J. Mater. Sci. Technol. ›› 2020, Vol. 39: 173-182.DOI: 10.1016/j.jmst.2019.07.021
• Research Article • Previous Articles Next Articles
Xiaogang Lia, Kejian Lia, Shanlin Lia, Yao Wud, Zhipeng Caiabc*(), Jiluan Pana
Received:
2018-10-02
Revised:
2018-11-20
Accepted:
2019-03-07
Published:
2020-02-15
Online:
2020-03-11
Contact:
Cai Zhipeng
Xiaogang Li, Kejian Li, Shanlin Li, Yao Wu, Zhipeng Cai, Jiluan Pan. Microstructure and high temperature fracture toughness of NG-TIG welded Inconel 617B superalloy[J]. J. Mater. Sci. Technol., 2020, 39: 173-182.
Element | Cr | Co | Mo | Al | Ti | Fe | Cu | Nb |
---|---|---|---|---|---|---|---|---|
Inconel 617B | 22.37 | 12.02 | 9.01 | 1.02 | 0.46 | 0.34 | 0.006 | 0.04 |
Filler metal | 22.5 | 11.2 | 8.9 | 1.27 | 0.39 | — | 0.1 | — |
Element | Mn | B | C | Si | S | P | N | Ni |
Inconel 617B | 0.01 | 0.0044 | 0.051 | 0.04 | 0.007 | 0.013 | 0.004 | Balance |
Filler metal | 0.4 | — | 0.07 | 0.3 | 0.002 | 0.003 | — | 55 |
Table 1 Chemical compositions of Inconel 617B and filler metal (wt%).
Element | Cr | Co | Mo | Al | Ti | Fe | Cu | Nb |
---|---|---|---|---|---|---|---|---|
Inconel 617B | 22.37 | 12.02 | 9.01 | 1.02 | 0.46 | 0.34 | 0.006 | 0.04 |
Filler metal | 22.5 | 11.2 | 8.9 | 1.27 | 0.39 | — | 0.1 | — |
Element | Mn | B | C | Si | S | P | N | Ni |
Inconel 617B | 0.01 | 0.0044 | 0.051 | 0.04 | 0.007 | 0.013 | 0.004 | Balance |
Filler metal | 0.4 | — | 0.07 | 0.3 | 0.002 | 0.003 | — | 55 |
Fig. 2. OM image of the cross-section of Inconel 617B NG-TIG welded joint: (a) welded joint, (b) Inconel 617B-WM, (c) Inconel 617B-HAZ, (d) Inconel 617B-BM.
Fig. 5. Microstructure of Inconel 617B-BM observed by SEM: (a) low-magnification, (b) micro-scale M23C6 and small-scale M23C6 decorating the grain boundary.
Position | α | β | γ | Correlation |
---|---|---|---|---|
WM | 0.8807 | 345.3251 | 0.7084 | 0.9990 |
HAZ | 0.8860 | 657.4997 | 0.8870 | 0.9996 |
BM | 0.8940 | 694.8938 | 0.8232 | 0.9902 |
Table 2 The fracture toughness parameters of WM, HAZ, and BM at 700℃.
Position | α | β | γ | Correlation |
---|---|---|---|---|
WM | 0.8807 | 345.3251 | 0.7084 | 0.9990 |
HAZ | 0.8860 | 657.4997 | 0.8870 | 0.9996 |
BM | 0.8940 | 694.8938 | 0.8232 | 0.9902 |
Position | Equations |
---|---|
WM | J=0.8807+345.3251×(Δa)0.7084 |
HAZ | J=0.8860+657.4997×(Δa)0.8870 |
BM | J=0.8940+694.8938×(Δa)0.8232 |
Table 3 Equations for J-R curves of WM, HAZ, and BM at 700℃.
Position | Equations |
---|---|
WM | J=0.8807+345.3251×(Δa)0.7084 |
HAZ | J=0.8860+657.4997×(Δa)0.8870 |
BM | J=0.8940+694.8938×(Δa)0.8232 |
Position | J0.2 (kJ m2) | SZW (μm) | Jstr (kJ m2) |
---|---|---|---|
WM | 138.09 | 323.62 | 157.86 |
HAZ | 225.21 | 328.64 | 246.49 |
BM | 293.36 | 334.66 | 289.66 |
Table 4 A comparison of J0.2 and Jstr for WM, HAZ, and WM.
Position | J0.2 (kJ m2) | SZW (μm) | Jstr (kJ m2) |
---|---|---|---|
WM | 138.09 | 323.62 | 157.86 |
HAZ | 225.21 | 328.64 | 246.49 |
BM | 293.36 | 334.66 | 289.66 |
Fig. 10. Fracture appearances of Inconel 617B-HAZ: (a) boundary between the stretch zone and propagation zone, (b) stretch zone, (c) propagation zone.
Fig. 13. EBSD analyses of an area on the mid thickness plane of broken Inconel 617B-WM sample close to fracture surface: (a) image quality (IQ)+IPF map, (b) IQ + KAM map, (c) IQ + misorientation distribution, (d) IQ + CSL ∑3 boundaries.
Fig. 14. EBSD analyses of an area on the mid thickness plane of broken Inconel 617B-HAZ sample close to fracture surface: (a) IQ + IPF map, (b) IQ + KAM map, (c) IQ + misorientation distribution, (d) IQ + CSL ∑3 boundaries.
Fig. 15. EBSD analyses of an area on the mid thickness plane of broken Inconel 617B-BM sample close to fracture surface: (a) IQ + IPF map, (b) IQ + KAM map, (c) IQ + misorientation distribution, (d) IQ + CSL ∑3 boundaries.
|
[1] | Yunsheng Wu, Xuezhi Qin, Changshuai Wang, Lanzhang Zhou. Microstructural evolution and its influence on the impact toughness of GH984G alloy during long-term thermal exposure [J]. J. Mater. Sci. Technol., 2021, 60(0): 61-69. |
[2] | Yanxin Qiao, Daokui Xu, Shuo Wang, Yingjie Ma, Jian Chen, Yuxin Wang, Huiling Zhou. Effect of hydrogen charging on microstructural evolution and corrosion behavior of Ti-4Al-2V-1Mo-1Fe alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 168-176. |
[3] | Hui Jiang, Dongxu Qiao, Wenna Jiao, Kaiming Han, Yiping Lu, Peter K. Liaw. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 119-124. |
[4] | Jincheng Wang, Yujing Liu, Chirag Dhirajlal Rabadia, Shun-Xing Liang, Timothy Barry Sercombe, Lai-Chang Zhang. Microstructural homogeneity and mechanical behavior of a selective laser melted Ti-35Nb alloy produced from an elemental powder mixture [J]. J. Mater. Sci. Technol., 2021, 61(0): 221-233. |
[5] | Qin Xu, Dezhi Chen, Chongyang Tan, Xiaoqin Bi, Qi Wang, Hongzhi Cui, Shuyan Zhang, Ruirun Chen. NbMoTiVSix refractory high entropy alloys strengthened by forming BCC phase and silicide eutectic structure [J]. J. Mater. Sci. Technol., 2021, 60(0): 1-7. |
[6] | K.J. Tan, X.G. Wang, J.J. Liang, J. Meng, Y.Z. Zhou, X.F. Sun. Effects of rejuvenation heat treatment on microstructure and creep property of a Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 206-215. |
[7] | Hui Xiao, Manping Cheng, Lijun Song. Direct fabrication of single-crystal-like structure using quasi-continuous-wave laser additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 60(0): 216-221. |
[8] | Xing Zhou, Jingrui Deng, Changqing Fang, Wanqing Lei, Yonghua Song, Zisen Zhang, Zhigang Huang, Yan Li. Additive manufacturing of CNTs/PLA composites and the correlation between microstructure and functional properties [J]. J. Mater. Sci. Technol., 2021, 60(0): 27-34. |
[9] | Zijuan Xu, Zhongtao Li, Yang Tong, Weidong Zhang, Zhenggang Wu. Microstructural and mechanical behavior of a CoCrFeNiCu4 non-equiatomic high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 35-43. |
[10] | B.N. Du, Z.Y. Hu, L.Y. Sheng, D.K. Xu, Y.X. Qiao, B.J. Wang, J. Wang, Y.F. Zheng, T.F. Xi. Microstructural characteristics and mechanical properties of the hot extruded Mg-Zn-Y-Nd alloys [J]. J. Mater. Sci. Technol., 2021, 60(0): 44-55. |
[11] | Xuewei Yan, Qingyan Xu, Guoqiang Tian, Quanwei Liu, Junxing Hou, Baicheng Liu. Multi-scale modeling of liquid-metal cooling directional solidification and solidification behavior of nickel-based superalloy casting [J]. J. Mater. Sci. Technol., 2021, 67(0): 36-49. |
[12] | Yuting Wu, Chong Li, Xingchuan Xia, Hongyan Liang, Qiqi Qi, Yongchang Liu. Precipitate coarsening and its effects on the hot deformation behavior of the recently developed γ'-strengthened superalloys [J]. J. Mater. Sci. Technol., 2021, 67(0): 95-104. |
[13] | Haoze Li, Ming Gao, Min Li, Yingche Ma, Kui Liu. Microstructural evolution and tensile property of 1Cr15Ni36W3Ti superalloy during thermal exposure [J]. J. Mater. Sci. Technol., 2021, 73(0): 193-204. |
[14] | Yi Yang, Di Xu, Sheng Cao, Songquan Wu, Zhengwang Zhu, Hao Wang, Lei Li, Shewei Xin, Lei Qu, Aijun Huang. Effect of strain rate and temperature on the deformation behavior in a Ti-23.1Nb-2.0Zr-1.0O titanium alloy [J]. J. Mater. Sci. Technol., 2021, 73(0): 52-60. |
[15] | P.L. Niu, W.Y. Li, D.L. Chen. Tensile and cyclic deformation response of friction-stir-welded dissimilar aluminum alloy joints: Strain localization effect [J]. J. Mater. Sci. Technol., 2021, 73(0): 91-100. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||