J. Mater. Sci. Technol. ›› 2021, Vol. 78: 238-246.DOI: 10.1016/j.jmst.2020.11.033
• Review Article • Previous Articles Next Articles
Tayyeb Alia,b, Lin Wanga,b,*(), Xingwang Chenga,b,*(
), Huanwu Chenga, Ying Yangc, Anjin Liua,b, Xuefeng Xua,b, Zhe Zhoua,b, Zixuan Ninga,b, Ziqi Xua,b, Xinhua Mind
Received:
2020-09-30
Accepted:
2020-11-01
Published:
2021-07-10
Online:
2020-11-28
Contact:
Lin Wang,Xingwang Cheng
About author:
chengxw@bit.edu.cn(X. Cheng).Tayyeb Ali, Lin Wang, Xingwang Cheng, Huanwu Cheng, Ying Yang, Anjin Liu, Xuefeng Xu, Zhe Zhou, Zixuan Ning, Ziqi Xu, Xinhua Min. Mechanical (compressive) form of driving force triggers the phase transformation from β to ω & α’’ phases in metastable β phase-field Ti-5553 alloy[J]. J. Mater. Sci. Technol., 2021, 78: 238-246.
Fig. 1. True stress-strain compression curves of Ti-5553 heat-treated at 900 °C/1 h/Air Cooled (AC); (a) Dynamic compression performed by SHPB at different strain rates, And inset shows the elastic and strain hardening part of the curve (b) Quasi-static compression at the strain rate of ~10-3/s and strain hardening part of the curve is zoomed in and shown in the inset.
Fig. 2. EBSD images to notify phase transformation and mode of deformation (a) Heat-treated sample without any deformation, (b) Phase map of the sample without deformation, (c) deformed sample by compression, (d) Showing β and transformed α’’after compression.
Fig. 3. TEM analysis of Ti-5553 specimen before and after deformation; (a) Dark-field image which shows the presence of ωath athermal after air quenching from 900 °C. (b) Dark-field image illustrates ωD deformed after deformation. (c) and (d) Dark-field images of ωD deformed, which appeared in the slip band area. Dark-field images were taken along (-1010)ω whereas for SAED B//[011]β zone axes. Schematic images demonstrate the transformation to ωD deformed.
Fig. 4. OM analysis of deformed Ti-5553 samples; (a) High strain compression by SHPB having slip bands, twins and cross slips and also some disappearing cross slips mentioned in a white circle, (b) schematic of randomly arranged grains showing β unit cell and dense pack planes (110)? (blue) and (112)? (red), (c) Quasi-static compression image presenting slip bands in different grains and displaced grain boundaries (insets) after stress concentration (white circles).
Fig. 5. SEM and TEM analysis for slip bands after SHPB; (a) Normal (-110)? and cross (112)? slips present at the angle of 90° with respect to each other while zoom in inset illustrates the transformation of β to α’’ along with activation of slips & twins, and orientation of (-110)? and (112)? plane is shown in schematic, (b) slip bands pointed out by arrows, and transformation of β to α’’, and{332}? twins are shown in TEM and SAED pattern.
Fig. 6. SEM images after compression (a) slip bands, distortion of grains, spalling of grain boundary (inset), shear bands formation (inset) and the crack propagation along with shear band after quasi-static compression, (b) Stress concentration points (red circles), grain boundary displacing and cracking due to slip and overlapping of slip band with grain boundary (inset blue circle) at low strain rate compression, (c) Disappearance of slip band at grain boundary and GB cracking after high strain rate compression.
Fig. 8. EBSD, SEM, and schematic representation of rotation of crystal after compressive loading; (a) Rotated crystal after twining having equal distance parallel slips, (b) (332) <113> primary and secondary twins and slips, (c) schematic representation of (a) shows the activation of a dense-pack plane (disoriented previously) rotated after twin, (d) changing of direction of slip bands (containing transformed α’’) while entering into the adjacent grain, (e) changing the direction of slips while intersecting with cross slip bands within the same grain, (f) Schematic representation of slip when passed through normal and deformed crystal, (g) (332) <113> twining (h, i) Martensitic transformation along with twins & slips, and rotation of the crystal.
Fig. 9. HRTEM and EBSD images showing stress-induced phase transformation after deformation;(a), (b) indicate the complete phase transformation from β to orthorhombic α’’, B//[010]α’’. (c), (d) are showing partially transformed α’’ from β, B//[111]β // [[1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]]α’’. (e), (f) Phase map showing matrix β, stress-induced α’’ and ω phase.
Fig. 10. HRTEM, SAED, and Schematic images after deformation; (a) Schematic atomic model showing ω transformation, (a1-a5) indicates the gradual transformation of β containing ωath to ωD upon loading. (b, d) describes the β, ωath and ωD (c) A linear fault schematic atomic model, sectioned through (101)? showing the transformation from β to ω after the displacement covered by an adjacent layer of atomic planes named as A & B and also showing the transformation by applying the wave of 2/3 < 111> longitudinal displacement to bcc atomic lattice, while bcc cube containing planes, is representing the transformation to complete (hexagonal) and incomplete (trigonal) ω phase by the displacement wave model.
[1] |
J.C. Fanning, J. Mater. Eng. Perform. 14(2005) 788-791.
DOI URL |
[2] | V.V. Shevel’kov, Metallovedenie i Termicheskaya Obrabotka Metallov (1992) 33-37. |
[3] |
S.L. Sass, Acta Metall. 17(1969) 813-820.
DOI URL |
[4] |
A.T. Balcerzak, S.L. Sass, Metall. Trans. 3(1972) 1601-1605.
DOI URL |
[5] |
Y. Ohmori, T. Ogo, K. Nakai, S. Kobayashi, Mater. Sci. Eng. A 312(2001) 182-188.
DOI URL |
[6] |
M.J. Lai, T. Li, D. Raabe, Acta Mater. 151(2018) 67-77.
DOI URL |
[7] |
J. Gao, A.J. Knowles, D. Guan, W.M. Rainforth, Scr. Mater. 162(2019) 77-81.
DOI URL |
[8] | B. Tang, Y.W. Cui, H. Chang, H. Kou, J. Li, L. Zhou, Comput. Mater. Sci. 53(2012) 187-193. |
[9] |
H.E. Cook, Acta Metall. 21(1973) 1445-1449.
DOI URL |
[10] |
J. Zhao, L. Lv, K. Wang, G. Liu, J. Mater. Sci. Technol. 38(2020) 125-134.
DOI URL |
[11] |
L.F. Huang, B. Grabowski, J. Zhang, M.J. Lai, C.C. Tasan, S. Sandlöbes, D. Raabe, J. Neugebauer, Acta Mater. 113(2016) 311-319.
DOI URL |
[12] |
P. Wang, M. Todai, T. Nakano, J. Alloys Compd. 766(2018) 511-516.
DOI URL |
[13] |
P. Gao, M. Fu, M. Zhan, Z. Lei, Y. Li, J. Mater. Sci. Technol. 39(2020) 56-73.
DOI URL |
[14] |
J.D. Cotton, R.D. Briggs, R.R. Boyer, S. Tamirisakandala, P. Russo, N. Shchetnikov, J.C. Fanning, JOM 67(2015) 1281-1303.
DOI URL |
[15] |
N.G. Jones, R.J. Dashwood, D. Dye, M. Jackson, Mater. Sci. Eng. A 490(2008) 369-377.
DOI URL |
[16] |
A. Boyne, D. Wang, R.P. Shi, Y. Zheng, A. Behera, S. Nag, J.S. Tiley, H.L. Fraser, R. Banerjee, Y. Wang, Acta Mater. 64(2014) 188-197.
DOI URL |
[17] |
S. Nag, Y. Zheng, R.E.A. Williams, A. Devaraj, A. Boyne, Y. Wang, P.C. Collins, G.B. Viswanathan, J.S. Tiley, B.C. Muddle, R. Banerjee, H.L. Fraser, Acta Mater. 60(2012) 6247-6256.
DOI URL |
[18] |
L. Lu, A. Dahle, D. StJohn, Scr. Mater. 54(2006) 2197-2201.
DOI URL |
[19] |
L. Bolzoni, N.H. Babu, JOM 68(2016) 1301-1306.
DOI URL |
[20] |
B. Murty, S. Kori, M. Chakraborty, Int. Mater. Rev. 47(2002) 3-29.
DOI URL |
[21] |
S. Nag, R. Banerjee, R. Srinivasan, J.Y. Hwang, M. Harper, H.L. Fraser, Acta Mater. 57(2009) 2136-2147.
DOI URL |
[22] |
R. Shi, Y. Zheng, R. Banerjee, H.L. Fraser, Y. Wang, Scr. Mater. 171(2019) 62-66.
DOI URL |
[23] | Rongpei Shi, Yufeng Zheng, Dong Wang, Hamish Fraser, Y. Wang, Heterogenous Nucleation During β→α+β Transformation in TitaniumAlloys,Proceedings of the 13th World Conference on Titanium (2020) 1931-1936. |
[24] |
Y. Zheng, R.E.A. Williams, J.M. Sosa, T. Alam, Y. Wang, R. Banerjee, H.L. Fraser , Acta Mater. 103(2016) 165-173.
DOI URL |
[25] |
Y. Zheng, R.E.A. Williams, D. Wang, R. Shi, S. Nag, P. Kami, J.M. Sosa, R. Banerjee, Y. Wang, H.L. Fraser, Acta Mater. 103(2016) 850-858.
DOI URL |
[26] |
Y. Zheng, R.E.A. Williams, J.M. Sosa, Y. Wang, R. Banerjee, H.L. Fraser, Scr. Mater. 111(2016) 81-84.
DOI URL |
[27] |
Y. Zheng, D. Choudhuri, T. Alam, R.E.A. Williams, R. Banerjee, H.L. Fraser, Scr. Mater. 123(2016) 81-85.
DOI URL |
[28] |
S. Azimzadeh, H.J. Rack, Metall. Mater. Trans. A 29(1998) 2455-2467.
DOI URL |
[29] |
T. Li, D. Kent, G. Sha, M.S. Dargusch, J.M. Cairney, Scr. Mater. 104(2015) 75-78.
DOI URL |
[30] |
F. Prima, P. Vermaut, G. Texier, D. Ansel, T. Gloriant, Scr. Mater. 54(2006) 645-648.
DOI URL |
[31] |
C.G. Rhodes, J.C. Williams, Metall. Trans. A 6(1975) 2103-2114.
DOI URL |
[32] |
A. Devaraj, S. Nag, R. Banerjee, Scr. Mater. 69(2013) 513-516.
DOI URL |
[33] |
J.W. Foltz, B. Welk, P.C. Collins, H.L. Fraser, J.C. Williams, Metall. Mater. Trans. A 42(2011) 645-650.
DOI URL |
[34] | M.J. Blackburn, J.C. Williams, Trans. Met. Soc. AIME 25(1969) 235-245. |
[35] | J.C. Williams, M.J. Blackburn, Trans. Met. Soc. AIME 19(1968) 242-246. |
[36] |
R. Dong, J. Li, H. Kou, J. Fan, Y. Zhao, H. Hou, L. Wu, J. Mater. Sci. Technol. 44(2020) 24-30.
DOI URL |
[37] |
T.S. Kuan, R.R. Ahrens, S.L. Sass, Metall. Trans. A 6(1975) 1767.
DOI URL |
[38] |
E. Bertrand, P. Castany, I. Péron, T. Gloriant, Scr. Mater. 64(2011) 1110-1113.
DOI URL |
[39] |
E. Sukedai, M. Shimoda, H. Nishizawa, Y. Nako, Mater. Trans. 52(2011) 324-330.
DOI URL |
[40] |
X. Zhang, W. Wang, J. Sun, Mater. Charact. 145(2018) 724-729.
DOI URL |
[41] | H. Xing, J. Sun, Appl. Phys. Lett. 93(2008), 031908. |
[42] |
R.J. Talling, R.J. Dashwood, M. Jackson, D. Dye, Acta Mater. 57(2009) 1188-1198.
DOI URL |
[43] |
M.J. Lai, C.C. Tasan, J. Zhang, B. Grabowski, L.F. Huang, D. Raabe, Acta Mater. 92(2015) 55-63.
DOI URL |
[44] |
S.A. Mantri, F. Sun, D. Choudhuri, T. Alam, B. Gwalani, F. Prima, R. Banerjee, Sci. Rep. 9(2019) 1334.
DOI URL |
[45] |
R.M. Wood, Acta Metall. 11(1963) 907-914.
DOI URL |
[46] |
Y.K. Vohra, E.S.K. Menon, S.K. Sikka, R. Krishnan , Acta Metall. 29(1981) 457-470.
DOI URL |
[47] |
H. Nishizawa, E. Sukedai, W. Liu, H. Hashimoto, Mater. Trans. Jim 39(1998) 609-612.
DOI URL |
[48] |
S.W. Lee, J.M. Oh, C.H. Park, J.-K. Hong, J.-T. Yeom , J. Alloys Compd. 782(2019) 427-432.
DOI URL |
[49] | W. Wang, X. Zhang, W. Mei, J. Sun, Mater. Des. 186(2020), 108282. |
[50] |
X.L. Wang, L. Li, H. Xing, P. Ou, J. Sun, Scr. Mater. 96(2015) 37-40.
DOI URL |
[51] |
J. Fan, Z. Zhang, P. Gao, R. Yang, H. Li, B. Tang, H. Kou, Y. Zhang, C. Esling, J. Li, J. Mater. Sci. Technol. 38(2020) 135-147.
DOI URL |
[52] | Z. Zhang, J. Fan, B. Tang, H. Kou, J. Wang, X. Wang, S. Wang, Q. Wang, Z. Chen, J. Li, J. Mater. Sci. Technol. (2020). |
[53] |
X. Li, J. Li, B. Zhou, M. Yu, M. Sui, J. Mater. Sci. Technol. 35(2019) 660-666.
DOI URL |
[54] |
S. Mahajan, D.F. Williams, Int. Metall. Rev. 18(1973) 43-61.
DOI URL |
[55] |
P.R. Thornton, T.E. Mitchell, Philos. Mag. 7(1962) 361-375.
DOI URL |
[56] |
X.-X. Yu, C.-Y. Wang, Acta Mater. 57(2009) 5914-5920.
DOI URL |
[57] | R. Salloom, R. Banerjee, S.G. Srinivasan, J. Appl. Phys. 120(2016), 175105. |
[58] |
Z. Guo, A.P. Miodownik, N. Saunders, J.P. Schillé, Scr. Mater. 54(2006) 2175-2178.
DOI URL |
[59] |
B. Zhao, P. Huang, L. Zhang, S. Li, Z. Zhang, Q. Yu, Sci. Rep. 10(2020) 3086.
DOI URL |
[60] | R. Boyer, G. Welsch,and E.W. Colings(Eds.), Materials Properties Handbook: Titanium Alloys, ASM International, Materials Park, OH, 1994, pp. 43-46. |
[1] | Lin Gao, Kai Li, Song Ni, Yong Du, Min Song. The growth mechanisms of θ′ precipitate phase in an Al-Cu alloy during aging treatment [J]. J. Mater. Sci. Technol., 2021, 61(0): 25-32. |
[2] | Chendong Zhao, Jinshan Li, Yudong Liu, William Yi Wang, Hongchao Kou, Eric Beaugnon, Jun Wang. Tailoring mechanical and magnetic properties of AlCoCrFeNi high-entropy alloy via phase transformation [J]. J. Mater. Sci. Technol., 2021, 73(0): 83-90. |
[3] | Pan Xie, Shucheng Shen, Cuilan Wu, Jianghua Chen. Abnormal orientation relation between fcc and hcp structures revealed in a deformed high manganese steel [J]. J. Mater. Sci. Technol., 2021, 60(0): 156-161. |
[4] | Huabei Peng, Dian Wang, Qi Liao, Yuhua Wen. Degeneration and rejuvenation of shape memory effect associated with the precipitation of coherent nano-particles in a Co-Ni-Si shape memory alloy [J]. J. Mater. Sci. Technol., 2021, 76(0): 150-155. |
[5] | Xinglong An, Hao Zhang, Song Ni, Xiaoqin Ou, Xiaozhou Liao, Min Song. Effects of temperature and alloying content on the phase transformation and {10$\bar{1}$1} twinning in Zr during rolling [J]. J. Mater. Sci. Technol., 2020, 41(0): 76-80. |
[6] | Ruifeng Dong, Jinshan Li, Hongchao Kou, Jiangkun Fan, Yuhong Zhao, Hua Hou, Li Wu. ω-Assisted refinement of α phase and its effect on the tensile properties of a near β titanium alloy [J]. J. Mater. Sci. Technol., 2020, 44(0): 24-30. |
[7] | H.T. Jeong, W.J. Kim. Grain size and temperature effect on the tensile behavior and deformation mechanisms of non-equiatomic Fe41Mn25Ni24Co8Cr2 high entropy alloy [J]. J. Mater. Sci. Technol., 2020, 42(0): 190-202. |
[8] | S.J. Tsianikas, Y. Chen, Z. Xie. Deciphering deformation mechanisms of hierarchical dual-phase CrCoNi coatings [J]. J. Mater. Sci. Technol., 2020, 39(0): 183-189. |
[9] | S.J. Tsianikas, Y. Chen, Z. Xie. Deciphering deformation mechanisms of hierarchical dual-phase CrCoNi coatings [J]. J. Mater. Sci. Technol., 2020, 39(0): 7-13. |
[10] | Fan Jiangkun, Zhang Zhixin, Gao Puyi, Yang Ruimeng, Li Huan, Tang Bin, Kou Hongchao, Zhang Yudong, Esling Claude, Li Jinshan. On the nature of a peculiar initial yield behavior in metastable β titanium alloy Ti-5Al-5Mo-5V-3Cr-0.5Fe with different initial microstructures [J]. J. Mater. Sci. Technol., 2020, 38(0): 135-147. |
[11] | Jia Li, Li Li, Chao Jiang, Qihong Fang, Feng Liu, Yong Liu, Peter K. Liaw. Probing deformation mechanisms of gradient nanostructured CrCoNi medium entropy alloy [J]. J. Mater. Sci. Technol., 2020, 57(0): 85-91. |
[12] | Di Zhang, Zhen Zhang, Yanlin Pan, Yanbin Jiang, Linzhong Zhuang, Jishan Zhang, Xinfang Zhang. Current-driving intergranular corrosion performance regeneration below the precipitates solvus temperature in Al-Mg alloy [J]. J. Mater. Sci. Technol., 2020, 53(0): 132-139. |
[13] | Yufan Zhao, Yuichiro Koizumi, Kenta Aoyagi, Kenta Yamanaka, Akihiko Chiba. Isothermal γ → ε phase transformation behavior in a Co-Cr-Mo alloy depending on thermal history during electron beam powder-bed additive manufacturing [J]. J. Mater. Sci. Technol., 2020, 50(0): 162-170. |
[14] | Bingqiang Wei, Song Ni, Yong Liu, Xiaozhou Liao, Min Song. Phase transformation and structural evolution in a Ti-5at.% Al alloy induced by cold-rolling [J]. J. Mater. Sci. Technol., 2020, 49(0): 211-223. |
[15] | Huahai Shen, Jutao Hu, Pengcheng Li, Gang Huang, Jianwei Zhang, Jinchao Zhang, Yiwu Mao, Haiyan Xiao, Xiaosong Zhou, Xiaotao Zu, Xinggui Long, Shuming Peng. Compositional dependence of hydrogenation performance of Ti-Zr-Hf-Mo-Nb high-entropy alloys for hydrogen/tritium storage [J]. J. Mater. Sci. Technol., 2020, 55(0): 116-125. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||