J. Mater. Sci. Technol. ›› 2019, Vol. 35 ›› Issue (10): 2345-2356.DOI: 10.1016/j.jmst.2019.05.039
• Orginal Article • Previous Articles Next Articles
Chuang Qiaoab, Lianfeng Shena*(), Long Haob*(
), Xin Mub, Junhua Dongb, Wei Keb, Jing Liuc, Bo Liubd
Received:
2019-02-22
Revised:
2019-04-29
Accepted:
2019-05-05
Online:
2019-10-05
Published:
2019-08-28
Contact:
Shen Lianfeng,Hao Long
Chuang Qiao, Lianfeng Shen, Long Hao, Xin Mu, Junhua Dong, Wei Ke, Jing Liu, Bo Liu. Corrosion kinetics and patina evolution of galvanized steel in a simulated coastal-industrial atmosphere[J]. J. Mater. Sci. Technol., 2019, 35(10): 2345-2356.
Fig. 1. Thickness loss and average corrosion rate of galvanized steel in simulated coastal-industrial atmosphere as a function of CCT cycle: (a) linear coordinates plot; (b) log-log coordinates plot [34].
Fig. 3. Evolution in the cross-sectional morphology of the patina layer on galvanized steel as a function of CCT cycle: (a) 10 CCT, (b) 20 CCT, (c) 40 CCT, (d) 60 CCT, (e) 90 CCT, (f) 120 CCT.
Fig. 4. Surface morphology observation and EDS characterization of the patina layer on galvanized steel as a function of CCT cycle: (a) 10 CCT, (b) 60 CCT, (c) 120 CCT; (a′), (b′) and (c′) corresponding to EDS spectra of the patina labelled as a, b, and c, respectively in Fig. 4(a).
Fig. 5. Synchrotron radiation XRD patterns of the powdered corrosion product on galvanized steel in simulated coastal-industrial atmosphere as a function of CCT cycle.
Fig. 6. FTIR characterization of the powdered corrosion product on galvanized steel in simulated coastal-industrial atmosphere as a function of CCT cycle.
Fig. 7. Raman spectra characterization of the powdered corrosion product on galvanized steel in simulated coastal-industrial atmosphere at 10 CCT cycle.
ZnO | Zn(OH)2 | ZnSO4 | Zn5(OH)6(CO3)2 | Zn4(OH)6SO4 | Zn5(OH)8Cl2·H2O |
---|---|---|---|---|---|
[ | [ | [ | [ | [ | [ |
101 | 395 | ||||
150 | |||||
210 | 218 | 227 | 210 | ||
250 | 244 | 231 | 255 | ||
278 | 272 | 267 | |||
370 | 346 | ||||
380 | 388 | 395 | |||
407 | 380 | 385 | 403 | ||
421 | |||||
437 | 445 | 451 | 467 | ||
472 | |||||
574 | 507 | 543 | |||
583 | 610 | 601 | |||
626 | 636 | 620 | |||
720 | 707 | 730 | |||
760 | 736 | ||||
985 | 980 | 965 | 910 | ||
1030 | 1022 | 1005 | |||
1050 | 1071 | 1062 | 1065 | ||
1080 | 1084 | 1078 | 1130 | ||
1150 |
Table 1 Raman shift (cm-1) data for zinc corrosion products [[45], [46], [47], [48], [49]].
ZnO | Zn(OH)2 | ZnSO4 | Zn5(OH)6(CO3)2 | Zn4(OH)6SO4 | Zn5(OH)8Cl2·H2O |
---|---|---|---|---|---|
[ | [ | [ | [ | [ | [ |
101 | 395 | ||||
150 | |||||
210 | 218 | 227 | 210 | ||
250 | 244 | 231 | 255 | ||
278 | 272 | 267 | |||
370 | 346 | ||||
380 | 388 | 395 | |||
407 | 380 | 385 | 403 | ||
421 | |||||
437 | 445 | 451 | 467 | ||
472 | |||||
574 | 507 | 543 | |||
583 | 610 | 601 | |||
626 | 636 | 620 | |||
720 | 707 | 730 | |||
760 | 736 | ||||
985 | 980 | 965 | 910 | ||
1030 | 1022 | 1005 | |||
1050 | 1071 | 1062 | 1065 | ||
1080 | 1084 | 1078 | 1130 | ||
1150 |
Fig. 8. EPMA mapping of S and Cl elements in the patina layer on galvanized steel in simulated coastal-industrial atmosphere as a function of CCT cycle.
Fig. 9. Potentiodynamic polarization curves of the un-corroded and corroded galvanized steel in the coastal-industrial atmosphere-simulating electrolyte as a function of CCT cycle.
CCT cycle (N) | βa (V·dec-1) | βc (V·dec-1) | Ecorr (V vs. SCE) | icorr (A·cm-2) |
---|---|---|---|---|
0 CCT | 0.0544 | 0.5467 | -1.005 | 2.85 × 10-6 |
20 CCT | 0.0695 | 0.0570 | -1.042 | 1.36 × 10-6 |
40 CCT | 0.0860 | 0.1575 | -1.055 | 1.31 × 10-6 |
60 CCT | 0.1035 | 0.1642 | -1.064 | 8.93 × 10-7 |
90 CCT | 0.2059 | 0.1740 | -1.123 | 4.00 × 10-7 |
120 CCT | 0.1336 | 0.1535 | -1.119 | 4.10 × 10-7 |
Table 2 The evolution of fitted parameters from potentiodynamic polarization curves of un-corroded and corroded galvanized steel as the function of CCT cycle.
CCT cycle (N) | βa (V·dec-1) | βc (V·dec-1) | Ecorr (V vs. SCE) | icorr (A·cm-2) |
---|---|---|---|---|
0 CCT | 0.0544 | 0.5467 | -1.005 | 2.85 × 10-6 |
20 CCT | 0.0695 | 0.0570 | -1.042 | 1.36 × 10-6 |
40 CCT | 0.0860 | 0.1575 | -1.055 | 1.31 × 10-6 |
60 CCT | 0.1035 | 0.1642 | -1.064 | 8.93 × 10-7 |
90 CCT | 0.2059 | 0.1740 | -1.123 | 4.00 × 10-7 |
120 CCT | 0.1336 | 0.1535 | -1.119 | 4.10 × 10-7 |
Fig. 10. Bode plots of EIS results for the un-corroded and corroded galvanized steel as a function of CCT cycle: (a) impedance module plot; (b) phase angle plot.
Fig. 12. Evolution in the fitting parameters of (a) RZHS and QZHS, (b) RHZ and QHZ, (c) Rdl and Qct obtained from EIS data of corroded galvanized steel samples as a function of CCT cycle.
|
[1] | Yanhua Zeng, Fenfen Yang, Zongning Chen, Enyu Guo, Minqiang Gao, Xuejian Wang, Huijun Kang, Tongmin Wang. Enhancing mechanical properties and corrosion resistance of nickel-aluminum bronze via hot rolling process [J]. J. Mater. Sci. Technol., 2021, 61(0): 186-196. |
[2] | R.Z. Xu, Q. Yang, D.R. Ni, B.L. Xiao, C.Z. Liu, Z.Y. Ma. Influencing mechanism of pre-existing nanoscale Al5Fe2 phase on Mg-Fe interface in friction stir spot welded Al-free ZK60-Q235 joint [J]. J. Mater. Sci. Technol., 2020, 42(0): 220-228. |
[3] | Yuanjie Zhi, Tao Yang, Dongmei Fu. An improved deep forest model for forecast the outdoor atmospheric corrosion rate of low-alloy steels [J]. J. Mater. Sci. Technol., 2020, 49(0): 202-210. |
[4] | Sukanta Bose, Sourav Mandal, Asok K. Barua, Sumita Mukhopadhyay. Properties of boron doped ZnO films prepared by reactive sputtering method: Application to amorphous silicon thin film solar cells [J]. J. Mater. Sci. Technol., 2020, 55(0): 136-143. |
[5] | Jiaxin Zhang, Jinshan Zhang, Fuyin Han, Wei Liu, Longlong Zhang, Rui Zhao, Chunxiang Xu, Jing Dou. Modification of Mn on corrosion and mechanical behavior of biodegradable Mg88Y4Zn2Li5 alloy with long-period stacking ordered structure [J]. J. Mater. Sci. Technol., 2020, 42(0): 130-142. |
[6] | Li Zhang, Zhong Xu, Jia Han, Lei Liu, Cong Ye, Yi Zhou, Wen Xiong, Yanxin Liu, Gang He. Resistive switching performance improvement of InGaZnO-based memory device by nitrogen plasma treatment [J]. J. Mater. Sci. Technol., 2020, 49(0): 1-6. |
[7] | Mingna Wang, Chuang Qiao, Xiaolin Jiang, Long Hao, Xiahe Liu. Microstructure induced galvanic corrosion evolution of SAC305 solder alloys in simulated marine atmosphere [J]. J. Mater. Sci. Technol., 2020, 51(0): 40-53. |
[8] | Xiao Lu, Yuwei Liu, Miaoran Liu, Zhenyao Wang. Corrosion behavior of copper T2 and brass H62 in simulated Nansha marine atmosphere [J]. J. Mater. Sci. Technol., 2019, 35(9): 1831-1839. |
[9] | Hongguang Liu, Fuyong Cao, Guang-Ling Song, Dajiang Zheng, Zhiming Shi, Mathew S. Dargusch, Andrej Atrens. Review of the atmospheric corrosion of magnesium alloys [J]. J. Mater. Sci. Technol., 2019, 35(9): 2003-2016. |
[10] | Guangyu Liu, Shohreh Khorsand, Shouxun Ji. Electrochemical corrosion behaviour of Sn-Zn-xBi alloys used for miniature detonating cords [J]. J. Mater. Sci. Technol., 2019, 35(8): 1618-1628. |
[11] | H. Guo, R.H. Cao, Y.F. Zheng, J. Bai, F. Xue, C.L. Chu. Diameter-dependent in vitro performance of biodegradable pure zinc wires for suture application [J]. J. Mater. Sci. Technol., 2019, 35(8): 1662-1670. |
[12] | Bo Liu, Xin Mu, Ying Yang, Long Hao, Xueyong Ding, Junhua Dong, Zhe Zhang, Huaxing Hou, Wei Ke. Effect of tin addition on corrosion behavior of a low-alloy steel in simulated costal-industrial atmosphere [J]. J. Mater. Sci. Technol., 2019, 35(7): 1228-1239. |
[13] | Xuehui Hao, Junhua Dong, Xin Mu, Jie Wei, Changgang Wang, Wei Ke. Influence of Sn and Mo on corrosion behavior of ferrite-pearlite steel in the simulated bottom plate environment of cargo oil tank [J]. J. Mater. Sci. Technol., 2019, 35(5): 799-811. |
[14] | Shuang Gao, Weiyi Yang, Jun Xiao, Bo Li, Qi Li. Creation of passivated Nb/N p-n co-doped ZnO nanoparticles and their enhanced photocatalytic performance under visible light illumination [J]. J. Mater. Sci. Technol., 2019, 35(4): 610-614. |
[15] | Min Cao, Li Liu, Zhongfen Yu, Lei Fan, Ying Li, Fuhui Wang. Electrochemical corrosion behavior of 2A02 Al alloy under an accelerated simulation marine atmospheric environment [J]. J. Mater. Sci. Technol., 2019, 35(4): 651-659. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||