J. Mater. Sci. Technol. ›› 2021, Vol. 78: 247-259.DOI: 10.1016/j.jmst.2020.11.034
• Review Article • Previous Articles Next Articles
Mingxiang Liua,b, Changjiang Songa,*(), Zhenshan Cuib,*(
)
Received:
2020-08-05
Revised:
2020-10-20
Accepted:
2020-11-01
Published:
2021-07-10
Online:
2020-11-28
Contact:
Changjiang Song,Zhenshan Cui
About author:
cuizs@sjtu.edu.cn(Z. Cui).Mingxiang Liu, Changjiang Song, Zhenshan Cui. Crystallographic texture evolution and martensite transformation in the strain hardening process of a ferrite-based low density steel[J]. J. Mater. Sci. Technol., 2021, 78: 247-259.
Fig. 1. EBSD maps of the initial specimens: (a) band contrast (BC) map with twin boundaries (green lines); (b) inverse pole figure (IPF-Z); (c) phase map; (d) grain size distribution of austenite and ferrite.
Fig. 3. (a) Engineering stress and strain curve and (b) Multi-stage strain hardening rate with true stress curves of tensile specimens. The red arrows refer to the strain for microstructure analysis.
Fig. 6. TEM micrographs of microstructures in the tensile specimen at strain 10 %: (a) austenite twinning and (b) SAED pattern; (c) deformation-induced martensite and SAED patterns of (d) martensite and (e) its parent RA; (f, g) dislocation structure of δ-ferrite.
Fig. 7. TEM micrographs of microstructures in the tensile specimen at strain 20 %: (a) Martensite; (b) austenite twin; (c) dislocation structure; (d) retained austenite.
Component | Miller indices | Euler angles(°) | ||
---|---|---|---|---|
φ1 | Φ | φ2 | ||
Copper(Cu) | {112}<111> | 90 | 35 | 45 |
Brass(B) | {110}<112> | 55 | 90 | 45 |
Goss (G) | {110}<100> | 90 | 90 | 45 |
S | {123}<634> | 59 | 37 | 63 |
A | {110}<111> | 35 | 90 | 45 |
Cube (C) | {001}<100> | 0 | 0 | 0 |
E | {111}<110> | 0/60 | 55 | 45 |
F | {111}<112> | 30/90 | 55 | 45 |
Rotated Copper(RtCu) | {112}<110> | 0 | 35 | 45 |
Copper Twin(CuT) | {552}<115> | 90 | 74 | 45 |
Rotated Goss(RtG) | {110}<110> | 0 | 90 | 45 |
Table 1 Miller indices and Euler angles of main texture components of austenite.
Component | Miller indices | Euler angles(°) | ||
---|---|---|---|---|
φ1 | Φ | φ2 | ||
Copper(Cu) | {112}<111> | 90 | 35 | 45 |
Brass(B) | {110}<112> | 55 | 90 | 45 |
Goss (G) | {110}<100> | 90 | 90 | 45 |
S | {123}<634> | 59 | 37 | 63 |
A | {110}<111> | 35 | 90 | 45 |
Cube (C) | {001}<100> | 0 | 0 | 0 |
E | {111}<110> | 0/60 | 55 | 45 |
F | {111}<112> | 30/90 | 55 | 45 |
Rotated Copper(RtCu) | {112}<110> | 0 | 35 | 45 |
Copper Twin(CuT) | {552}<115> | 90 | 74 | 45 |
Rotated Goss(RtG) | {110}<110> | 0 | 90 | 45 |
Fig. 13. Schmid factor maps of austenitic slip system {111}<110> group at strains of (a) 0%, (b)10 %, (c) 20 %, and (d) their statistical distribution.
Fig. 15. Statistical distribution of grain boundary misorientation angle between austenite grains and its adjacent grains at different strains: (a) 10 %; (b) 20 %; (c) 40 %.
Fig. 17. Misorientation distribution in (a) the local region and in the corresponding (b) ferrite and (c) austenite phases of the specimen at the strain of 10 %.
Fig. 18. Schematic of strain hardening mechanism. (a) The contribution of martensite transformation to the strain hardening rate (red bars represent the strain hardening rate of martensite, while gray bars represent the total strain hardening rate). (b) Illustration of the dominant mechanisms evolution in the strain hardening stages.
[1] | S.P. Chen, R. Rana, A. Haldar, R. Ray, Prog. Mater. Sci. 89(2017). |
[2] |
S.-H. Kim, H. Kim, N.J. Kim, Nature 518(2015) 77-79.
DOI URL |
[3] |
S.S. Sohn, H. Song, B.-C. Suh, J.-H. Kwak, B.-J. Lee, N.J. Kim, S. Lee, Acta Mater. 96(2015) 301-310.
DOI URL |
[4] |
S.S. Sohn, B.J. Lee, S. Lee, N.J. Kim, J.H. Kwak, Acta Mater. 61(2013) 5050-5066.
DOI URL |
[5] |
H.L. Yi, S.K. Ghosh, W.J. Liu, K.Y. Lee, H.K.D.H. Bhadeshia, Mater. Sci. Tech. 26(2010) 817-823.
DOI URL |
[6] |
R. Rana, C. Liu, R.K. Ray, Acta Mater. 75(2014) 227-245.
DOI URL |
[7] |
V.S.Y. Injeti, Z.C. Li, B. Yu, R.D.K. Misra, Z.H. Cai, H. Ding, , J. Mater. Sci. Technol. 34(2018) 745-755.
DOI URL |
[8] |
J. Wang, Q. Yang, X. Wang, Y. Zhao, L. Wang, Mater. Sci. Eng. A 751(2019) 340-350.
DOI URL |
[9] |
S.W. Hwang, J.H. Ji, E.G. Lee, K.-T. Park, Mater. Sci. Eng. A 528(2011) 5196-5203.
DOI URL |
[10] |
Z.H. Cai, H. Ding, R.D.K. Misra, Z.Y. Ying, Acta Mater. 84(2015) 229-236.
DOI URL |
[11] | S. Yan, T. Liang, Z. Wang, B. Yan, T. Li, X. Liu, Mater. Sci. Eng. A 773 (2020), 138732. |
[12] |
S. Lee, S. Shin, M. Kwon, K. Lee, B.C. De Cooman, Metall. Mater. Trans. A 48(2017) 1678-1700.
DOI URL |
[13] |
S.J. Park, B. Hwang, K.H. Lee, T.H. Lee, D.W. Suh, H.N. Han, Scr. Mater. 68(2013) 365-369.
DOI URL |
[14] |
S.S. Sohn, K. Choi, J.-H. Kwak, N.J. Kim, S. Lee , Acta Mater. 78(2014) 181-189.
DOI URL |
[15] |
Z.Q. Wu, H. Ding, H.Y. Li, M.L. Huang, F.R. Cao, Mater. Sci. Eng. A 584(2013) 150-155.
DOI URL |
[16] |
H. Song, S.S. Sohn, J.-H. Kwak, B.-J. Lee, S. Lee, Metall. Mater. Trans. A 47(2016) 2674-2685.
DOI URL |
[17] |
X. Li, R. Song, N. Zhou, J. Li, Mater. Sci. Eng. A 709(2018) 97-104.
DOI URL |
[18] |
I.B. Timokhina, P. Hodgson, E.V. Pereloma, Metall. Mater. Trans. A 35(2004) 2331-2341.
DOI URL |
[19] |
J.H. Ryu, D.-I. Kim, H.S. Kim, H. Bhadeshia, D.-W. Suh, Scr. Mater. 63(2010) 297-299.
DOI URL |
[20] |
H.L. Yi, K.Y. Lee, H.K.D.H. Bhadeshia, Mater. Sci. Eng. A 528(2011) 5900-5903.
DOI URL |
[21] |
S. Lee, S.-J. Lee, B.C. De Cooman, Scr. Mater. 65(2011) 225-228.
DOI URL |
[22] |
S. Zhang, K.O. Findley, Acta Mater. 61(2013) 1895-1903.
DOI URL |
[23] |
C.-H. Seo, K.H. Kwon, K. Choi, K.-H. Kim, J.H. Kwak, S. Lee, N.J. Kim, Scr. Mater. 66(2012) 519-522.
DOI URL |
[24] |
G.K. Tirumalasetty, M.A. van Huis, C. Kwakernaak, J. Sietsma, W.G. Sloof, H.W. Zandbergen, Acta Mater. 60(2012) 1311-1321.
DOI URL |
[25] | D.-d. Ma, P. Yang, X.-F. Gu, Y. Onuki, S. Sato, Mater. Charact. 163(2020), 110244. |
[26] | S.-C. Chen, C.-Y. Huang, Y.-T. Wang, C.-Y. Huang, H.-W. Yen, Mater. Sci. Eng. A 790 (2020), 139683. |
[27] |
L. Zhao, N.H.V. Dijk, E. Brück, J. Sietsma, S.V.D. Zwaag, Mater. Sci. Eng. A 313(2001) 145-152.
DOI URL |
[28] |
G. Haidemenopoulos, N. Aravas, I. Bellas, Mater. Sci. Eng. A 615(2014) 416-423.
DOI URL |
[29] |
A.A. Saleh, E.V. Pereloma, A.A. Gazder, Acta Mater. 61(2013) 2671-2691.
DOI URL |
[30] |
K.A. Ofei, L. Zhao, J. Sietsma, J. Mater. Sci. Technol. 29(2013) 161-167.
DOI URL |
[31] |
R. Blondé, E. Jimenez-Melero, L. Zhao, J.P. Wright, E. Brück, S. van der Zwaag, N.H. van Dijk, Mater. Sci. Eng. A 618(2014) 280-287.
DOI URL |
[32] |
J. Shi, X. Sun, M. Wang, W. Hui, H. Dong, W. Cao, Scr. Mater. 63(2010) 815-818.
DOI URL |
[33] |
S.K. Paul, M. Mukherjee, Comp. Mater. Sci. 84(2014) 1-12.
DOI URL |
[34] |
B. Sun, Y. Ma, N. Vanderesse, R.S. Varanasi, W. Song, P. Bocher, D. Ponge, D. Raabe, Acta Mater. 178(2019) 10-25.
DOI URL |
[35] | Y. Li, M. Liu, H. Zhang, J. Liu, Z. Cui, Mater. Sci. Eng. A 772 (2020), 138667. |
[36] |
W.S. Choi, S. Sandlöbes, N.V. Malyar, C. Kirchlechner, S. Korte-Kerzel, G. Dehm, P.-P. Choi, D. Raabe, Scr. Mater. 156(2018) 27-31.
DOI URL |
[37] | J. Samei, D.E. Green, J. Cheng, M.S. de Carvalho Lima, Mater. Design 92(2016) 1028-1037. |
[1] | J.X. Hou, X.Y. Li, K. Lu. Orientation dependence of mechanically induced grain boundary migration in nano-grained copper [J]. J. Mater. Sci. Technol., 2021, 68(0): 30-34. |
[2] | Chengqian Zhang, Lan Wu, Anjin Tao, Hriday Bera, Xing Tang, Dongmei Cun, Mingshi Yang. Formulation and in vitro characterization of long-acting PLGA injectable microspheres encapsulating a peptide analog of LHRH [J]. J. Mater. Sci. Technol., 2021, 63(0): 133-144. |
[3] | Bo Song, Zhiwen Du, Ning Guo, Qingshan Yang, Fang Wang, Shengfeng Guo, Renlong Xin. Effect of free-end torsion on microstructure and mechanical properties of AZ31 bars with square section [J]. J. Mater. Sci. Technol., 2021, 69(0): 20-31. |
[4] | Zhixin Zhang, Jiangkun Fan, Ruifeng Li, Hongchao Kou, Zhiyong Chen, Qingjiang Wang, Hailong Zhang, Jian Wang, Qi Gao, Jinshan Li. Orientation dependent behavior of tensile-creep deformation of hot rolled Ti65 titanium alloy sheet [J]. J. Mater. Sci. Technol., 2021, 75(0): 265-275. |
[5] | Shuai-Feng Chen, Hong-Wu Song, Ming Cheng, Ce Zheng, Shi-Hong Zhang, Myoung-Gyu Lee. Texture modification and mechanical properties of AZ31 magnesium alloy sheet subjected to equal channel angular bending [J]. J. Mater. Sci. Technol., 2021, 67(0): 211-225. |
[6] | D.P. Yang, P.J. Du, D. Wu, H.L. Yi. The microstructure evolution and tensile properties of medium-Mn steel heat-treated by a two-step annealing process [J]. J. Mater. Sci. Technol., 2021, 75(0): 205-215. |
[7] | B.N. Du, Z.Y. Hu, L.Y. Sheng, D.K. Xu, Y.X. Qiao, B.J. Wang, J. Wang, Y.F. Zheng, T.F. Xi. Microstructural characteristics and mechanical properties of the hot extruded Mg-Zn-Y-Nd alloys [J]. J. Mater. Sci. Technol., 2021, 60(0): 44-55. |
[8] | Yu Han, Huabing Li, Hao Feng, Kemei Li, Yanzhong Tian, Zhouhua Jiang. Simultaneous enhancement in strength and ductility of Fe50Mn30Co10Cr10 high-entropy alloy via nitrogen alloying [J]. J. Mater. Sci. Technol., 2021, 65(0): 210-215. |
[9] | Bingnan Qian, Jinyong Zhang, Yangyang Fu, Fan Sun, Yuan Wu, Jun Cheng, Philippe Vermaut, Frédéric Prima. In-situ microstructural investigations of the TRIP-to-TWIP evolution in Ti-Mo-Zr alloys as a function of Zr concentration [J]. J. Mater. Sci. Technol., 2021, 65(0): 228-237. |
[10] | Hui Jiang, Dongxu Qiao, Wenna Jiao, Kaiming Han, Yiping Lu, Peter K. Liaw. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 119-124. |
[11] | Hui Xiao, Manping Cheng, Lijun Song. Direct fabrication of single-crystal-like structure using quasi-continuous-wave laser additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 60(0): 216-221. |
[12] | Jiayi Zhang, Yan Jin Lee, Hao Wang. Mechanochemical effect on the microstructure and mechanical properties in ultraprecision machining of AA6061 alloy [J]. J. Mater. Sci. Technol., 2021, 69(0): 228-238. |
[13] | Xiao Zhang, Pei Wang, Dianzhong Li, Yiyi Li. Multi-scale study on the heterogeneous deformation behavior in duplex stainless steel [J]. J. Mater. Sci. Technol., 2021, 72(0): 180-188. |
[14] | Yinling Zhang, Zhuo Chen, Shoujiang Qu, Aihan Feng, Guangbao Mi, Jun Shen, Xu Huang, Daolun Chen. Multiple α sub-variants and anisotropic mechanical properties of an additively-manufactured Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2021, 70(0): 113-124. |
[15] | Xiaojie Zhou, Yuan Yao, Jian Zhang, Xiaomin Chen, Weiying Huang, Jing Pan, Haoran Wang, Maopeng Weng. A high-performance Mg-4.9Gd-3.2Y-1.1Zn-0.5Zr alloy via multidirectional forging after analyzing its compression behavior [J]. J. Mater. Sci. Technol., 2021, 70(0): 156-167. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||