J. Mater. Sci. Technol. ›› 2019, Vol. 35 ›› Issue (10): 2336-2344.DOI: 10.1016/j.jmst.2019.03.044
• Orginal Article • Previous Articles Next Articles
Jiewen Wangab, Shuyuan Zhangb, Ziqing Sunb, Hai Wangb, Ling Renb*(), Ke Yangb*(
)
Received:
2018-12-05
Revised:
2019-03-13
Accepted:
2019-03-25
Online:
2019-10-05
Published:
2019-08-28
Contact:
Ren Ling,Yang Ke
Jiewen Wang, Shuyuan Zhang, Ziqing Sun, Hai Wang, Ling Ren, Ke Yang. Optimization of mechanical property, antibacterial property and corrosion resistance of Ti-Cu alloy for dental implant[J]. J. Mater. Sci. Technol., 2019, 35(10): 2336-2344.
Sample | Cu content (wt%) | Microstructure |
---|---|---|
Ti-3Cu-740 | 3 | α-Ti + Ti2Cu |
Ti-5Cu-740 | 5 | α-Ti + Ti2Cu |
Ti-7Cu-740 | 7 | α-Ti + Ti2Cu |
Ti-3Cu-830 | 3 | α-Ti + transformed β-Ti |
Ti-5Cu-830 | 5 | α-Ti + transformed β-Ti |
Ti-7Cu-830 | 7 | transformed β-Ti |
Ti-3Cu-910 | 3 | transformed β-Ti |
Ti-5Cu-910 | 5 | transformed β-Ti |
Ti-7Cu-910 | 7 | transformed β-Ti |
Table 1 Microstructures of Ti-Cu alloys with different heat treatments.
Sample | Cu content (wt%) | Microstructure |
---|---|---|
Ti-3Cu-740 | 3 | α-Ti + Ti2Cu |
Ti-5Cu-740 | 5 | α-Ti + Ti2Cu |
Ti-7Cu-740 | 7 | α-Ti + Ti2Cu |
Ti-3Cu-830 | 3 | α-Ti + transformed β-Ti |
Ti-5Cu-830 | 5 | α-Ti + transformed β-Ti |
Ti-7Cu-830 | 7 | transformed β-Ti |
Ti-3Cu-910 | 3 | transformed β-Ti |
Ti-5Cu-910 | 5 | transformed β-Ti |
Ti-7Cu-910 | 7 | transformed β-Ti |
Fig. 3. (a) SEM morphology ofTi-5Cu-740 with EDS results; (b) TEM observation of Ti2Cu precipitates in Ti-5Cu-740 with SDP analysis; (c) SEM morphology of Ti-5Cu-910; (d) TEM observation of Ti2Cu precipitate in Ti-5Cu-910 with EDS and SDP analyses.
Samples | Microstructure | Tensile strength (MPa) | Elongation (%) |
---|---|---|---|
Ti-3Cu-740 | α-Ti + Ti2Cu | 575 ± 9 | 21 ± 0.7 |
Ti-5Cu-740 | α-Ti + Ti2Cu | 594 ± 5 | 26 ± 1.5 |
Ti-7Cu-740 | α-Ti + Ti2Cu | 649 ± 8 | 23 ± 4.0 |
Ti-3Cu-830 | α-Ti + transformed β | 584 ± 3 | 24 ± 1.0 |
TA2 standard | α-Ti | 400 | 20 |
Table 2 Mechanical properties of Ti-xCu alloys that satisfy the standard for TA2 level.
Samples | Microstructure | Tensile strength (MPa) | Elongation (%) |
---|---|---|---|
Ti-3Cu-740 | α-Ti + Ti2Cu | 575 ± 9 | 21 ± 0.7 |
Ti-5Cu-740 | α-Ti + Ti2Cu | 594 ± 5 | 26 ± 1.5 |
Ti-7Cu-740 | α-Ti + Ti2Cu | 649 ± 8 | 23 ± 4.0 |
Ti-3Cu-830 | α-Ti + transformed β | 584 ± 3 | 24 ± 1.0 |
TA2 standard | α-Ti | 400 | 20 |
Fig. 7. Electrochemical curves of Ti-5Cu samples with different microstructures: (a) open-circuit potential (OCP); (b) potential dynamic curves (PD); (c) Nyquist plot diagram; (d) Bode phase and (e) Bode plot diagram.
Samples | Eocp (mV) | Ecorr (mV) | jcorr (nA cm-2) | jpass (μA cm-2) |
---|---|---|---|---|
Ti-5Cu-740 | -358 ± 3.5 | -340 ± 13 | 24 ± 7.4 | 1.9 ± 0.1 |
Ti-5Cu-830 | -397 ± 34 | -384 ± 7.0 | 106 ± 33 | 3.6 ± 1.8 |
Ti-5Cu-910 | -401 ± 25 | -402 ± 30 | 11 ± 1.2 | 1.7 ± 0.1 |
CP-Ti | -419 ± 11 | -430 ± 31 | 172 ± 36 | 2.5 ± 0.4 |
Table 3 Electrochemical data of Ti-5Cu samples with different microstructures obtained from OCP and polarization curves.
Samples | Eocp (mV) | Ecorr (mV) | jcorr (nA cm-2) | jpass (μA cm-2) |
---|---|---|---|---|
Ti-5Cu-740 | -358 ± 3.5 | -340 ± 13 | 24 ± 7.4 | 1.9 ± 0.1 |
Ti-5Cu-830 | -397 ± 34 | -384 ± 7.0 | 106 ± 33 | 3.6 ± 1.8 |
Ti-5Cu-910 | -401 ± 25 | -402 ± 30 | 11 ± 1.2 | 1.7 ± 0.1 |
CP-Ti | -419 ± 11 | -430 ± 31 | 172 ± 36 | 2.5 ± 0.4 |
Samples | Rs (Ω cm2) | Rcl (kΩ cm2) | Qcl (μΩ-1 sn cm-2) | n |
---|---|---|---|---|
Ti-5Cu-740 | 44.4 ± 0.25 | 402.9 ± 7.74 | 24.49 ± 0.14 | 0.92 ± 0.00 |
Ti-5Cu-830 | 11.3 ± 0.63 | 64.95 ± 0.82 | 69.86 ± 0.44 | 0.94 ± 0.01 |
Ti-5Cu-910 | 17.7 ± 0.11 | 1241 ± 45.76 | 19.98 ± 0.11 | 0.93 ± 0.01 |
CP-Ti | 26.1 ± 0.14 | 145.8 ± 3.00 | 79.33 ± 0.45 | 0.94 ± 0.02 |
Table 4 Equivalent circuit parameters for EIS spectra of Ti-5Cu samples.
Samples | Rs (Ω cm2) | Rcl (kΩ cm2) | Qcl (μΩ-1 sn cm-2) | n |
---|---|---|---|---|
Ti-5Cu-740 | 44.4 ± 0.25 | 402.9 ± 7.74 | 24.49 ± 0.14 | 0.92 ± 0.00 |
Ti-5Cu-830 | 11.3 ± 0.63 | 64.95 ± 0.82 | 69.86 ± 0.44 | 0.94 ± 0.01 |
Ti-5Cu-910 | 17.7 ± 0.11 | 1241 ± 45.76 | 19.98 ± 0.11 | 0.93 ± 0.01 |
CP-Ti | 26.1 ± 0.14 | 145.8 ± 3.00 | 79.33 ± 0.45 | 0.94 ± 0.02 |
|
[1] | Hui Jiang, Dongxu Qiao, Wenna Jiao, Kaiming Han, Yiping Lu, Peter K. Liaw. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 119-124. |
[2] | Jincheng Wang, Yujing Liu, Chirag Dhirajlal Rabadia, Shun-Xing Liang, Timothy Barry Sercombe, Lai-Chang Zhang. Microstructural homogeneity and mechanical behavior of a selective laser melted Ti-35Nb alloy produced from an elemental powder mixture [J]. J. Mater. Sci. Technol., 2021, 61(0): 221-233. |
[3] | Qin Xu, Dezhi Chen, Chongyang Tan, Xiaoqin Bi, Qi Wang, Hongzhi Cui, Shuyan Zhang, Ruirun Chen. NbMoTiVSix refractory high entropy alloys strengthened by forming BCC phase and silicide eutectic structure [J]. J. Mater. Sci. Technol., 2021, 60(0): 1-7. |
[4] | K.J. Tan, X.G. Wang, J.J. Liang, J. Meng, Y.Z. Zhou, X.F. Sun. Effects of rejuvenation heat treatment on microstructure and creep property of a Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 206-215. |
[5] | Hui Xiao, Manping Cheng, Lijun Song. Direct fabrication of single-crystal-like structure using quasi-continuous-wave laser additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 60(0): 216-221. |
[6] | Xing Zhou, Jingrui Deng, Changqing Fang, Wanqing Lei, Yonghua Song, Zisen Zhang, Zhigang Huang, Yan Li. Additive manufacturing of CNTs/PLA composites and the correlation between microstructure and functional properties [J]. J. Mater. Sci. Technol., 2021, 60(0): 27-34. |
[7] | Zijuan Xu, Zhongtao Li, Yang Tong, Weidong Zhang, Zhenggang Wu. Microstructural and mechanical behavior of a CoCrFeNiCu4 non-equiatomic high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 35-43. |
[8] | B.N. Du, Z.Y. Hu, L.Y. Sheng, D.K. Xu, Y.X. Qiao, B.J. Wang, J. Wang, Y.F. Zheng, T.F. Xi. Microstructural characteristics and mechanical properties of the hot extruded Mg-Zn-Y-Nd alloys [J]. J. Mater. Sci. Technol., 2021, 60(0): 44-55. |
[9] | Lin Yuan, Jiangtao Xiong, Yajie Du, Jin Ren, Junmiao Shi, Jinglong Li. Microstructure and mechanical properties in the TLP joint of FeCoNiTiAl and Inconel 718 alloys using BNi2 filler [J]. J. Mater. Sci. Technol., 2021, 61(0): 176-185. |
[10] | Yanxin Qiao, Daokui Xu, Shuo Wang, Yingjie Ma, Jian Chen, Yuxin Wang, Huiling Zhou. Effect of hydrogen charging on microstructural evolution and corrosion behavior of Ti-4Al-2V-1Mo-1Fe alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 168-176. |
[11] | Yunsheng Wu, Xuezhi Qin, Changshuai Wang, Lanzhang Zhou. Microstructural evolution and its influence on the impact toughness of GH984G alloy during long-term thermal exposure [J]. J. Mater. Sci. Technol., 2021, 60(0): 61-69. |
[12] | Xiong-jie Gu, Wei-li Cheng, Shi-ming Cheng, Yan-hui Liu, Zhi-feng Wang, Hui Yu, Ze-qin Cui, Li-fei Wang, Hong-xia Wang. Tailoring the microstructure and improving the discharge properties of dilute Mg-Sn-Mn-Ca alloy as anode for Mg-air battery through homogenization prior to extrusion [J]. J. Mater. Sci. Technol., 2021, 60(0): 77-89. |
[13] | Yanfu Chai, Chao He, Bin Jiang, Jie Fu, Zhongtao Jiang, Qingshan Yang, Haoran Sheng, Guangsheng Huang, Dingfei Zhang, Fusheng Pan. Influence of minor Ce additions on the microstructure and mechanical properties of Mg-1.0Sn-0.6Ca alloy [J]. J. Mater. Sci. Technol., 2020, 37(0): 26-37. |
[14] | Yinghui Zhou, Xin Lin, Nan Kang, Weidong Huang, Jiang Wang, Zhennan Wang. Influence of travel speed on microstructure and mechanical properties of wire + arc additively manufactured 2219 aluminum alloy [J]. J. Mater. Sci. Technol., 2020, 37(0): 143-153. |
[15] | Xi Xie, Rui Yang, Yuyou Cui, Qing Jia, Chunguang Bai. Fabrication of textured Ti2AlC lamellar composites with improved mechanical properties [J]. J. Mater. Sci. Technol., 2020, 38(0): 86-92. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||