J. Mater. Sci. Technol. ›› 2021, Vol. 74: 46-51.DOI: 10.1016/j.jmst.2020.10.011
• Letter • Previous Articles Next Articles
Jing Baia,b,c, Die Liua,b, Jianglong Gud,*(), Xinjun Jianga,b, Xinzeng Lianga, Ziqi Guana, Yudong Zhange, Claude Eslinge, Xiang Zhaoa,**(
), Liang Zuoa
Received:
2020-07-07
Published:
2021-05-30
Online:
2020-10-08
Contact:
Jianglong Gu,Xiang Zhao
About author:
** zhaox@mail.neu.edu.cn (X. Zhao).Jing Bai, Die Liu, Jianglong Gu, Xinjun Jiang, Xinzeng Liang, Ziqi Guan, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Excellent mechanical properties and large magnetocaloric effect of spark plasma sintered Ni-Mn-In-Co alloy[J]. J. Mater. Sci. Technol., 2021, 74: 46-51.
Fig. 1. (a) Microstructure of SPS Ni43.75Mn37.5In12.5Co6.25 alloy; DSC curves (b) and XRD patterns (c) of SPS and as-cast Ni-Mn-In-Co alloys; (d) Bright filed TEM image with inserted SAED pattern of SPS Ni-Mn-In-Co alloy.
Sample | H (T) | Ms(K) | Mf(K) | As(K) | Af(K) | TA(K) | TM(K) | TC (K) | ΔM (A m2 kg-1) |
---|---|---|---|---|---|---|---|---|---|
As-cast alloy | 0 | 335.3 | 308.4 | 335.1 | 359.7 | 348.7 | 319.9 | 418.8 | |
0.05 | 326.2 | 292.6 | 320.6 | 351.8 | 342.4 | 318.2 | 25.37 | ||
5 | 303.0 | 271.3 | 300.4 | 332.2 | 315.8 | 295.0 | 96.96 | ||
SPS alloy | 0 | 330.6 | 282.5 | 322.7 | 352.3 | 342.5 | 307.4 | 409.5 | |
0.05 | 325.8 | 265.7 | 312.7 | 342.0 | 333.3 | 305.2 | 25.72 | ||
5 | 299.8 | 234.1 | 290.6 | 328.7 | 308.0 | 277.3 | 78.79 |
Table 1 Martensitic transformation temperatures of sintered and as-cast Ni-Mn-In-Co alloys measured by DSC and PPMS under magnetic fields (H) of 0.5 and 5 T.
Sample | H (T) | Ms(K) | Mf(K) | As(K) | Af(K) | TA(K) | TM(K) | TC (K) | ΔM (A m2 kg-1) |
---|---|---|---|---|---|---|---|---|---|
As-cast alloy | 0 | 335.3 | 308.4 | 335.1 | 359.7 | 348.7 | 319.9 | 418.8 | |
0.05 | 326.2 | 292.6 | 320.6 | 351.8 | 342.4 | 318.2 | 25.37 | ||
5 | 303.0 | 271.3 | 300.4 | 332.2 | 315.8 | 295.0 | 96.96 | ||
SPS alloy | 0 | 330.6 | 282.5 | 322.7 | 352.3 | 342.5 | 307.4 | 409.5 | |
0.05 | 325.8 | 265.7 | 312.7 | 342.0 | 333.3 | 305.2 | 25.72 | ||
5 | 299.8 | 234.1 | 290.6 | 328.7 | 308.0 | 277.3 | 78.79 |
Fig. 2. (a) Compressive stress-strain curves of as-cast and SPS Ni-Mn-In-Co alloys at room temperature. Stress-strain data of referenced Ni-Mn based alloys are inserted, where C and PLS represent casting and pressureless sintering, respectively; (b) SEM image of fractured surface for SPS Ni-Mn-In-Co alloy.
Fig. 3. Dependence of magnetization on temperature for as-cast (a) and SPS (b) Ni-Mn-In-Co alloy under magnetic fields of 0.05 and 5 T with heating or cooling rates of 5 K/min. The inset shows curves of dM/dT vs T at 0.05 and 5 T.
Fig. 4. (a) M-H curves in temperature range of 300 K≤T≤350 K (ΔT = 5 K) and 150 K; (b) dependence of ΔSm on temperature with various magnetic fields for SPS Ni-Mn-In-Co alloy. (c) Maximum ΔSm at 5 T field as a function of temperature for present SPS Ni-Mn-In-Co alloy and other Ni-Mn based alloy.
[1] |
R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata, K. Ishida, Nature 439 (2006) 957-960.
PMID |
[2] |
H.E. Karaca, I. Karaman, B. Basaran, Y. Ren, Y.I. Chumlyakov, H.J. Maier, Adv. Funct. Mater. 19 (2009) 983-998.
DOI URL |
[3] |
A. Çakır, M. Acet, U. Wiedwald, T. Krenke, M. Farle, Acta Mater. 127 (2017) 117-123.
DOI URL |
[4] |
T. Krenke, E. Duman, M. Acet, E.F. Wassermann, X. Moya, L. Manõsa, A. Planes, E. Suard, B. Ouladdiaf, Phys. Rev. B 75 (2007), 104414.
DOI URL |
[5] |
Z. Chen, D.Y. Cong, Y. Zhang, X.M. Sun, R.G. Li, S.H. Li, Z. Yang, C. Song, Y.X. Cao, Y. Ren, Y.D. Wang, J. Mater. Sci. Technol. 45 (2020) 44-48.
DOI URL |
[6] |
J. Liu, T.G. Woodcock, N. Scheerbaum, O. Gutfleisch, Acta Mater. 57 (2009) 4911-4920.
DOI URL |
[7] |
J. Liu, T. Gottschall, K.P. Skokov, J.D. Moore, O. Gutfleisch, Nat. Mater. 11 (2012) 620-626.
DOI URL |
[8] |
L. Huang, D. Cong, L. Ma, Z. Nie, Z. Wang, H. Suo, Y. Ren, Y. Wang, Appl. Phys. Lett. 108 (2016), 032405.
DOI URL |
[9] |
R.B. Pérez-Sáez, V. Recarte, M.L. Nó, O.A. Ruano, J.S. Juan, Adv. Eng. Mater. 2 (2000) 49-53.
DOI URL |
[10] |
K. Ito, W. Ito, R.Y. Umetsu, I. Karaman, K. Ishida, R. Kainuma, Scr. Mater. 63 (2010) 1236-1239.
DOI URL |
[11] |
W. Maziarz, A. Wójcik, J. Grzegorek, A. Zywczak, P. Czaja, M.J. Szczerba, J. Dutkiewicz, E. Cesari, J. Alloys Compd. 715 (2017) 445-453.
DOI URL |
[12] |
X.H. Tian, J.H. Sui, X. Zhang, X. Feng, W. Cai, J. Alloys Comp. 509 (2011) 4081-4083.
DOI URL |
[13] | X.H. Tian, J.H. Sui, X. Zhang, X. Feng, W. Cai, Chin. Phys. B 20 (2011) 476-479. |
[14] |
X.H. Tian, J.H. Sui, X. Zhang, X.H. Zheng, W. Cai, J. Alloys Compd. 514 (2012) 210-213.
DOI URL |
[15] |
K. Ito, W. Ito, R.Y. Umetsu, S. Tajima, H. Kawaura, R. Kainuma, K. Ishida, Scr. Mater. 61 (2009) 504-507.
DOI URL |
[16] |
Y. Feng, H. Chen, F. Xiao, X. Bian, P. Wang, J. Alloys Compd. 765 (2018) 264-270.
DOI URL |
[17] |
A. Giguère, M. Foldeaki, B.R. Gopal, R. Chahine, T.K. Bose, A. Frydman, J.A. Barclay, Phys. Rev. Lett. 83 (1999) 2262-2265.
DOI URL |
[18] |
F.X. Hu, B.G. Shen, J.R. Sun, Z.H. Cheng, G.H. Rao, X.X. Zhang, Appl. Phys. Lett. 78 (2001) 3675-3677.
DOI URL |
[19] |
O. Tegus, E. Brück, K.H.J. Buschow, F.R. de Boer, Nature 415 (2002) 150-152.
PMID |
[20] |
M. Manekar, S.B. Roy, J. Phys. D: Appl. Phys. 41 (2008), 192004.
DOI URL |
[21] |
E.K. Liu, W.H. Wang, F. Lin, W. Zhu, G.J. Li, J.L. Chen, H.W. Zhang, G.H. Wu, C.B. Jiang, H.B. Xu, F. de Boer, Nat. Commun. 3 (2012) 873.
DOI URL |
[22] |
T. Krenke, E. Duman, M. Acet, E.F. Wassermann, X. Moya, L. Ma˜nosa, A. Planes, Nat. Mater. 4 (2005) 450-454.
DOI URL |
[23] |
X. Zhang, B. Zhang, S. Yu, Z. Liu, W. Xu, G. Liu, J. Chen, Z. Cao, G. Wu, Phys. Rev. B 76 (2007), 132403.
DOI URL |
[24] |
L. Huang, D.Y. Cong, L. Ma, Z.H. Nie, Z.L. Wang, H.L. Suo, Y. Ren, Y.D. Wang, Appl. Phys. Lett. 108 (2016), 032405.
DOI URL |
[25] |
T. Paramanik, I. Das, J. Alloys Compd. 654 (2016) 399-403.
DOI URL |
[26] |
Z.Z. Li, Z.B. Li, B. Yang, X. Zhao, L. Zuo, Scr. Mater. 151 (2018) 61-65.
DOI URL |
[27] |
X.X. Zhang, S.P. Miao, J.F. Sun, Trans. Nonferrous Met. Soc. China 24 (2014) 3152-3157.
DOI URL |
[28] |
Y.H. Qu, D.Y. Cong, Z. Chen, W.Y. Gui, X.M. Sun, S.H. Li, L. Ma, Y.D. Wang, Appl. Phys. Lett. 111 (2017), 192412.
DOI URL |
[29] |
Z. Chen, D.Y. Cong, X.M. Sun, Y. Zhang, H.L. Yan, S.H. Li, R.G. Li, Z.H. Nie, Y. Ren, Y.D. Wang, IUCrJ 6 (2019) 843-853.
DOI URL |
[30] |
Y. Aydogdu, A.S. Turabi, M. Kok, A. Aydogdu, Z.D. Yakinci, M.A. Aksan, M.E. Yakinci, H.E. Karaca, J. Alloys Compd. 683 (2016) 339-345.
DOI URL |
[31] | A.M. Tishin, Y.I. Spichkin, The Magnetocaloric Effect and its Applications, Institute of Physics Publishing, Bristol, 2003. |
[32] |
X. Zhang, M. Qian, S. Miao, R. Su, Y. Liu, L. Geng, J. Sun, J. Alloys Compd. 656 (2016) 154-158.
DOI URL |
[33] |
H.H. Zhang, M.F. Qian, X.X. Zhang, S.D. Jiang, L.S. Wei, D.W. Xing, J.F. Sun, L. Geng, Mater. Des. 114 (2017) 1-9.
DOI URL |
[34] |
X.X. Zhang, M.F. Qian, Z. Zhang, L.S. Wei, L. Geng, J.F. Sun, Appl. Phys. Lett. 108 (2016), 052401.
DOI URL |
[35] |
Y.F. Liu, X.X. Zhang, D.W. Xing, H.X. Shen, Q.M. Chen, J.H. Liu, J.F. Sun, J. Alloys Compd. 616 (2014) 184-188.
DOI URL |
[36] |
A. Planes, L. Ma˜nosa, M. Acet, J. Phys, Condens. Matter 21 (2009), 233201.
DOI URL |
[37] |
T. Gottschall, K.P. Skokov, B. Frincu, O. Gutfleisch, Appl. Phys. Lett. 106 (2015), 021901.
DOI URL |
[38] |
F.X. Hu, J. Wang, J. Shen, B. Gao, J.R. Sun, B.G. Shen, J. Appl. Phys. 105 (2009), 07A940.
DOI URL |
[39] |
W. Ito, Y. Imano, R. Kainuma, Y. Sutou, K. Oikawa, K. Ishida, Metall. Mater. Trans. A 38 (2007) 759-766.
DOI URL |
[40] |
Z. Li, Y.L. Zhang, K. Xu, C. Jing, Phys. B 476 (2015) 179-182.
DOI URL |
[1] | Lin Gao, Kai Li, Song Ni, Yong Du, Min Song. The growth mechanisms of θ′ precipitate phase in an Al-Cu alloy during aging treatment [J]. J. Mater. Sci. Technol., 2021, 61(0): 25-32. |
[2] | Pengfei Ji, Bohan Chen, Bo Li, Yihao Tang, Guofeng Zhang, Xinyu Zhang, Mingzhen Ma, Riping Liu. Influence of Nb addition on microstructural evolution and compression mechanical properties of Ti-Zr alloys [J]. J. Mater. Sci. Technol., 2021, 69(0): 7-14. |
[3] | Xiang Peng, Shihao Xu, Dehua Ding, Guanglan Liao, Guohua Wu, Wencai Liu, Wenjiang Ding. Microstructural evolution, mechanical properties and corrosion behavior of as-cast Mg-5Li-3Al-2Zn alloy with different Sn and Y addition [J]. J. Mater. Sci. Technol., 2021, 72(0): 16-22. |
[4] | Wen Zhang, Lei Chen, Chenguang Xu, Wenyu Lu, Yujin Wang, Jiahu Ouyang, Yu Zhou. Densification, microstructure and mechanical properties of multicomponent (TiZrHfNbTaMo)C ceramic prepared by pressureless sintering [J]. J. Mater. Sci. Technol., 2021, 72(0): 23-28. |
[5] | X.W. Liu, N. Gao, J. Zheng, Y. Wu, Y.Y. Zhao, Q. Chen, W. Zhou, S.Z. Pu, W.M. Jiang, Z.T. Fan. Improving high-temperature mechanical properties of cast CrFeCoNi high-entropy alloy by highly thermostable in-situ precipitated carbides [J]. J. Mater. Sci. Technol., 2021, 72(0): 29-38. |
[6] | Meng Sun, Anatoly Balagurov, Ivan Bobrikov, Xianping Wang, Wen Wen, Igor S. Golovin, Qianfeng Fang. High damping in Fe-Ga-La alloys: Phenomenological model for magneto-mechanical hysteresis damping and experiment [J]. J. Mater. Sci. Technol., 2021, 72(0): 69-80. |
[7] | Hongliang Su, Liang Huang, Jianjun Li, Wang Xiao, Hui Zhu, Fei Feng, Hongwei Li, Siliang Yan. Formability of AA 2219-O sheet under quasi-static, electromagnetic dynamic, and mechanical dynamic tensile loadings [J]. J. Mater. Sci. Technol., 2021, 70(0): 125-135. |
[8] | Yanli Lu, Yi Wang, Yifan Wang, Meng Gao, Yao Chen, Zheng Chen. First-principles study on the mechanical, thermal properties and hydrogen behavior of ternary V-Ni-M alloys [J]. J. Mater. Sci. Technol., 2021, 70(0): 83-90. |
[9] | Xiaojie Zhou, Yuan Yao, Jian Zhang, Xiaomin Chen, Weiying Huang, Jing Pan, Haoran Wang, Maopeng Weng. A high-performance Mg-4.9Gd-3.2Y-1.1Zn-0.5Zr alloy via multidirectional forging after analyzing its compression behavior [J]. J. Mater. Sci. Technol., 2021, 70(0): 156-167. |
[10] | Qingqing Li, Yong Zhang, Jie Chen, Bugao Guo, Weicheng Wang, Yuhai Jing, Yong Liu. Effect of ultrasonic micro-forging treatment on microstructure and mechanical properties of GH3039 superalloy processed by directed energy deposition [J]. J. Mater. Sci. Technol., 2021, 70(0): 185-196. |
[11] | Yi Zou, Yanxia Zhang, Qian Yu, Hong Chen. Dual-function antibacterial surfaces to resist and kill bacteria: Painting a picture with two brushes simultaneously [J]. J. Mater. Sci. Technol., 2021, 70(0): 24-38. |
[12] | Xiaoming Sun, Lingzhong Du, Hao Lan, Jingyi Cui, Liang Wang, Runguang Li, Zhiang Liu, Junpeng Liu, Weigang Zhang. Mechanical, corrosion and magnetic behavior of a CoFeMn1.2NiGa0.8 high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 73(0): 139-144. |
[13] | Hui Jiang, Dongxu Qiao, Wenna Jiao, Kaiming Han, Yiping Lu, Peter K. Liaw. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 119-124. |
[14] | Jincheng Wang, Yujing Liu, Chirag Dhirajlal Rabadia, Shun-Xing Liang, Timothy Barry Sercombe, Lai-Chang Zhang. Microstructural homogeneity and mechanical behavior of a selective laser melted Ti-35Nb alloy produced from an elemental powder mixture [J]. J. Mater. Sci. Technol., 2021, 61(0): 221-233. |
[15] | Qin Xu, Dezhi Chen, Chongyang Tan, Xiaoqin Bi, Qi Wang, Hongzhi Cui, Shuyan Zhang, Ruirun Chen. NbMoTiVSix refractory high entropy alloys strengthened by forming BCC phase and silicide eutectic structure [J]. J. Mater. Sci. Technol., 2021, 60(0): 1-7. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||