J. Mater. Sci. Technol. ›› 2020, Vol. 39: 183-189.DOI: 10.1016/j.jmst.2019.07.047
• Research Article • Previous Articles Next Articles
S.J. Tsianikasa*(), Y. Chenab*(
), Z. Xieac
Received:
2019-05-09
Revised:
2019-06-26
Accepted:
2019-07-27
Published:
2020-02-15
Online:
2020-03-11
Contact:
Tsianikas S.J.,Chen Y.
S.J. Tsianikas, Y. Chen, Z. Xie. Deciphering deformation mechanisms of hierarchical dual-phase CrCoNi coatings[J]. J. Mater. Sci. Technol., 2020, 39: 183-189.
Fig. 1. As-deposited CrCoNi sample; (a) EDX mapping of a selected region of the sample shown in the top-left pane. A small segment of platinum is included in the bottom-right for reference, (b) nanocolumnar structure, (c) alternating HCP and FCC phases, with twinning present, (d) perfect FCC crystal and grain boundary, and (e) FCC region with stacking faults.
Sample | Hardness (GPa) | Young’s Modulus (GPa) | Wear Parameter H/E | H3/E2 |
---|---|---|---|---|
CrCoNi/Ti (Present Study) | 9.5 ± 0.1 | 238 ± 4 | 0.0399 | 0.0151 |
CrCoNi (1 μm and 3 μm) [ | ~10 | ~250 | 0.0400 | 0.016 |
CrCoNi/Ti (1 μm and 3 μm) [ | ~9.2 | ~230 | 0.0400 | 0.014 |
CrCoNi/Ti (multilayered) [ | 7.6 ± 0.43 | 233 ± 13 | 0.033 | 0.0081 |
CrCoNi [ | 10 | 267 | 0.0375 | 0.014 |
Co19Cr19.2Fe 19.2Ni 19.1Cu23.5 [ | 3.72 | 188.5 | 0.0197 | 0.0014 |
Co13Cr12.2Fe12.4Ni13.2Cu17.7Al31.5 [ | 2.62 | 174.3 | 0.0150 | 0.00059 |
Al0.3CoCrFeNi [ | 3.33 | 216 | 0.0154 | 0.00079 |
AlCoCrFeNi [ | 10.1 | 251 | 0.0402 | 0.016 |
AlCoCrCuFeNi [ | 8.13 | 172 | 0.0473 | 0.018 |
Table 1 Nanoindentation Values obtained from this project, and values obtained from literature, with H/E and H3/E2 values.
Sample | Hardness (GPa) | Young’s Modulus (GPa) | Wear Parameter H/E | H3/E2 |
---|---|---|---|---|
CrCoNi/Ti (Present Study) | 9.5 ± 0.1 | 238 ± 4 | 0.0399 | 0.0151 |
CrCoNi (1 μm and 3 μm) [ | ~10 | ~250 | 0.0400 | 0.016 |
CrCoNi/Ti (1 μm and 3 μm) [ | ~9.2 | ~230 | 0.0400 | 0.014 |
CrCoNi/Ti (multilayered) [ | 7.6 ± 0.43 | 233 ± 13 | 0.033 | 0.0081 |
CrCoNi [ | 10 | 267 | 0.0375 | 0.014 |
Co19Cr19.2Fe 19.2Ni 19.1Cu23.5 [ | 3.72 | 188.5 | 0.0197 | 0.0014 |
Co13Cr12.2Fe12.4Ni13.2Cu17.7Al31.5 [ | 2.62 | 174.3 | 0.0150 | 0.00059 |
Al0.3CoCrFeNi [ | 3.33 | 216 | 0.0154 | 0.00079 |
AlCoCrFeNi [ | 10.1 | 251 | 0.0402 | 0.016 |
AlCoCrCuFeNi [ | 8.13 | 172 | 0.0473 | 0.018 |
Fig. 2. Samples after deformation; (a) indent site showing pile-up; (b and c) microstructures after deformation of 400 mN (b) and 200 mN (c); (d & e) STEM image of nanograins obtained ~1 μm below the sample surface showing an equiaxed grain for 400 mN (d) and twin/matrix lamellae for 200 mN (e), and; (f) dislocations (marked by white ⊥ symbols) at the grain boundary of a nanograin.
Fig. 3. (a) Shear band region, visible by its very distinguishable edges. STEM images (b) depict the edge of the shear band region and (c) reveal the structure inside the shear band as FCC, with twin/matrix lamellae.
Fig. 4. Generalised deformation mechanism of the CrCoNi coating: (a) pristine columnar structure, HCP/FCC regions and presence of stacking faults and twin boundaries; (b) partial deformation caused by 200 mN showing grain refinement onset beneath the indent site with phase transformation and elimination of some planar defects in nanograins, and; (c) heavy deformation induced by 400 mN, showing further elimination of planar defects in nanograins, and shear band formation.
|
[1] | Pan Xie, Shucheng Shen, Cuilan Wu, Jianghua Chen. Abnormal orientation relation between fcc and hcp structures revealed in a deformed high manganese steel [J]. J. Mater. Sci. Technol., 2021, 60(0): 156-161. |
[2] | Shenbao Jin, Zhenjiao Luo, Xianghai An, Xiaozhou Liao, Jiehua Li, Gang Sha. Composition-dependent dynamic precipitation and grain refinement in Al-Si system under high-pressure torsion [J]. J. Mater. Sci. Technol., 2021, 68(0): 199-208. |
[3] | Chendong Zhao, Jinshan Li, Yudong Liu, William Yi Wang, Hongchao Kou, Eric Beaugnon, Jun Wang. Tailoring mechanical and magnetic properties of AlCoCrFeNi high-entropy alloy via phase transformation [J]. J. Mater. Sci. Technol., 2021, 73(0): 83-90. |
[4] | Tongzhao Gong, Yun Chen, Shanshan Li, Yanfei Cao, Dianzhong Li, Xing-Qiu Chen, Guillaume Reinhart, Henri Nguyen-Thi. Revisiting dynamics and models of microsegregation during polycrystalline solidification of binary alloy [J]. J. Mater. Sci. Technol., 2021, 74(0): 155-167. |
[5] | Seong-Woo Choi, Jae Suk Jeong, Jong Woo Won, Jae Keun Hong, Yoon Suk Choi. Grade-4 commercially pure titanium with ultrahigh strength achieved by twinning-induced grain refinement through cryogenic deformation [J]. J. Mater. Sci. Technol., 2021, 66(0): 193-201. |
[6] | Lin Gao, Kai Li, Song Ni, Yong Du, Min Song. The growth mechanisms of θ′ precipitate phase in an Al-Cu alloy during aging treatment [J]. J. Mater. Sci. Technol., 2021, 61(0): 25-32. |
[7] | Yang Li, Ying Jiang, Bin Liu, Qun Luo, Bin Hu, Qian Li. Understanding grain refining and anti Si-poisoning effect in Al-10Si/Al-5Nb-B system [J]. J. Mater. Sci. Technol., 2021, 65(0): 190-201. |
[8] | Nagasivamuni Balasubramani, Gui Wang, David H. StJohn, Matthew S. Dargusch. Current understanding of the origin of equiaxed grains in pure metals during ultrasonic solidification and a comparison of grain formation processes with low frequency vibration, pulsed magnetic and electric-current pulse techniques [J]. J. Mater. Sci. Technol., 2021, 65(0): 38-53. |
[9] | Huabei Peng, Dian Wang, Qi Liao, Yuhua Wen. Degeneration and rejuvenation of shape memory effect associated with the precipitation of coherent nano-particles in a Co-Ni-Si shape memory alloy [J]. J. Mater. Sci. Technol., 2021, 76(0): 150-155. |
[10] | Ruobin Chang, Wei Fang, Jiaohui Yan, Haoyang Yu, Xi Bai, Jia Li, Shiying Wang, Shijian Zheng, Fuxing Yin. Microstructure and mechanical properties of CoCrNi-Mo medium entropy alloys: Experiments and first-principle calculations [J]. J. Mater. Sci. Technol., 2021, 62(0): 25-33. |
[11] | Ruifeng Dong, Jinshan Li, Hongchao Kou, Jiangkun Fan, Yuhong Zhao, Hua Hou, Li Wu. ω-Assisted refinement of α phase and its effect on the tensile properties of a near β titanium alloy [J]. J. Mater. Sci. Technol., 2020, 44(0): 24-30. |
[12] | Bingqiang Wei, Song Ni, Yong Liu, Xiaozhou Liao, Min Song. Phase transformation and structural evolution in a Ti-5at.% Al alloy induced by cold-rolling [J]. J. Mater. Sci. Technol., 2020, 49(0): 211-223. |
[13] | Jia Li, Li Li, Chao Jiang, Qihong Fang, Feng Liu, Yong Liu, Peter K. Liaw. Probing deformation mechanisms of gradient nanostructured CrCoNi medium entropy alloy [J]. J. Mater. Sci. Technol., 2020, 57(0): 85-91. |
[14] | Fan Jiangkun, Zhang Zhixin, Gao Puyi, Yang Ruimeng, Li Huan, Tang Bin, Kou Hongchao, Zhang Yudong, Esling Claude, Li Jinshan. On the nature of a peculiar initial yield behavior in metastable β titanium alloy Ti-5Al-5Mo-5V-3Cr-0.5Fe with different initial microstructures [J]. J. Mater. Sci. Technol., 2020, 38(0): 135-147. |
[15] | Di Zhang, Zhen Zhang, Yanlin Pan, Yanbin Jiang, Linzhong Zhuang, Jishan Zhang, Xinfang Zhang. Current-driving intergranular corrosion performance regeneration below the precipitates solvus temperature in Al-Mg alloy [J]. J. Mater. Sci. Technol., 2020, 53(0): 132-139. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||