J. Mater. Sci. Technol. ›› 2021, Vol. 61: 114-118.DOI: 10.1016/j.jmst.2020.05.045
• Research Article • Previous Articles Next Articles
Qianqian Jina, Xiaohong Shaoa,*(), Shijian Zhengc, Yangtao Zhoua, Bo Zhanga, Xiuliang Maa,b,**(
)
Received:
2020-03-21
Revised:
2020-05-06
Accepted:
2020-05-17
Published:
2021-01-20
Online:
2021-01-20
Contact:
Xiaohong Shao,Xiuliang Ma
Qianqian Jin, Xiaohong Shao, Shijian Zheng, Yangtao Zhou, Bo Zhang, Xiuliang Ma. Interfacial dislocations dominated lateral growth of long-period stacking ordered phase in Mg alloys[J]. J. Mater. Sci. Technol., 2021, 61: 114-118.
Fig. 1. (a) Low-magnification HAADF-STEM image showing the 18R/Mg and 14 H/Mg coherent and semi-coherent (SC) interface. (b) Atomic-resolution HAADF-STEM image showing the complex 18R/Mg interfaces containing 54R in the near-equilibrium Mg97Zn1Y2 alloy. b1e, b2e and b3e are defined to be the edge component of b1, b2 and b3 dislocations, which are illustrated by open rectangles and white arrows. Two dislocation arrays in the 54R/Mg or 54R/18R interfaces result in the small tilt degree along the interfaces. The images were recorded along [2$\bar{1}\bar{1}$0]α zone axis.
Fig. 2. (a) Forces on dislocation bq and solute atom due to stress field of dislocation bp. (b) Possible arrangement of b1, b2 and b3 dislocations responsible for transformation from 18R/Mg SC interface into 54R. (c) Glide force per unit length between neighboring dislocations, such as ${{F}_{11}}\left( x,3{{y}_{0}} \right)$, ${{F}_{22}}\left( x,{{y}_{0}} \right)$, ${{F}_{23}}\left( x,{{y}_{0}} \right)$, and their edge or screw components, like ${{f}_{23,\text{e}}}\left( x,{{y}_{0}} \right)$ and ${{f}_{23,\text{s}}}\left( x,{{y}_{0}} \right)$. (d) Force considered for the b2 and b3 walls with unlimited length acting on b1 dislocation array with length of 3ny0 expressed as ${{F}_{\omega }}=2n\sum\limits_{k=-\infty}^{+\infty}\,{{f}_{12}}\left( \omega ,\left( 3k+1 \right){{y}_{0}} \right)$, and the roles of free energy on the equilibrium width ω contributed by the interaction force. The value of x and ω is expressed in units of y0, while the values of force and free energy are expressed in units of $G{{b}^{2}}/(2\pi {{y}_{0}})$ and $G{{b}^{2}}/(2\pi )$, respectively.
Fig. 3. Atomic-resolution HAADF-STEM images viewed along [2$\bar{1}\bar{1}$0]α zone axis, showing the 14 H/Mg interfaces (a) approximately parallel to (01$\bar{1}$0) plane and (c) not parallel to (01$\bar{1}$0) plane. (b) Intensity profiles of the HAADF image in rectangle in (a).
Fig. 4. Glide force per unit length acting along x zone between neighboring dislocations in 14 H/Mg interface and between their edge or screw components, such as ${{F}_{45}}\left( x,{{y}_{0}} \right)$, ${{f}_{45,\text{e}}}\left( x,{{y}_{0}} \right)$ and ${{f}_{45,\text{s}}}\left( x,{{y}_{0}} \right)$. Glide force per unit length ${{F}_{I,x}}$ acting along x zone between b4 dislocations and solute Zn/Y atoms in the tensile stress region, which can cause volume increase $\text{ }\Delta\text{ }V={{b}_{\text{e}}}{{y}_{0}}l$.
[1] |
J.F. Nie, Metall. Mater. Trans. A 43 (2012) 3891-3939.
DOI URL |
[2] |
Y. Li, C. Yang, X. Zeng, P. Jin, D. Qiu, W. Ding, Mater. Charact. 141 (2018) 286-295.
DOI URL |
[3] |
H. Liu, H. Huang, J.P. Sun, C. Wang, J. Bai, A.B. Ma, X.H. Chen, Acta Metall. Sin. (Engl. Lett.) 32 (2018) 269-285.
DOI URL |
[4] |
X. Wei, L. Jin, F. Wang, J. Li, N. Ye, Z. Zhang, J. Dong, J. Mater. Sci. Technol. 44 (2020) 19-23.
DOI URL |
[5] |
C. Zhu, B. Chen, Adv. Eng. Mater. 21 (2018), 1800734.
DOI URL |
[6] |
X.J. Wang, D.K. Xu, R.Z. Wu, X.B. Chen, Q.M. Peng, L. Jin, Y.C. Xin, Z.Q. Zhang, Y. Liu, X.H. Chen, G. Chen, K.K. Deng, H.J.Y. Wang, J. Mater. Sci. Technol. 34 (2018) 245-247.
DOI URL |
[7] |
Y.M. Zhu, A.J. Morton, J.F. Nie, Acta Mater. 58 (2010) 2936-2947.
DOI URL |
[8] |
E. Abe, A. Ono, T. Itoi, M. Yamasaki, Y. Kawamura, Philos. Mag. Lett. 91 (2011) 690-696.
DOI URL |
[9] |
Q.Q. Jin, X.H. Shao, X.B. Hu, Z.Z. Peng, X.L. Ma, Philos. Mag. 97 (2017) 1-16.
DOI URL |
[10] |
Q.Q. Jin, X.H. Shao, X.B. Hu, Z.Z. Peng, X.L. Ma, Philos. Mag. Lett. 97 (2017) 180-187.
DOI URL |
[11] |
H. Zhang, C.Q. Liu, Y.M. Zhu, H.W. Chen, L. Bourgeois, J.F. Nie, Acta Mater. 152 (2018) 96-106.
DOI URL |
[12] |
S.B. Mi, Q.Q. Jin, Scr. Mater. 68 (2013) 635-638.
DOI URL |
[13] |
C. Liu, Y. Zhu, Q. Luo, B. Liu, Q. Gu, Q. Li, J. Mater. Sci. Technol. 34 (2018) 2235-2239.
DOI URL |
[14] |
D. Egusa, E. Abe, Acta Mater. 60 (2012) 166-178.
DOI URL |
[15] |
M. Yamasaki, M. Matsushita, K. Hagihara, H. Izuno, E. Abe, Y. Kawamura, Scr. Mater. 78-79 (2014) 13-16.
DOI URL |
[16] |
A. Inoue, Y. Kawamura, M. Matsushita, K. Hayashi, J. Koike, J. Mater. Res. 16 (2001) 1894-1900.
DOI URL |
[17] | Y. Kawamura, K. Hayashi, A. Inoue, T. Masumoto, Mater. Trans. 42 (2001) 1171-1174. |
[18] |
X.H. Shao, Z.Q. Yang, X.L. Ma, Acta Mater. 58 (2010) 4760-4771.
DOI URL |
[19] |
X.H. Shao, Z.Z. Peng, Q.Q. Jin, X.L. Ma, Acta Mater. 118 (2016) 177-186.
DOI URL |
[20] |
Y. Kawamura, M. Yamasaki, Mater. Trans. 48 (2007) 2986-2992.
DOI URL |
[21] |
Y.M. Zhu, A.J. Morton, J.F. Nie, Acta Mater. 60 (2012) 6562-6572.
DOI URL |
[22] |
J.F. Nie, Y. Zhu, A.J. Morton, Metall. Mater. Trans. A 45 (2014) 3338-3348.
DOI URL |
[23] |
Y.M. Zhu, M. Weyland, A.J. Morton, K. Oh-ishi, K. Hono, J.F. Nie, Scr. Mater. 60 (2009) 980-983.
DOI URL |
[24] | D. Hull, D.J. Bacon, Introduction to Dislocations, fifth ed., Butterworth-Heinemann, Boston, 2011, pp. 75-79. |
[25] |
J. Wang, O. Anderoglu, J. Hirth, A. Misra, X. Zhang, Appl. Phys. Lett. 95 (2009), 021908.
DOI URL |
[26] |
J. Wang, A. Misra, J. Hirth, Phys. Rev. B 83 (2011), 064106.
DOI URL |
[27] | D. Hofmann, F. Ernst, Interface Sci. 2 (1995) 201-210. |
[1] | Yuhui Zhang, Yuling Liu, Shuhong Liu, Hai-Lin Chen, Qing Chen, Shiyi Wen, Yong Du. Assessment of atomic mobilities and simulation of precipitation evolution in Mg-X (X=Al, Zn, Sn) alloys [J]. J. Mater. Sci. Technol., 2021, 62(0): 70-82. |
[2] | Yujie Cui, Kenta Aoyagi, Huakang Bian, Yuichiro Hayasaka, Akihiko Chiba. Effects of the aluminum concentration on twin boundary motion in pre-strained magnesium alloys [J]. J. Mater. Sci. Technol., 2021, 73(0): 116-127. |
[3] | Xiaofei Cui, Wei Fu, Daqing Fang, Guangli Bi, Zijun Ren, Shengwu Guo, Suzhi Li, Xiangdong Ding, Jun Sun. Mechanical properties and deformation mechanisms of a novel fine-grained Mg-Gd-Y-Ag-Zr-Ce alloy with high strength-ductility synergy [J]. J. Mater. Sci. Technol., 2021, 66(0): 64-73. |
[4] | Xiao-Yuan Wang, Yu-Fei Wang, Cheng Wang, Shun Xu, Jian Rong, Zhi-Zheng Yang, Jin-Guo Wang, Hui-Yuan Wang. A simultaneous improvement of both strength and ductility by Sn addition in as-extruded Mg-6Al-4Zn alloy [J]. J. Mater. Sci. Technol., 2020, 49(0): 117-125. |
[5] | Xiao-Li Fan, Chang-Yang Li, Yu-Bo Wang, Yuan-Fang Huo, Shuo-Qi Li, Rong-Chang Zeng. Corrosion resistance of an amino acid-bioinspired calcium phosphate coating on magnesium alloy AZ31 [J]. J. Mater. Sci. Technol., 2020, 49(0): 224-235. |
[6] | Pengfei Zhang, Yunchang Xin, Ling Zhang, Shiwei Pan, Qing Liu. On the texture memory effect of a cross-rolled Mg-2Zn-2Gd plate after unidirectional rolling [J]. J. Mater. Sci. Technol., 2020, 41(0): 98-104. |
[7] | R.Z. Xu, Q. Yang, D.R. Ni, B.L. Xiao, C.Z. Liu, Z.Y. Ma. Influencing mechanism of pre-existing nanoscale Al5Fe2 phase on Mg-Fe interface in friction stir spot welded Al-free ZK60-Q235 joint [J]. J. Mater. Sci. Technol., 2020, 42(0): 220-228. |
[8] | Qun Luo, Yanlin Guo, Bin Liu, Yujun Feng, Jieyu Zhang, Qian Li, Kuochih Chou. Thermodynamics and kinetics of phase transformation in rare earth-magnesium alloys: A critical review [J]. J. Mater. Sci. Technol., 2020, 44(0): 171-190. |
[9] | Sang-Hoon Kim, Sang Won Lee, Byoung Gi Moon, Ha Sik Kim, Sung Hyuk Park. Variation in dynamic deformation behavior and resultant yield asymmetry of AZ80 alloy with extrusion temperature [J]. J. Mater. Sci. Technol., 2020, 46(0): 225-236. |
[10] | Qiuyan Huang, Yang Liu, Aiyue Zhang, Haoxin Jiang, Hucheng Pan, Xiaohui Feng, Changlin Yang, Tianjiao Luo, Yingju Li, Yuansheng Yang. Age hardening responses of as-extruded Mg-2.5Sn-1.5Ca alloys with a wide range of Al concentration [J]. J. Mater. Sci. Technol., 2020, 38(0): 39-46. |
[11] | Maryam Jamalian, David P.Field. Gradient microstructure and enhanced mechanical performance of magnesium alloy by severe impact loading [J]. J. Mater. Sci. Technol., 2020, 36(0): 45-49. |
[12] | Xiru Hua, Qiang Yang, Dongdong Zhang, Fanzhi Meng, Chong Chen, Zihao You, Jinghuai Zhang, Shuhui Lv, Jian Meng. Microstructures and mechanical properties of a newly developed high-pressure die casting Mg-Zn-RE alloy [J]. J. Mater. Sci. Technol., 2020, 53(0): 174-184. |
[13] | Hongguang Liu, Fuyong Cao, Guang-Ling Song, Dajiang Zheng, Zhiming Shi, Mathew S. Dargusch, Andrej Atrens. Review of the atmospheric corrosion of magnesium alloys [J]. J. Mater. Sci. Technol., 2019, 35(9): 2003-2016. |
[14] | Zhong-Zheng Jin, Xiu-Ming Cheng, Min Zha, Jian Rong, Hang Zhang, Jin-Guo Wang, Cheng Wang, Zhi-Gang Li, Hui-Yuan Wang. Effects of Mg17Al12 second phase particles on twinning-induced recrystallization behavior in Mg-Al-Zn alloys during gradient hot rolling [J]. J. Mater. Sci. Technol., 2019, 35(9): 2017-2026. |
[15] | Jianfeng Wang, Hongbo Zhou, Liguo Wang, Shijie Zhu, Shaokang Guan. Microstructure, mechanical properties and deformation mechanisms of an as-cast Mg-Zn-Y-Nd-Zr alloy for stent applications [J]. J. Mater. Sci. Technol., 2019, 35(7): 1211-1217. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||