J. Mater. Sci. Technol. ›› 2021, Vol. 66: 193-201.DOI: 10.1016/j.jmst.2020.04.082
• Research Article • Previous Articles Next Articles
Seong-Woo Choia,b, Jae Suk Jeongc, Jong Woo Wona,*(), Jae Keun Honga, Yoon Suk Choib
Received:
2020-03-13
Revised:
2020-04-02
Accepted:
2020-04-03
Published:
2021-03-10
Online:
2021-04-01
Contact:
Jong Woo Won
About author:
* E-mail address: jwwon@kims.re.kr (J.W. Won).Seong-Woo Choi, Jae Suk Jeong, Jong Woo Won, Jae Keun Hong, Yoon Suk Choi. Grade-4 commercially pure titanium with ultrahigh strength achieved by twinning-induced grain refinement through cryogenic deformation[J]. J. Mater. Sci. Technol., 2021, 66: 193-201.
Fig. 1. (a) EBSD image-quality map and (b) (0001) and $\{10\bar{1}0\}$ pole figures of the initial material. (c) A schematic describing the rolling direction of RTR and CTR with reference to the initial material.
Fig. 5. Engineering stress vs. strain curves of materials rolled to 10% - 40% AR by (a) RTR and (b) CTR. The result for the initial material is also presented for comparison.
Area reduction [%] | RTR | CTR | ||||
---|---|---|---|---|---|---|
YS [MPa] | UTS [MPa] | EL [%] | YS [MPa] | UTS [MPa] | EL [%] | |
10 | 698 | 791 | 18.1 | 724 | 816 | 18.9 |
20 | 773 | 852 | 15.0 | 840 | 930 | 12.4 |
30 | 815 | 882 | 14.2 | 946 | 1024 | 12.5 |
40 | 833 | 907 | 14.1 | 960 | 1060 | 10.1 |
Table 1 YS, UTS, and EL of materials rolled to 10% - 40% AR by RTR and CTR.
Area reduction [%] | RTR | CTR | ||||
---|---|---|---|---|---|---|
YS [MPa] | UTS [MPa] | EL [%] | YS [MPa] | UTS [MPa] | EL [%] | |
10 | 698 | 791 | 18.1 | 724 | 816 | 18.9 |
20 | 773 | 852 | 15.0 | 840 | 930 | 12.4 |
30 | 815 | 882 | 14.2 | 946 | 1024 | 12.5 |
40 | 833 | 907 | 14.1 | 960 | 1060 | 10.1 |
Fig. 7. (a) Stress map of materials rolled to an AR of ~3% by RTR (upper) and CTR (lower). (b) Stress profile along the line in (a) in the direction indicated by the arrowhead. The map was constructed using EBSD data.
Fig. 8. XRD line-profile analysis results of the material rolled to an AR of ~3% by RTR or CTR: (a) XRD peak, (b) integral breadth vs. g2(1 + q1x + q2x2) curve, and (c) dislocation fraction. In (b), R2 indicates the coefficient of determination.
Material | Plane* | FWHM [10-4 $\dot{\text{A}}$-1] | β [10-4 $\dot{\text{A}}$-1] | |
---|---|---|---|---|
Gaussian | Lorentzian | |||
RTR | (00.2) | 2.821 | 7.133 | 11.96 |
(10.1) | 1.873 | 5.676 | 9.341 | |
(10.2) | 3.501 | 4.421 | 8.566 | |
(2$\bar{1}$.0) | 4.923 | 6.548 | 12.49 | |
(10.3) | 4.909 | 5.588 | 11.21 | |
(2$\bar{1}$.2) | 5.764 | 8.444 | 15.67 | |
(10.4) | 4.999 | 12.83 | 21.48 | |
(20.3) | 2.993 | 18.89 | 30.01 | |
(3$\bar{1}$.1) | 4.023 | 14.60 | 23.71 | |
CTR | (10.0) | 0.986 | 6.009 | 9.554 |
(00.2) | 3.447 | 9.439 | 15.68 | |
(10.1) | 1.541 | 6.336 | 10.22 | |
(10.2) | 4.165 | 4.191 | 8.814 | |
(2$\bar{1}$.0) | 5.499 | 5.725 | 11.88 | |
(10.3) | 4.827 | 7.497 | 13.70 | |
(2$\bar{1}$.2) | 4.954 | 10.65 | 18.25 | |
(10.4) | 1.866 | 17.77 | 28.05 | |
(20.3) | 3.880 | 16.23 | 26.15 |
Table 2 FWHMs of the Gaussian and Lorentzian functions and the integral breadth (β), obtained by profiling XRD peaks using the TCH pseudo-Voigt function [28].
Material | Plane* | FWHM [10-4 $\dot{\text{A}}$-1] | β [10-4 $\dot{\text{A}}$-1] | |
---|---|---|---|---|
Gaussian | Lorentzian | |||
RTR | (00.2) | 2.821 | 7.133 | 11.96 |
(10.1) | 1.873 | 5.676 | 9.341 | |
(10.2) | 3.501 | 4.421 | 8.566 | |
(2$\bar{1}$.0) | 4.923 | 6.548 | 12.49 | |
(10.3) | 4.909 | 5.588 | 11.21 | |
(2$\bar{1}$.2) | 5.764 | 8.444 | 15.67 | |
(10.4) | 4.999 | 12.83 | 21.48 | |
(20.3) | 2.993 | 18.89 | 30.01 | |
(3$\bar{1}$.1) | 4.023 | 14.60 | 23.71 | |
CTR | (10.0) | 0.986 | 6.009 | 9.554 |
(00.2) | 3.447 | 9.439 | 15.68 | |
(10.1) | 1.541 | 6.336 | 10.22 | |
(10.2) | 4.165 | 4.191 | 8.814 | |
(2$\bar{1}$.0) | 5.499 | 5.725 | 11.88 | |
(10.3) | 4.827 | 7.497 | 13.70 | |
(2$\bar{1}$.2) | 4.954 | 10.65 | 18.25 | |
(10.4) | 1.866 | 17.77 | 28.05 | |
(20.3) | 3.880 | 16.23 | 26.15 |
Material | Plane | g [$\dot{\text{A}}^{-1}$-1] | x | Dv [$\dot{\text{A}}$] | ${{\alpha }_{1}}{{\bar{C}}_{hk.0}}$ | q1 | q2 |
---|---|---|---|---|---|---|---|
RTR | (00.2) | 0.4276 | 1.6755 | 2267 | 0.0017 | 0.6367 | -0.4040 |
(10.1) | 0.4461 | 0.3849 | |||||
(10.2) | 0.5794 | 0.9127 | |||||
(2$\bar{1}$.0) | 0.6782 | 0 | |||||
(10.3) | 0.7508 | 1.2232 | |||||
(2$\bar{1}$.2) | 0.8013 | 0.4772 | |||||
(10.4) | 0.9394 | 1.3889 | |||||
(20.3) | 1.0108 | 0.6748 | |||||
(3$\bar{1}$.1) | 1.0570 | 0.0686 | |||||
CTR | (10.0) | 0.3921 | 0 | 1666 | 0.0017 | -0.2234 | 0.3540 |
(00.2) | 0.4276 | 1.6755 | |||||
(10.1) | 0.4461 | 0.3849 | |||||
(10.2) | 0.5794 | 0.9127 | |||||
(2$\bar{1}$.0) | 0.6782 | 0 | |||||
(10.3) | 0.7508 | 1.2232 | |||||
(2$\bar{1}$.2) | 0.8013 | 0.4772 | |||||
(10.4) | 0.9394 | 1.3889 | |||||
(20.3) | 1.0108 | 0.6748 |
Table 3 Values of g and x for the reflection planes and the values of Dv, α1 ${{\bar{C}}_{\text{hk}.0}}$, q1, and q2 numerically calculated in Eq. (3).
Material | Plane | g [$\dot{\text{A}}^{-1}$-1] | x | Dv [$\dot{\text{A}}$] | ${{\alpha }_{1}}{{\bar{C}}_{hk.0}}$ | q1 | q2 |
---|---|---|---|---|---|---|---|
RTR | (00.2) | 0.4276 | 1.6755 | 2267 | 0.0017 | 0.6367 | -0.4040 |
(10.1) | 0.4461 | 0.3849 | |||||
(10.2) | 0.5794 | 0.9127 | |||||
(2$\bar{1}$.0) | 0.6782 | 0 | |||||
(10.3) | 0.7508 | 1.2232 | |||||
(2$\bar{1}$.2) | 0.8013 | 0.4772 | |||||
(10.4) | 0.9394 | 1.3889 | |||||
(20.3) | 1.0108 | 0.6748 | |||||
(3$\bar{1}$.1) | 1.0570 | 0.0686 | |||||
CTR | (10.0) | 0.3921 | 0 | 1666 | 0.0017 | -0.2234 | 0.3540 |
(00.2) | 0.4276 | 1.6755 | |||||
(10.1) | 0.4461 | 0.3849 | |||||
(10.2) | 0.5794 | 0.9127 | |||||
(2$\bar{1}$.0) | 0.6782 | 0 | |||||
(10.3) | 0.7508 | 1.2232 | |||||
(2$\bar{1}$.2) | 0.8013 | 0.4772 | |||||
(10.4) | 0.9394 | 1.3889 | |||||
(20.3) | 1.0108 | 0.6748 |
Dislocation type | Slip system | Burgers vector | Slip plane |
---|---|---|---|
Edge | Basal | $\langle 2\bar{1}\bar{1}0\rangle $ | $\{0001\}$ |
Prismatic | $\langle 2\bar{1}\bar{1}0\rangle $ | $\{01\bar{1}0\}$ | |
Pyramidal | $\langle \bar{2}113\rangle $ | $\{2\bar{1}\bar{1}2\}$ | |
$\langle \bar{2}113\rangle $ | $\{10\bar{1}1\}$ | ||
Screw | Basal or prismatic | $\langle 2\bar{1}\bar{1}0\rangle $ | |
Pyramidal | $\langle \bar{2}113\rangle $ |
Table 4 Slip systems considered in the estimation of activated slip systems based on the XRD line-profile analysis.
Dislocation type | Slip system | Burgers vector | Slip plane |
---|---|---|---|
Edge | Basal | $\langle 2\bar{1}\bar{1}0\rangle $ | $\{0001\}$ |
Prismatic | $\langle 2\bar{1}\bar{1}0\rangle $ | $\{01\bar{1}0\}$ | |
Pyramidal | $\langle \bar{2}113\rangle $ | $\{2\bar{1}\bar{1}2\}$ | |
$\langle \bar{2}113\rangle $ | $\{10\bar{1}1\}$ | ||
Screw | Basal or prismatic | $\langle 2\bar{1}\bar{1}0\rangle $ | |
Pyramidal | $\langle \bar{2}113\rangle $ |
Process | Calculated strength [MPa] | Measured YS [MPa] | |||
---|---|---|---|---|---|
ΔσG | ΔσD | σIM* | Total | ||
RTR | 21 | 248 | 472 | 741 | 815 |
CTR | 199 | 292 | 472 | 963 | 946 |
Table 5 Calculated contributions of grain refinement (ΔσG) and dislocation accumulation (ΔσD) to YS of the materials rolled to 30% AR by RTR and CTR.
Process | Calculated strength [MPa] | Measured YS [MPa] | |||
---|---|---|---|---|---|
ΔσG | ΔσD | σIM* | Total | ||
RTR | 21 | 248 | 472 | 741 | 815 |
CTR | 199 | 292 | 472 | 963 | 946 |
Fig. 9. Distribution of the angle ? between the tensile loading axis (RD) and c-axis of grains in (a) the initial material and (b) the material rolled to 30% AR by CTR. The inset in (a) defines the angle ?.
[1] | G. Lütjering, J.C. Williams, Williams, Commercially Pure (CP) Titanium and Alpha Alloys, in: Titanium, Springer, Berlin Heidelberg, 2007, pp. 175-201. |
[2] | H. Conrad, Prog. Mater. Sci. 26 (1981) 123-403. |
[3] | Y.F. Jia, R.J. Pan, P.Y. Zhang, Z.T. Sun, X.R. Chen, X.C. Zhang, X.J. Wu, Corros. Sci. 157 (2019) 256-267. |
[4] | J.W. Won, J.H. Lee, J.S. Jeong, S.W. Choi, D.J. Lee, J.K. Hong, Y.T. Hyun, Scr. Mater. 178 (2020) 94-98. |
[5] | G. Lütjering, J.C. Williams, Alpha+beta alloys, in: Titanium, Springer, Berlin Heidelberg, 2007, pp. 203-258. |
[6] | V.V. Stolyarov, Y.T. Zhu, I.V. Alexandrov, T.C. Lowe, R.Z. Valiev, Mater. Sci. Eng. A 343 (2003) 43-50. |
[7] | V.V. Stolyarov, Y.T. Zhu, I.V. Alexandrov, T.C. Lowe, R.Z. Valiev, Mater. Sci. Eng. A 299 (2001) 59-67. |
[8] | J.W. Won, S. Lee, S.H. Park, M. Kang, K.R. Lim, C.H. Park, Y.S. Na, J. Alloys Compd. 742 (2018) 290-295. |
[9] | Y. Estrin, A. Vinogradov, Acta Mater. 61 (2013) 782-817. |
[10] | K.S. Kumar, H. Van Swygenhoven, S. Suresh, Acta Mater. 51 (2003) 5743-5774. |
[11] | Y.G. Ko, D.H. Shin, K.-T. Park, C.S. Lee, Scr. Mater. 54 (2006) 1785-1789. |
[12] | A. Fattah-alhosseini, M.K. Keshavarz, Y. Mazaheri, A. Reza, Mater. Sci. Eng. A 693 (2017) 164-169. |
[13] | A.V. Sergueeva, V.V. Stolyarov, R.Z. Valiev, A.K. Mukherjee, Scr. Mater. 45 (2001) 747-752. |
[14] | A. Mishra, B.K. Kad, F. Gregori, M.A. Meyers, Acta Mater. 55 (2007) 13-28. |
[15] | I. Gutierrez-Urrutia, D. Raabe, Acta Mater. 59 (2011) 6449-6462. |
[16] |
W. Wu, M. Song, S. Ni, J. Wang, Y. Liu, B. Liu, X. Liao, Sci. Rep. 7 (2017) 46720.
DOI URL PMID |
[17] | S.W. Choi, J.W. Won, S. Lee, J.K. Hong, Y.S. Choi, Mater. Sci. Eng. A 738 (2018) 75-80. |
[18] | Y.J. Kwon, J.W. Won, S.H. Park, J.H. Lee, K.R. Lim, Y.S. Na, C.S. Lee, Mater. Sci. Eng. A 732 (2018) 105-111. |
[19] | S.V. Zherebtsov, G.S. Dyakonov, A.A. Salem, V.I. Sokolenko, G.A. Salishchev, S.L. Semiatin, Acta Mater. 61 (2013) 1167-1178. |
[20] | J.W. Won, C.H. Park, S.G. Hong, C.S. Lee, J. Alloys Compd. 651 (2015) 245-254. |
[21] | D.S. Kang, K.J. Lee, E.P. Kwon, T. Tsuchiyama, S. Takaki, Mater. Sci. Eng. A 632 (2015) 120-126. |
[22] | S.V. Zherebtsov, G.S. Dyakonov, A.A. Salem, S.P. Malysheva, G.A. Salishchev, S.L. Semiatin, Mater. Sci. Eng. A 528 (2011) 3474-3479. |
[23] | G.S. Dyakonov, S.V. Zherebtsov, M.V. Klimova, G.A. Salishchev, Phys. Met. Metallogr. 116 (2015) 182-188. |
[24] | Y.B. Chun, S.H. Yu, S.L. Semiatin, S.K. Hwang, Mater. Sci. Eng. A 398 (2005) 209-219. |
[25] | J.W. Won, D. Kim, S.G. Hong, C.S. Lee, J. Alloys Compd. 683 (2016) 92-99. |
[26] |
J.W. Won, C.H. Park, J. Hong, C.S. Lee, S.G. Hong, Sci. Rep. 9 (2019) 2009.
DOI URL PMID |
[27] | N. Bozzolo, N. Dewobroto, T. Grosdidier, F. Wagner, Mater. Sci. Eng. A 397 (2005) 346-355. |
[28] | P. Thompson, D.E. Cox, J.B. Hastings, J. Appl. Crystallogr. 20 (1987) 79-83. |
[29] | G. Caglioti, A. Paoletti, F.P. Ricci, Nucl. Instrum. 3 (1958) 223-228. |
[30] | T. Lee, M. Koyama, K. Tsuzaki, Y.H. Lee, C.S. Lee, Mater. Lett. 75 (2012) 169-171. |
[31] | M.H. Yoo, Metall. Trans. A 12 (1981) 409-418. |
[32] | Y.B. Chun, M. Battaini, C.H.J. Davies, S.K. Hwang, Metall. Mater. Trans. A 41 (2010) 3473-3487. |
[33] | Y. Zhang, G.R. Ma, X.C. Zhang, S. Li, S.T. Tu, Corros. Sci. 122 (2017) 61-73. |
[34] | Z.W. Wyatt, W.J. Joost, D. Zhu, S. Ankem, Int. J. Plast. 39 (2012) 119-131. |
[35] | G.E. Dieter, Mechanical Metallurgy, SI Metric Ed., McGraw-Hill Book Compnay, London, 1988, pp. 188-191. |
[36] | M. Calcagnotto, D. Ponge, E. Demir, D. Raabe, Mater. Sci. Eng. A 527 (2010) 2738-2746. |
[37] | D. Balzar, Voigt function model in diffraction-line broadiening analysis, in: Defect and Microstructure Analysis by Diffraction, OXFORD UNUVERSTYPRESS, Oxford, 1999, pp. 94-124. |
[38] | T. Ungár, J. Gubicza, G. Ribárik, A. Borbély, J. Appl. Crystallogr. 34 (2001) 298-310. |
[39] | I.C. Dragomir, T. Ungár, J. Appl. Crystallogr. 35 (2002) 556-564. |
[40] | J. Huang, K.M. Zhang, Y.F. Jia, C.C. Zhang, X.C. Zhang, X.F. Ma, S.T. Tu, J. Mater. Sci. Technol. 35 (2019) 409-417. |
[1] | Jincheng Wang, Yujing Liu, Chirag Dhirajlal Rabadia, Shun-Xing Liang, Timothy Barry Sercombe, Lai-Chang Zhang. Microstructural homogeneity and mechanical behavior of a selective laser melted Ti-35Nb alloy produced from an elemental powder mixture [J]. J. Mater. Sci. Technol., 2021, 61(0): 221-233. |
[2] | B.N. Du, Z.Y. Hu, L.Y. Sheng, D.K. Xu, Y.X. Qiao, B.J. Wang, J. Wang, Y.F. Zheng, T.F. Xi. Microstructural characteristics and mechanical properties of the hot extruded Mg-Zn-Y-Nd alloys [J]. J. Mater. Sci. Technol., 2021, 60(0): 44-55. |
[3] | Bingqiang Wei, Song Ni, Yong Liu, Min Song. Structural characterization of the {11$\overline 2$2} twin boundary and the corresponding stress accommodation mechanisms in pure titanium [J]. J. Mater. Sci. Technol., 2021, 72(0): 114-121. |
[4] | Nagaraj Murugan, Rajendran Jerome, Murugan Preethika, Anandhakumar Sundaramurthy, Ashok K. Sundramoorthy. 2D-titanium carbide (MXene) based selective electrochemical sensor for simultaneous detection of ascorbic acid, dopamine and uric acid [J]. J. Mater. Sci. Technol., 2021, 72(0): 122-131. |
[5] | Baoguo Yuan, Xing Liu, Jiangfei Du, Qiang Chen, Yuanyuan Wan, Yunliang Xiang, Yan Tang, Xiaoxue Zhang, Zhongyue Huang. Effects of hydrogenation temperature on room-temperature compressive properties of CMHT-treated Ti6Al4V alloy [J]. J. Mater. Sci. Technol., 2021, 72(0): 132-143. |
[6] | Yinling Zhang, Zhuo Chen, Shoujiang Qu, Aihan Feng, Guangbao Mi, Jun Shen, Xu Huang, Daolun Chen. Multiple α sub-variants and anisotropic mechanical properties of an additively-manufactured Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2021, 70(0): 113-124. |
[7] | Zhihong Wu, Hongchao Kou, Nana Chen, Zhixin Zhang, Fengming Qiang, Jiangkun Fan, Bin Tang, Jinshan Li. Microstructural influences on the high cycle fatigue life dispersion and damage mechanism in a metastable β titanium alloy [J]. J. Mater. Sci. Technol., 2021, 70(0): 12-23. |
[8] | Yujie Cui, Kenta Aoyagi, Huakang Bian, Yuichiro Hayasaka, Akihiko Chiba. Effects of the aluminum concentration on twin boundary motion in pre-strained magnesium alloys [J]. J. Mater. Sci. Technol., 2021, 73(0): 116-127. |
[9] | Jin-Yu Zhang, Fu-Zhi Dai, Zhi-Peng Sun, Wen-Zheng Zhang. Structures and energetics of semicoherent interfaces of precipitates in hcp/bcc systems: A molecular dynamics study [J]. J. Mater. Sci. Technol., 2021, 67(0): 50-60. |
[10] | Run Huang, Lei Liu, Bo Li, Liang Qin, Lei Huang, Kelvin W.K. Yeung, Yong Han. Nanograins on Ti-25Nb-3Mo-2Sn-3Zr alloy facilitate fabricating biological surface through dual-ion implantation to concurrently modulate the osteogenic functions of mesenchymal stem cells and kill bacteria [J]. J. Mater. Sci. Technol., 2021, 73(0): 31-44. |
[11] | Yi Yang, Di Xu, Sheng Cao, Songquan Wu, Zhengwang Zhu, Hao Wang, Lei Li, Shewei Xin, Lei Qu, Aijun Huang. Effect of strain rate and temperature on the deformation behavior in a Ti-23.1Nb-2.0Zr-1.0O titanium alloy [J]. J. Mater. Sci. Technol., 2021, 73(0): 52-60. |
[12] | Baoxian Su, Binbin Wang, Liangshun Luo, Liang Wang, Yanqing Su, Fuxin Wang, Yanjin Xu, Baoshuai Han, Haiguang Huang, Jingjie Guo, Hengzhi Fu. The corrosion behavior of Ti-6Al-3Nb-2Zr-1Mo alloy: Effects of HCl concentration and temperature [J]. J. Mater. Sci. Technol., 2021, 74(0): 143-154. |
[13] | Tongzhao Gong, Yun Chen, Shanshan Li, Yanfei Cao, Dianzhong Li, Xing-Qiu Chen, Guillaume Reinhart, Henri Nguyen-Thi. Revisiting dynamics and models of microsegregation during polycrystalline solidification of binary alloy [J]. J. Mater. Sci. Technol., 2021, 74(0): 155-167. |
[14] | Zhixin Zhang, Jiangkun Fan, Ruifeng Li, Hongchao Kou, Zhiyong Chen, Qingjiang Wang, Hailong Zhang, Jian Wang, Qi Gao, Jinshan Li. Orientation dependent behavior of tensile-creep deformation of hot rolled Ti65 titanium alloy sheet [J]. J. Mater. Sci. Technol., 2021, 75(0): 265-275. |
[15] | Xinkai Ma, Zhuo Chen, Dongling Zhong, S.N. Luo, Lei Xiao, Wenjie Lu, Shanglin Zhang. Effect of rotationally accelerated shot peening on the microstructure and mechanical behavior of a metastable β titanium alloy [J]. J. Mater. Sci. Technol., 2021, 75(0): 27-38. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||