2 ± 0.9 | 7.1 ± 0.6 | 0.86 ± 0.06 | 1042 ± 79 | 6.1 ± 0.3 |
| 7 | 12.1 ± 2.8 | 2.8 ± 0.7 | 0.88 ± 0.07 | 4.5 ± 0.2 | 4.1 ± 0.4 | 0.78 ± 0.04 | 893 ± 26 | 4.9 ± 0.1 |
| 14 | 14.4 ± 0.1 | 2.2 ± 0.1 | 0.93 ± 0.01 | 4.1 ± 0.1 | 3.7 ± 0.8 | 0.69 ± 0.01 | 795 ± 38 | 3.6 ± 0.5 |
Fig. 3. Representative 3-D CLSM image of biofilm and the largest pits. The TC4 titanium alloy coupon-biofilm after incubation with P. aeruginosa for (a) 7 and (b) 14 days. The largest pits on TC4 titanium alloy coupons after 14 days of incubation in either (c) sterile medium or (d) medium with P. aeruginosa.
Fig. 4. XPS analysis of corrosion products. (a) XPS survey spectra of TC4 titanium alloy after 14 days of incubation in sterile medium versus medium inoculated with either aerobically-grown or anaerobically-grown P. aeruginosa. XPS spectra of Ti 2p after 14 days of incubation in (b) sterile medium, (c) culture medium with aerobically-grown P. aeruginosa, and (d) culture medium with anaerobically-grown P. aeruginosa.
| Sample | C | N | O | Cl | Ti | V | Al |
|---|---|---|---|---|---|---|---|
| Sterile medium | 3.3 | 0.3 | 53.7 | 4.4 | 30.5 | 0.5 | 7.3 |
| Aerobically-grown P. aeruginosa | 36.9 | 3.4 | 35.4 | 5.2 | 14.7 | 0.3 | 4.1 |
| Anaerobically-grown P. aeruginosa | 9.1 | 0.5 | 50.9 | 3.5 | 29.2 | 0.3 | 6.5 |
Table 2 Relative atomic concentrations (at.%) of the main detected corrosion elements after incubating the TC4 titanium alloy coupons for 14-days in either sterile medium, aerobically-grown P. aeruginosa, or anaerobically-grown P. aeruginosa.
| Sample | C | N | O | Cl | Ti | V | Al |
|---|---|---|---|---|---|---|---|
| Sterile medium | 3.3 | 0.3 | 53.7 | 4.4 | 30.5 | 0.5 | 7.3 |
| Aerobically-grown P. aeruginosa | 36.9 | 3.4 | 35.4 | 5.2 | 14.7 | 0.3 | 4.1 |
| Anaerobically-grown P. aeruginosa | 9.1 | 0.5 | 50.9 | 3.5 | 29.2 | 0.3 | 6.5 |
| Sample | Ecorr (mV) vs. SCE | icorr (nA cm-2) |
|---|---|---|
| Sterile medium | -469 ± 4 | 22 ± 3 |
| Wild-type P. aeruginosa | -848 ± 1 | 54 ± 8 |
| P. aeruginosa Δ phzH | -505 ± 4 | 28 ± 12 |
| P. aeruginosa phzH complementation | -819 ± 24 | 45 ± 7 |
Table 3 Electrochemical corrosion parameters determined from the TC4 titanium alloy coupon polarization curves after 14-day incubations in sterile medium or with varying strains of P. aeruginosa.
| Sample | Ecorr (mV) vs. SCE | icorr (nA cm-2) |
|---|---|---|
| Sterile medium | -469 ± 4 | 22 ± 3 |
| Wild-type P. aeruginosa | -848 ± 1 | 54 ± 8 |
| P. aeruginosa Δ phzH | -505 ± 4 | 28 ± 12 |
| P. aeruginosa phzH complementation | -819 ± 24 | 45 ± 7 |
Fig. 6. (a) PCN concentrations in the culture medium after 14 days of incubation with TC4 titanium alloy; (b) TC4 titanium alloy 1/Rp values during 14 days of incubation with various P. aeruginosa strains; (c) TC4 titanium alloy polarization curves after 14 days of incubation with various P. aeruginosa strains; (d) Sessile cell count and icorr of per cell after 14 days of incubation with various P. aeruginosa strains.
Fig. 7. 3-D CLSM images of (a) phzH-deficient and (b) phzH-complemented P. aeruginosa biofilm after incubation with TC4 titanium alloy coupon for 14 days.
Fig. 8. Schematic illustration of MIC mechanism which is induced by electron transfer between P. aeruginosa and the metal surfaces via extracellular electron transfer process via PCN.
| [1] |
M. Atapour, A.L. Pilchak, G.S. Frankel, J.C. Williams, Mater. Sci. Eng. C 31 (2011) 885-891.
DOI URL |
| [2] |
L.S. Bertol, W.K. Júnior, F.P. da Silva, C. Aumund-Kopp, Mater. Des. 31 (2010) 3982-3988.
DOI URL |
| [3] |
W. Lu, Y. Shi, Y. Lei, X. Li, Mater. Des. 34 (2012) 509-515.
DOI URL |
| [4] |
J.-R. Chen, W.-T. Tsai, Electrochim. Acta 56 (2011) 1746-1751.
DOI URL |
| [5] |
P. Handzlik, K. Fitzner, Trans. Nonferrous Met. Soc. China 23 (2013) 866-875.
DOI URL |
| [6] |
Z.B. Wang, H.X. Hu, Y.G. Zheng, W. Ke, Y.X. Qiao, Corros. Sci. 103 (2016) 50-65.
DOI URL |
| [7] |
C. Ciszak, I. Popa, J.M. Brossard, D. Monceau, S. Chevalier, Corros. Sci. 110 (2016) 91-104.
DOI URL |
| [8] | J. Yin, Y. Wu, J. Lu, B. Ding, L. Zhang, B. Cao, Rare Met. Mater. Eng. 32 (2003) 436-439. |
| [9] |
R. Jia, D. Yang, D. Xu, T. Gu, Bioelectrochemistry 118 (2017) 38-46.
DOI PMID |
| [10] |
R. Jia, D. Yang, J. Xu, D. Xu, T. Gu, Corros. Sci. 127 (2017) 1-9.
DOI URL |
| [11] |
X. Li, D. Zhang, Z. Liu, Z. Li, C. Du, C. Dong, Nat. News 527 (2015) 441-442.
DOI URL |
| [12] | T. Gu, J. Microb, J. Biochem. Microbiol. Technol. Eng. 04 (2012) 3-6. |
| [13] |
D. Xu, T. Gu, Int. Biodeterior. Biodegrad. 91 (2014) 74-81.
DOI URL |
| [14] | Y. Li, D. Xu, C. Chen, X. Li, R. Jia, D. Zhang, W. Sand, F. Wang, T. Gu, J. Mater, Sci. Technol. 34 (2018) 1713-1718. |
| [15] | T. Gu, R. Jia, T. Unsal, D. Xu, J. Mater, Sci. Technol. 35 (2019) 631-636. |
| [16] | H.-Y. Tang, D.E. Holmes, T. Ueki, P.A. Palacios, D.R. Lovley, MBio 10 (2019) e00303-19. |
| [17] | Gu Tingyue, Houston, 2012, pp. 1481-1493. |
| [18] | R.K. Thauer, E. Stackebrandt, W.A. Hamilton, in: L.L. Barton, W.A. Hamilton (Eds.), Sulphate-Reducing Bact, Cambridge University Press, Cambridge, 2007, pp. 1-38. |
| [19] |
Z.M. Summers, H.E. Fogarty, C. Leang, A.E. Franks, N.S. Malvankar, D.R. Lovley, Science 330 (2010) 1413-1415.
DOI PMID |
| [20] |
A.-E. Rotaru, P.M. Shrestha, F. Liu, B. Markovaite, S. Chen, K.P. Nevin, D.R. Lovley, Appl. Environ. Microbiol. 80 (2014) 4599-4605.
DOI URL |
| [21] |
D.K. Newman, R. Kolter, Nature 405 (2000) 94-97.
DOI URL |
| [22] |
G. Reguera, K.P. Nevin, J.S. Nicoll, S.F. Covalla, T.L. Woodard, D.R. Lovley, Appl. Environ. Microbiol. 72 (2006) 7345-7348.
DOI URL |
| [23] | D.R. Lovley, D.J.F. Walker, Microbiol 10 (2019) 118-. |
| [24] |
M.E. Hernandez, D.K. Newman, Cell. Mol. Life Sci. 58 (2001) 1562-1571.
PMID |
| [25] |
L. Huang, J. Tang, M. Chen, X. Liu, S. Zhou, Front. Microbiol. 9 (2018) 1-8.
DOI URL |
| [26] |
J.A. Smith, P.-L. Tremblay, P.M. Shrestha, O.L. Snoeyenbos-West, A.E. Franks, K.P. Nevin, D.R. Lovley, Appl. Environ. Microbiol. 80 (2014) 4331-4340.
DOI URL |
| [27] | L.A. Zacharoff, D.J. Morrone, D.R. Bond, Front. Microbiol. 8 (2017) 1-9. |
| [28] |
M.E. Hernandez, A. Kappler, D.K. Newman, APPL Env. MICROBIOL 70 (2004) 921-928.
DOI URL |
| [29] |
N.R. Glasser, S.H. Saunders, D.K. Newman, Annu. Rev. Microbiol. 71 (2017) 731-751.
DOI URL |
| [30] |
A. Price-Whelan, L.E.P. Dietrich, D.K. Newman, J. Bacteriol. 189 (2007) 6372-6381.
PMID |
| [31] |
Y. Lekbach, D. Xu, S. El Abed, Y. Dong, D. Liu, M.S. Khan, S. Ibnsouda Koraichi, K. Yang, Int. Biodeterior. Biodegrad. 133 (2018) 159-169.
DOI URL |
| [32] | D.V. Mavrodi, R.F. Bonsall, S.M. Delaney, M.J. Soule, G. Phillips, L.S. Thomashow, J. Bacteriol. 183 (2001) 6454-6465. |
| [33] |
D. Xu, Y. Li, F. Song, T. Gu, Corros. Sci. 77 (2013) 385-390.
DOI URL |
| [34] |
G.G. de Lima, G.B. de Souza, C.M. Lepienski, N.K. Kuromoto, J. Mech. Behav. Biomed. Mater. 64 (2016) 18-30.
DOI URL |
| [35] |
E. Marin, M.V. Diamanti, M. Boffelli, M. Sendoh, M.P. Pedeferri, A. Mazinani, M. Moscatelli, B. Del Curto, W. Zhu, G. Pezzotti, R. Chiesa, Mater. Des. 108 (2016) 77-85.
DOI URL |
| [36] |
J. Liu, A. Alfantazi, E. Asselin, J. Electrochem. Soc. 162 (2015) C189-C196.
DOI URL |
| [37] |
Z. Jiang, X. Dai, T. Norby, H. Middleton, Corros. Sci. 53 (2011) 815-821.
DOI URL |
| [38] |
D.-S. Kong, J.-X. Wu, J. Electrochem. Soc. 155 (2008) C32-C40.
DOI URL |
| [39] |
C. Sun, J. Xu, F. Wang, Ind. Eng. Chem. Res. 50 (2011) 12797-12806.
DOI URL |
| [40] |
Y. Jin, Z. Li, E. Zhou, Y. Lekbach, D. Xu, S. Jiang, F. Wang, Electrochim. Acta 316 (2019) 93-104.
DOI URL |
| [41] |
D.J. Blackwood, R. Greef, L.M. Peter, Electrochim. Acta 34 (1989) 875-880.
DOI URL |
| [42] |
B. Liu, G. Xiao, Y. Lu, J. Electrochem. Soc. 163 (2016) C477-C485.
DOI URL |
| [43] |
Dake Xu, Yingchao Li, Fengmei Song, Tingyue Gu, Corros. Sci. 77 (2013) 385-390.
DOI URL |
| [44] |
D. Liu, R. Jia, D. Xu, H. Yang, Y. Zhao, M. saleem Khan, S. Huang, J. Wen, K. Yang, T. Gu, J. Mater. Sci. Technol. 35 (2019) 2494-2502.
DOI URL |
| [45] |
A. Abdolahi, E. Hamzah, Z. Ibrahim, S. Hashim, Corros. Rev. 32 (2014) 129-141.
DOI URL |
| [46] | M.M. Mahat, A.H.M. Aris, U.S. Jais, M.F.Z.R. Yahya, R. Ramli, N.N. Bonnia, M.T. Mamat, Aip Conf., 2012, pp. 117-123. |
| [47] |
Y. Huang, E. Zhou, C. Jiang, R. Jia, S. Liu, D. Xu, T. Gu, F. Wang, Electrochem. commun. 94 (2018) 9-13.
DOI URL |
| [48] |
F. Haghi, H. Zeighami, A. Monazami, F. Toutouchi, S. Nazaralian, G. Naderi, Microb. Pathog. 115 (2018) 251-256.
DOI URL |
| [1] | X. Luo, L.H. Liu, C. Yang, H.Z. Lu, H.W. Ma, Z. Wang, D.D. Li, L.C. Zhang, Y.Y. Li. Overcoming the strength-ductility trade-off by tailoring grain-boundary metastable Si-containing phase in β-type titanium alloy [J]. J. Mater. Sci. Technol., 2021, 68(0): 112-123. |
| [2] | Shixing Huang, Qinyang Zhao, Yongqing Zhao, Cheng Lin, Cong Wu, Weiju Jia, Chengliang Mao, Vincent Ji. Toughening effects of Mo and Nb addition on impact toughness and crack resistance of titanium alloys [J]. J. Mater. Sci. Technol., 2021, 79(0): 147-164. |
| [3] | Jianxiong Li, Anupam Vivek, Glenn Daehn. Improved properties and thermal stability of a titanium-stainless steel solid-state weld with a niobium interlayer [J]. J. Mater. Sci. Technol., 2021, 79(0): 191-204. |
| [4] | Baoguo Yuan, Xing Liu, Jiangfei Du, Qiang Chen, Yuanyuan Wan, Yunliang Xiang, Yan Tang, Xiaoxue Zhang, Zhongyue Huang. Effects of hydrogenation temperature on room-temperature compressive properties of CMHT-treated Ti6Al4V alloy [J]. J. Mater. Sci. Technol., 2021, 72(0): 132-143. |
| [5] | Yinling Zhang, Zhuo Chen, Shoujiang Qu, Aihan Feng, Guangbao Mi, Jun Shen, Xu Huang, Daolun Chen. Multiple α sub-variants and anisotropic mechanical properties of an additively-manufactured Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2021, 70(0): 113-124. |
| [6] | Zhihong Wu, Hongchao Kou, Nana Chen, Zhixin Zhang, Fengming Qiang, Jiangkun Fan, Bin Tang, Jinshan Li. Microstructural influences on the high cycle fatigue life dispersion and damage mechanism in a metastable β titanium alloy [J]. J. Mater. Sci. Technol., 2021, 70(0): 12-23. |
| [7] | Jiashun Shi, Suchun Wang, Xin Cheng, Shiqiang Chen, Guangzhou Liu. Constructing zwitterionic nanofiber film for anti-adhesion of marine corrosive microorganisms [J]. J. Mater. Sci. Technol., 2021, 70(0): 145-155. |
| [8] | Hanyu Zhao, Yupeng Sun, Lu Yin, Zhao Yuan, Yiliang Lan, Dake Xu, Chunguang Yang, Ke Yang. Improved corrosion resistance and biofilm inhibition ability of copper-bearing 304 stainless steel against oral microaerobic Streptococcus mutans [J]. J. Mater. Sci. Technol., 2021, 66(0): 112-120. |
| [9] | Na Guo, Yanan Wang, Xinrui Hui, Qianyu Zhao, Zhenshun Zeng, Shuai Pan, Zhangwei Guo, Yansheng Yin, Tao Liu. Marine bacteria inhibit corrosion of steel via synergistic biomineralization [J]. J. Mater. Sci. Technol., 2021, 66(0): 82-90. |
| [10] | Zhong Li, Jie Wang, Yizhe Dong, Dake Xu, Xianhui Zhang, Jianhua Wu, Tingyue Gu, Fuhui Wang. Synergistic effect of chloride ion and Shewanella algae accelerates the corrosion of Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2021, 71(0): 177-185. |
| [11] | Yi Yang, Di Xu, Sheng Cao, Songquan Wu, Zhengwang Zhu, Hao Wang, Lei Li, Shewei Xin, Lei Qu, Aijun Huang. Effect of strain rate and temperature on the deformation behavior in a Ti-23.1Nb-2.0Zr-1.0O titanium alloy [J]. J. Mater. Sci. Technol., 2021, 73(0): 52-60. |
| [12] | Baoxian Su, Binbin Wang, Liangshun Luo, Liang Wang, Yanqing Su, Fuxin Wang, Yanjin Xu, Baoshuai Han, Haiguang Huang, Jingjie Guo, Hengzhi Fu. The corrosion behavior of Ti-6Al-3Nb-2Zr-1Mo alloy: Effects of HCl concentration and temperature [J]. J. Mater. Sci. Technol., 2021, 74(0): 143-154. |
| [13] | Yanxin Qiao, Daokui Xu, Shuo Wang, Yingjie Ma, Jian Chen, Yuxin Wang, Huiling Zhou. Effect of hydrogen charging on microstructural evolution and corrosion behavior of Ti-4Al-2V-1Mo-1Fe alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 168-176. |
| [14] | Jin-Yu Zhang, Fu-Zhi Dai, Zhi-Peng Sun, Wen-Zheng Zhang. Structures and energetics of semicoherent interfaces of precipitates in hcp/bcc systems: A molecular dynamics study [J]. J. Mater. Sci. Technol., 2021, 67(0): 50-60. |
| [15] | Zhixin Zhang, Jiangkun Fan, Ruifeng Li, Hongchao Kou, Zhiyong Chen, Qingjiang Wang, Hailong Zhang, Jian Wang, Qi Gao, Jinshan Li. Orientation dependent behavior of tensile-creep deformation of hot rolled Ti65 titanium alloy sheet [J]. J. Mater. Sci. Technol., 2021, 75(0): 265-275. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
