J. Mater. Sci. Technol. ›› 2019, Vol. 35 ›› Issue (10): 2357-2364.DOI: 10.1016/j.jmst.2019.06.004
• Orginal Article • Previous Articles Next Articles
Wei-Chao Jiaoa, Hua-Bing Lia*(), Jing Daia, Hao Fenga, Zhou-Hua Jianga, Tao Zhangb*(
), Da-Ke Xub, Hong-Chun Zhua, Shu-Cai Zhanga
Received:
2018-10-20
Revised:
2019-01-09
Accepted:
2019-03-14
Online:
2019-10-05
Published:
2019-08-28
Contact:
Li Hua-Bing,Zhang Tao
Wei-Chao Jiao, Hua-Bing Li, Jing Dai, Hao Feng, Zhou-Hua Jiang, Tao Zhang, Da-Ke Xu, Hong-Chun Zhu, Shu-Cai Zhang. Effect of partial replacement of carbon by nitrogen on intergranular corrosion behavior of high nitrogen martensitic stainless steels[J]. J. Mater. Sci. Technol., 2019, 35(10): 2357-2364.
Steels | Chemical composition (wt.%) | Mechanical properties (at 25 ℃) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
C | N | Cr | Mo | Si | Mn | Fe | Hardness (HRC) | Ultimate tensile strength (MPa) | Impact energy (J) | |
0.50C-0.16 N | 0.50 | 0.16 | 15.18 | 0.98 | 0.38 | 0.49 | Bal. | 60.1 | 2202.0 | 21.1 |
0.35C-0.37 N | 0.35 | 0.37 | 15.13 | 0.97 | 0.41 | 0.50 | Bal. | 58.6 | 2033.4 | 86.1 |
0.20C-0.54 N | 0.20 | 0.54 | 15.23 | 0.98 | 0.39 | 0.52 | Bal. | 59.2 | 2164.5 | 47.4 |
Table 1 Chemical compositions and mechanical properties of the high nitrogen MSSs.
Steels | Chemical composition (wt.%) | Mechanical properties (at 25 ℃) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
C | N | Cr | Mo | Si | Mn | Fe | Hardness (HRC) | Ultimate tensile strength (MPa) | Impact energy (J) | |
0.50C-0.16 N | 0.50 | 0.16 | 15.18 | 0.98 | 0.38 | 0.49 | Bal. | 60.1 | 2202.0 | 21.1 |
0.35C-0.37 N | 0.35 | 0.37 | 15.13 | 0.97 | 0.41 | 0.50 | Bal. | 58.6 | 2033.4 | 86.1 |
0.20C-0.54 N | 0.20 | 0.54 | 15.23 | 0.98 | 0.39 | 0.52 | Bal. | 59.2 | 2164.5 | 47.4 |
Fig. 1. SEM morphologies and elemental mapping of (a)(d) 0.50C-0.16 N, (b)(e) 0.35C-0.37 N and (c)(f) 0.20C-0.54 N steels. The area fractions of precipitates are about 4.84%, 1.41% and 2.56%, respectively.
Fig. 5. Surface morphologies by SEM and cross section micrographs by OM of (a)(d) 0.50C-0.16 N, (b)(e) 0.35C-0.37 N and (c)(f) 0.20C-0.54 N steels after nitric acid tests.
Fig. 6. DL-EPR results and corresponding surface SEM micrographs of (a)(d) 0.50C-0.16 N, (b)(e) 0.35C-0.37 N and (c)(f) 0.20C-0.54 N steels. The arrows indicate the scanning direction.
Steels | ia (×10-3 A/cm2) | ir (×10-3 A/cm2) | DOS (%) |
---|---|---|---|
0.50C-0.16 N | 0.85 | 1.23 | 144.71 |
0.35C-0.37 N | 0.19 | 0.01 | 5.26 |
0.20C-0.54 N | 0.27 | 0.04 | 14.81 |
Table 2 DOS values of the experimental high nitrogen MSSs in DL-EPR tests.
Steels | ia (×10-3 A/cm2) | ir (×10-3 A/cm2) | DOS (%) |
---|---|---|---|
0.50C-0.16 N | 0.85 | 1.23 | 144.71 |
0.35C-0.37 N | 0.19 | 0.01 | 5.26 |
0.20C-0.54 N | 0.27 | 0.04 | 14.81 |
Fig. 7. Schematic of partial replacement of C by N on microstructure, IGC resistance and mechanical properties of high nitrogen MSSs: (a) influence of C/N content on carbide/nitride content and Cr-depleted zone, (b) variation of M23C6 and M2N contents and area of Cr-depleted zones, (c) tensile strength and percolation depth.
|
[1] | Ruoxian Wang, Gaowu Qin, Erlin Zhang. Effect of Cu on Martensite Transformation of CoCrMo alloy for biomedical application [J]. J. Mater. Sci. Technol., 2020, 52(0): 127-135. |
[2] | Bin Hu, Xin Tu, Haiwen Luo, Xinping Mao. Effect of warm rolling process on microstructures and tensile properties of 10¬タノMn steel [J]. J. Mater. Sci. Technol., 2020, 47(0): 131-141. |
[3] | Liang Wu, Yugang Li, Xianfeng Li, Naiheng Ma, Haowei Wang. Interactions between cadmium and multiple precipitates in an Al-Li-Cu alloy: Improving aging kinetics and precipitation hardening [J]. J. Mater. Sci. Technol., 2020, 46(0): 44-49. |
[4] | Gang Lu, Shuai Nie, Jianjun Wang, Ying Zhang, Tianhai Wu, Yujie Liu, Chunming Liu. Enhancing the bake-hardening responses of a pre-aged Al-Mg-Si alloy by trace Sn additions [J]. J. Mater. Sci. Technol., 2020, 40(0): 107-112. |
[5] | Di Zhang, Zhen Zhang, Yanlin Pan, Yanbin Jiang, Linzhong Zhuang, Jishan Zhang, Xinfang Zhang. Current-driving intergranular corrosion performance regeneration below the precipitates solvus temperature in Al-Mg alloy [J]. J. Mater. Sci. Technol., 2020, 53(0): 132-139. |
[6] | Nattakan Kanjana, Wasan Maiaugree, Phitsanu Poolcharuansin, Paveena Laokul. Size controllable synthesis and photocatalytic performance of mesoporous TiO2 hollow spheres [J]. J. Mater. Sci. Technol., 2020, 48(0): 105-113. |
[7] | Peipei Ma, Chunhui Liu, Qiuyu Chen, Qing Wang, Lihua Zhan, Jianjun Li. Natural-ageing-enhanced precipitation near grain boundaries in high-strength aluminum alloy [J]. J. Mater. Sci. Technol., 2020, 46(0): 107-113. |
[8] | Shidong Wang, Lyndon Lamborn, Karina Chevil, Erwin Gamboa, Weixing Chen. Near-neutral pH corrosion of mill-scaled X-65 pipeline steel with paint primer [J]. J. Mater. Sci. Technol., 2020, 49(0): 166-178. |
[9] | Shujing Shi, Zhengwei Yan, Yongsheng Li, Suleman Muhammad, Dong Wang, Shi Chen, Shengshun Jin. Phase-field simulation of early-stage kinetics evolution of γ' phase in medium supersaturation Co-Al-W alloy [J]. J. Mater. Sci. Technol., 2020, 53(0): 1-12. |
[10] | Yu Zhang, Wei Rong, Yujuan Wu, Liming Peng. Achieving ultra-high strength in Mg-Gd-Ag-Zr wrought alloy via bimodal-grained structure and enhanced precipitation [J]. J. Mater. Sci. Technol., 2020, 54(0): 160-170. |
[11] | Xiaoming Qian, Nick Parson, X.-Grant Chen. Effects of Mn content on recrystallization resistance of AA6082 aluminum alloys during post-deformation annealing [J]. J. Mater. Sci. Technol., 2020, 52(0): 189-197. |
[12] | Chen Li, Kun Liu, X.-Grant Chen. Improvement of elevated-temperature strength and recrystallization resistance via Mn-containing dispersoid strengthening in Al-Mg-Si 6082 alloys [J]. J. Mater. Sci. Technol., 2020, 39(0): 135-143. |
[13] | C.Q. Liu, C. He, H.W. Chen, J.F. Nie. Precipitation on stacking faults in Mg-9.8wt%Sn alloy [J]. J. Mater. Sci. Technol., 2020, 45(0): 230-240. |
[14] | Shucai Zhang, Huabing Li, Zhouhua Jiang, Zhixing Li, Jingxi Wu, Binbin Zhang, Fei Duan, Hao Feng, Hongchun Zhu. Influence of N on precipitation behavior, associated corrosion and mechanical properties of super austenitic stainless steel S32654 [J]. J. Mater. Sci. Technol., 2020, 42(0): 143-155. |
[15] | Z.Y. Zhang, L.X. Sun, N.R. Tao. Nanostructures and nanoprecipitates induce high strength and high electrical conductivity in a CuCrZr alloy [J]. J. Mater. Sci. Technol., 2020, 48(0): 18-22. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||