J. Mater. Sci. Technol. ›› 2018, Vol. 34 ›› Issue (10): 1773-1780.DOI: 10.1016/j.jmst.2018.02.009
Special Issue: 2017-2018年Mg合金专题; 材料计算 2018
• Orginal Article • Previous Articles Next Articles
Qing Donga, Zhe Luoa, Hong Zhub(), Leyun Wanga, Tao Yinga, Zhaohui Jina, Dejiang Lia, Wenjiang Dinga, Xiaoqin Zenga(
)
Received:
2017-12-20
Revised:
2018-01-27
Accepted:
2018-01-28
Online:
2018-10-05
Published:
2018-11-01
Qing Dong, Zhe Luo, Hong Zhu, Leyun Wang, Tao Ying, Zhaohui Jin, Dejiang Li, Wenjiang Ding, Xiaoqin Zeng. Basal-plane stacking-fault energies of Mg alloys: A first-principles study of metallic alloying effects[J]. J. Mater. Sci. Technol., 2018, 34(10): 1773-1780.
Fig. 1. Atomic configuration of (a) perfect, (b) I2 faulted, (c) I1 faulted and (d) I1′ faulted (0001) Mg47X slab. Each faulted slab contains a stacking-fault interface in the middle, where the local atomic configuration is FCC-like.
Alloying element | Ef | Eb | γI1 | γus1 | γI2 | γus2 | R[ | Ei1[ | Ei2[ | Nve | Vhcp[ | κhcp[ |
---|---|---|---|---|---|---|---|---|---|---|---|---|
(eV) | (eV) | (mJ/m2) | (mJ/m2) | (mJ/m2) | (mJ/m2) | (pm) | (mJ/mol) | (mJ/mol) | (?3/atom) | (GPa) | ||
Mg | 0.00 | 0.00 | 16.1 | 86.9 | 37.6 | 89.6 | 160 | 738 | 1451 | 2 | 22.89 | 35.7 |
Li | -0.20 | -0.26 | 18.1 | 95.6 | 47.6 | 97.5 | 152 | 520 | 7298 | 1 | 20.33 | 13.5 |
Be | 1.24 | -0.90 | 25.8 | 80.7 | 45.4 | 85.4 | 111 | 899 | 1757 | 2 | 7.92 | 121.1 |
Na | 0.32 | 0.79 | 16.8 | 79.3 | 38.3 | 80.4 | 186 | 496 | 4562 | 1 | 37.18 | 7.6 |
Al | 0.02 | -1.93 | 13.1 | 86.0 | 21.3 | 86.3 | 143 | 578 | 1817 | 3 | 16.75 | 70.8 |
K | 1.58 | 2.27 | 10.7 | 22.9 | 6.9 | 28.1 | 179 | 419 | 3051 | 1 | 74.02 | 3.5 |
Ca | 0.10 | -0.25 | 17.0 | 58.3 | 28.7 | 61.6 | 195 | 590 | 1145 | 2 | 41.93 | 17.7 |
Sc | -0.18 | -2.96 | 17.0 | 91.7 | 34.6 | 94.5 | 210 | 631 | 1235 | 3 | 24.47 | 54.9 |
Ti | 0.68 | -3.21 | 2.3 | 108.7 | 22.4 | 106.9 | 147 | 658 | 1310 | 4 | 17.29 | 112.8 |
V | 1.05 | -3.11 | 18.0 | 117.2 | 50.2 | 120.5 | 134 | 650 | 1414 | 5 | 13.84 | 173.2 |
Cr | 1.11 | -5.42 | 19.7 | 115.6 | 48.4 | 118.8 | 128 | 653 | 1592 | 6 | 11.94 | 233.5 |
Mn | 0.84 | -1.61 | 12.1 | 110.2 | 37.5 | 111.5 | 127 | 717 | 1509 | 7 | 10.75 | 279.7 |
Fe | 1.17 | -2.46 | -1.3 | 68.6 | 27.0 | 101.9 | 126 | 759 | 1561 | 8 | 10.18 | 288.3 |
Co | 0.83 | -2.98 | 23.4 | 113.8 | 63.5 | 119.0 | 125 | 758 | 1646 | 9 | 10.85 | 212.5 |
Ni | 0.36 | -3.41 | 24.7 | 100.4 | 63.2 | 106.8 | 124 | 737 | 1753 | 10 | 10.95 | 193.8 |
Cu | 0.56 | -1.75 | 21.1 | 86.6 | 50.5 | 90.9 | 128 | 745 | 1958 | 1 | 12.04 | 136.1 |
Zn | -0.07 | 0.38 | 17.6 | 79.5 | 32.7 | 82.1 | 134 | 906 | 1733 | 2 | 15.40 | 51.8 |
Ga | -0.20 | -1.45 | 9.5 | 79.8 | 22.4 | 79.0 | 135 | 579 | 1979 | 3 | 19.18 | 45.9 |
Sr | 0.72 | 0.66 | 16.7 | 32.9 | 15.6 | 30.1 | 215 | 549 | 1064 | 2 | 54.72 | 11.4 |
Y | -0.13 | -2.75 | 15.6 | 69.9 | 26.4 | 74.7 | 180 | 616 | 1181 | 3 | 32.67 | 40.8 |
Zr | 0.16 | -4.73 | -0.4 | 94.8 | 17.5 | 92.2 | 160 | 660 | 1267 | 4 | 23.44 | 95.3 |
Nb | 0.86 | -4.57 | -6.0 | 113.0 | 19.9 | 110.5 | 146 | 664 | 1382 | 5 | 18.90 | 162.8 |
Mo | 1.34 | -3.37 | 4.8 | 132.0 | 42.7 | 132.9 | 139 | 685 | 1558 | 6 | 16.29 | 233.8 |
Tc | 0.93 | -4.57 | 16.9 | 145.3 | 63.0 | 147.9 | 136 | 702 | 1472 | 7 | 14.63 | 296.1 |
Ru | 0.12 | -6.19 | 22.7 | 147.4 | 72.6 | 151.3 | 134 | 711 | 1617 | 8 | 13.88 | 309.4 |
Rh | -0.90 | -5.40 | 24.7 | 130.3 | 70.9 | 136.1 | 134 | 720 | 1744 | 9 | 14.26 | 251.1 |
Pd | -1.34 | -3.50 | 23.1 | 111.9 | 64.0 | 120.0 | 137 | 805 | 1875 | 10 | 15.60 | 163.6 |
Ag | -0.43 | -1.36 | 17.8 | 93.9 | 48.6 | 97.1 | 144 | 731 | 2073 | 1 | 18.01 | 91.1 |
Cd | -0.31 | 0.50 | 14.0 | 109.9 | 32.5 | 83.9 | 149 | 868 | 1631 | 2 | 23.00 | 35.8 |
In | -0.15 | -1.11 | 7.4 | 75.0 | 16.9 | 74.8 | 167 | 558 | 1821 | 3 | 27.80 | 34.4 |
Sn | -0.51 | -2.11 | 4.0 | 71.8 | 11.9 | 71.9 | 151 | 709 | 1412 | 4 | 27.79 | 47.6 |
La | 0.28 | -1.60 | 15.9 | 30.2 | 2.5 | 39.4 | 183 | 538 | 1067 | 3 | 37.26 | 26.1 |
Sm | -0.01 | -2.93 | 16.1 | 62.2 | 18.9 | 61.5 | 180 | 543 | 1086 | 8 | 33.91 | 35.7 |
Hf | 0.50 | -4.43 | 0.0 | 98.1 | 16.0 | 96.0 | 159 | 680 | 1440 | 4 | 22.41 | 109.1 |
Ta | 1.38 | -5.41 | -8.2 | 116.3 | 14.3 | 112.0 | 146 | 761 | 5 | 18.77 | 188.0 | |
W | 2.04 | -4.72 | 1.4 | 136.5 | 36.5 | 136.8 | 139 | 770 | 6 | 16.62 | 274.3 | |
Re | 1.65 | -4.63 | 15.5 | 154.9 | 57.9 | 156.7 | 137 | 760 | 7 | 14.99 | 366.8 | |
Ir | -0.70 | -6.71 | 26.9 | 134.4 | 71.4 | 141.2 | 136 | 880 | 880 | 9 | 14.68 | 339.0 |
Pt | -1.71 | -5.62 | 24.6 | 103.6 | 65.8 | 110.6 | 139 | 870 | 1791 | 10 | 15.94 | 235.2 |
Au | -1.21 | -2.64 | 17.5 | 84.6 | 46.0 | 89.6 | 144 | 890 | 1980 | 1 | 18.22 | 135.0 |
Hg | -0.55 | 0.82 | 9.6 | 73.2 | 23.7 | 76.6 | 151 | 1007 | 1810 | 2 | 30.75 | 9.5 |
Tl | 0.05 | -0.57 | 2.7 | 68.7 | 14.8 | 67.7 | 170 | 589 | 1971 | 3 | 31.25 | 27.2 |
Pb | -0.08 | -1.61 | 1.8 | 67.5 | 11.6 | 67.0 | 175 | 716 | 1450 | 4 | 31.81 | 40.2 |
Bi | -0.34 | -1.35 | -4.3 | 53.7 | -2.6 | 57.0 | 155 | 703 | 1610 | 5 | 31.73 | 52.0 |
Table 1 Basal-plane GSFEs in Mg-X binary alloying systems, together with properties of alloying element X and Mg47X slabs. Properties of Mg47X structures are the formation energy (Ef) and binding energy (Eb) for Mg-X alloying systems. Intrinsic and unstable GSFEs of I1 and I2 faults are noted as γI1, γus1, γI2 and γus2. Properties of alloying elements are the atomic radius (R), 1st and 2nd ionization energy (Ei1andEi2) [17], number of valence electrons (Nve), equilibrium volume (Vhcp) and equilibrium bulk modulus (κhcp) [18] for HCP structures of alloying elements.
Alloying element | Ef | Eb | γI1 | γus1 | γI2 | γus2 | R[ | Ei1[ | Ei2[ | Nve | Vhcp[ | κhcp[ |
---|---|---|---|---|---|---|---|---|---|---|---|---|
(eV) | (eV) | (mJ/m2) | (mJ/m2) | (mJ/m2) | (mJ/m2) | (pm) | (mJ/mol) | (mJ/mol) | (?3/atom) | (GPa) | ||
Mg | 0.00 | 0.00 | 16.1 | 86.9 | 37.6 | 89.6 | 160 | 738 | 1451 | 2 | 22.89 | 35.7 |
Li | -0.20 | -0.26 | 18.1 | 95.6 | 47.6 | 97.5 | 152 | 520 | 7298 | 1 | 20.33 | 13.5 |
Be | 1.24 | -0.90 | 25.8 | 80.7 | 45.4 | 85.4 | 111 | 899 | 1757 | 2 | 7.92 | 121.1 |
Na | 0.32 | 0.79 | 16.8 | 79.3 | 38.3 | 80.4 | 186 | 496 | 4562 | 1 | 37.18 | 7.6 |
Al | 0.02 | -1.93 | 13.1 | 86.0 | 21.3 | 86.3 | 143 | 578 | 1817 | 3 | 16.75 | 70.8 |
K | 1.58 | 2.27 | 10.7 | 22.9 | 6.9 | 28.1 | 179 | 419 | 3051 | 1 | 74.02 | 3.5 |
Ca | 0.10 | -0.25 | 17.0 | 58.3 | 28.7 | 61.6 | 195 | 590 | 1145 | 2 | 41.93 | 17.7 |
Sc | -0.18 | -2.96 | 17.0 | 91.7 | 34.6 | 94.5 | 210 | 631 | 1235 | 3 | 24.47 | 54.9 |
Ti | 0.68 | -3.21 | 2.3 | 108.7 | 22.4 | 106.9 | 147 | 658 | 1310 | 4 | 17.29 | 112.8 |
V | 1.05 | -3.11 | 18.0 | 117.2 | 50.2 | 120.5 | 134 | 650 | 1414 | 5 | 13.84 | 173.2 |
Cr | 1.11 | -5.42 | 19.7 | 115.6 | 48.4 | 118.8 | 128 | 653 | 1592 | 6 | 11.94 | 233.5 |
Mn | 0.84 | -1.61 | 12.1 | 110.2 | 37.5 | 111.5 | 127 | 717 | 1509 | 7 | 10.75 | 279.7 |
Fe | 1.17 | -2.46 | -1.3 | 68.6 | 27.0 | 101.9 | 126 | 759 | 1561 | 8 | 10.18 | 288.3 |
Co | 0.83 | -2.98 | 23.4 | 113.8 | 63.5 | 119.0 | 125 | 758 | 1646 | 9 | 10.85 | 212.5 |
Ni | 0.36 | -3.41 | 24.7 | 100.4 | 63.2 | 106.8 | 124 | 737 | 1753 | 10 | 10.95 | 193.8 |
Cu | 0.56 | -1.75 | 21.1 | 86.6 | 50.5 | 90.9 | 128 | 745 | 1958 | 1 | 12.04 | 136.1 |
Zn | -0.07 | 0.38 | 17.6 | 79.5 | 32.7 | 82.1 | 134 | 906 | 1733 | 2 | 15.40 | 51.8 |
Ga | -0.20 | -1.45 | 9.5 | 79.8 | 22.4 | 79.0 | 135 | 579 | 1979 | 3 | 19.18 | 45.9 |
Sr | 0.72 | 0.66 | 16.7 | 32.9 | 15.6 | 30.1 | 215 | 549 | 1064 | 2 | 54.72 | 11.4 |
Y | -0.13 | -2.75 | 15.6 | 69.9 | 26.4 | 74.7 | 180 | 616 | 1181 | 3 | 32.67 | 40.8 |
Zr | 0.16 | -4.73 | -0.4 | 94.8 | 17.5 | 92.2 | 160 | 660 | 1267 | 4 | 23.44 | 95.3 |
Nb | 0.86 | -4.57 | -6.0 | 113.0 | 19.9 | 110.5 | 146 | 664 | 1382 | 5 | 18.90 | 162.8 |
Mo | 1.34 | -3.37 | 4.8 | 132.0 | 42.7 | 132.9 | 139 | 685 | 1558 | 6 | 16.29 | 233.8 |
Tc | 0.93 | -4.57 | 16.9 | 145.3 | 63.0 | 147.9 | 136 | 702 | 1472 | 7 | 14.63 | 296.1 |
Ru | 0.12 | -6.19 | 22.7 | 147.4 | 72.6 | 151.3 | 134 | 711 | 1617 | 8 | 13.88 | 309.4 |
Rh | -0.90 | -5.40 | 24.7 | 130.3 | 70.9 | 136.1 | 134 | 720 | 1744 | 9 | 14.26 | 251.1 |
Pd | -1.34 | -3.50 | 23.1 | 111.9 | 64.0 | 120.0 | 137 | 805 | 1875 | 10 | 15.60 | 163.6 |
Ag | -0.43 | -1.36 | 17.8 | 93.9 | 48.6 | 97.1 | 144 | 731 | 2073 | 1 | 18.01 | 91.1 |
Cd | -0.31 | 0.50 | 14.0 | 109.9 | 32.5 | 83.9 | 149 | 868 | 1631 | 2 | 23.00 | 35.8 |
In | -0.15 | -1.11 | 7.4 | 75.0 | 16.9 | 74.8 | 167 | 558 | 1821 | 3 | 27.80 | 34.4 |
Sn | -0.51 | -2.11 | 4.0 | 71.8 | 11.9 | 71.9 | 151 | 709 | 1412 | 4 | 27.79 | 47.6 |
La | 0.28 | -1.60 | 15.9 | 30.2 | 2.5 | 39.4 | 183 | 538 | 1067 | 3 | 37.26 | 26.1 |
Sm | -0.01 | -2.93 | 16.1 | 62.2 | 18.9 | 61.5 | 180 | 543 | 1086 | 8 | 33.91 | 35.7 |
Hf | 0.50 | -4.43 | 0.0 | 98.1 | 16.0 | 96.0 | 159 | 680 | 1440 | 4 | 22.41 | 109.1 |
Ta | 1.38 | -5.41 | -8.2 | 116.3 | 14.3 | 112.0 | 146 | 761 | 5 | 18.77 | 188.0 | |
W | 2.04 | -4.72 | 1.4 | 136.5 | 36.5 | 136.8 | 139 | 770 | 6 | 16.62 | 274.3 | |
Re | 1.65 | -4.63 | 15.5 | 154.9 | 57.9 | 156.7 | 137 | 760 | 7 | 14.99 | 366.8 | |
Ir | -0.70 | -6.71 | 26.9 | 134.4 | 71.4 | 141.2 | 136 | 880 | 880 | 9 | 14.68 | 339.0 |
Pt | -1.71 | -5.62 | 24.6 | 103.6 | 65.8 | 110.6 | 139 | 870 | 1791 | 10 | 15.94 | 235.2 |
Au | -1.21 | -2.64 | 17.5 | 84.6 | 46.0 | 89.6 | 144 | 890 | 1980 | 1 | 18.22 | 135.0 |
Hg | -0.55 | 0.82 | 9.6 | 73.2 | 23.7 | 76.6 | 151 | 1007 | 1810 | 2 | 30.75 | 9.5 |
Tl | 0.05 | -0.57 | 2.7 | 68.7 | 14.8 | 67.7 | 170 | 589 | 1971 | 3 | 31.25 | 27.2 |
Pb | -0.08 | -1.61 | 1.8 | 67.5 | 11.6 | 67.0 | 175 | 716 | 1450 | 4 | 31.81 | 40.2 |
Bi | -0.34 | -1.35 | -4.3 | 53.7 | -2.6 | 57.0 | 155 | 703 | 1610 | 5 | 31.73 | 52.0 |
Fig. 2. GSFE curve along the faulting pathway (a) from I1 to I1′ faulted slabs and (b) from perfect to I2 faulted slabs. The maximum γ value along I1 to I1′ and perfect to I2 pathways are denoted as γus1 and γus2.
data source | γI1(γI1') | γus1 | γI2 | γus2 | |
---|---|---|---|---|---|
Mg | This work | 16.1 | 86.9 | 37.6 | 89.6 |
Previous DFT work | 18 [ 17.1 [ 16 [ | 90 [ | 33 [ 33.8 [ 35 [ 33.84 [ | 92 [ 84.8 [ |
Table 2 Calculated basal-plane GSFEs in pure Mg with CINEB-DFT methods (in units of mJ/m2).
data source | γI1(γI1') | γus1 | γI2 | γus2 | |
---|---|---|---|---|---|
Mg | This work | 16.1 | 86.9 | 37.6 | 89.6 |
Previous DFT work | 18 [ 17.1 [ 16 [ | 90 [ | 33 [ 33.8 [ 35 [ 33.84 [ | 92 [ 84.8 [ |
Fig. 3. Variation of calculated GSFEs including (a) intrinsic SFE of I2, (b) intrinsic SFE of I1, (c) unstable SFE of I2 and (d) unstable SFE of I1, with respect to atomic radius of alloying elements. The doping concentration is 25 at.% in doping plane and 2.08 at.% in Mg-X system.
γus2 | κhcp | Vhcp | Eb | R | Ei1 | Ef | |
---|---|---|---|---|---|---|---|
γus2 | 1 | 0.87 | -0.77 | -0.76 | -0.65 | 0.41 | 0.16 |
κhcp | 0.87 | 1 | -0.65 | -0.77 | -0.65 | 0.39 | 0.28 |
Vhcp | -0.77 | -0.65 | 1 | 0.58 | 0.80 | -0.57 | 0.01 |
Eb | -0.76 | -0.77 | 0.58 | 1 | 0.40 | -0.24 | -0.03 |
R | -0.65 | -0.65 | 0.80 | 0.40 | 1 | -0.58 | -0.12 |
Ei1 | 0.41 | 0.39 | -0.57 | -0.24 | -0.58 | 1 | -0.24 |
Ef | 0.16 | 0.28 | 0.01 | -0.03 | -0.12 | -0.24 | 1 |
Table 3 Correlation matrix between γus2 and properties of alloying element X and Mg-X systems.
γus2 | κhcp | Vhcp | Eb | R | Ei1 | Ef | |
---|---|---|---|---|---|---|---|
γus2 | 1 | 0.87 | -0.77 | -0.76 | -0.65 | 0.41 | 0.16 |
κhcp | 0.87 | 1 | -0.65 | -0.77 | -0.65 | 0.39 | 0.28 |
Vhcp | -0.77 | -0.65 | 1 | 0.58 | 0.80 | -0.57 | 0.01 |
Eb | -0.76 | -0.77 | 0.58 | 1 | 0.40 | -0.24 | -0.03 |
R | -0.65 | -0.65 | 0.80 | 0.40 | 1 | -0.58 | -0.12 |
Ei1 | 0.41 | 0.39 | -0.57 | -0.24 | -0.58 | 1 | -0.24 |
Ef | 0.16 | 0.28 | 0.01 | -0.03 | -0.12 | -0.24 | 1 |
Fig. 5. Variation of calculated unstable SFE of I2 with respect to (a) bulk modulus of alloying elements, (b) binding energy of Mg47X structures and (c) HCP volumes of alloying elements. γus2 values are marked with vertical axis, and κhcp, Vhcp and Eb values are marked with horizontal axis.
Fig. 6. Charge density iso-surface figures of perfect slabs for (b) pure Mg and Mg alloyed with Ni (a) and K (c). The yellow color indicates a high electron density and the blue color indicates a low electron density. The doping concentration is 25 at.% in doping plane and 2.08 at.% in Mg-X system.
Fig. 7. Regression prediction for γus2 in Mg-X systems. The red dotted line is the trend line for prediction values, y = 0.99x, and a perfect prediction should be y = x. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
|
[1] | Qianqian Jin, Xiaohong Shao, Shijian Zheng, Yangtao Zhou, Bo Zhang, Xiuliang Ma. Interfacial dislocations dominated lateral growth of long-period stacking ordered phase in Mg alloys [J]. J. Mater. Sci. Technol., 2021, 61(0): 114-118. |
[2] | Jinlong Wang, Jing Bai, Jianglong Gu, Haile Yan, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Investigation of martensitic transformation behavior in Ni-Mn-In Heusler alloy from a first-principles study [J]. J. Mater. Sci. Technol., 2020, 58(0): 100-106. |
[3] | Xinzeng Liang, Jing Bai, Jianglong Gu, Haile Yan, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Probing martensitic transformation, kinetics, elastic and magnetic properties of Ni2-xMn1.5In0.5Cox alloys [J]. J. Mater. Sci. Technol., 2020, 44(0): 31-41. |
[4] | Qiuyan Huang, Yang Liu, Aiyue Zhang, Haoxin Jiang, Hucheng Pan, Xiaohui Feng, Changlin Yang, Tianjiao Luo, Yingju Li, Yuansheng Yang. Age hardening responses of as-extruded Mg-2.5Sn-1.5Ca alloys with a wide range of Al concentration [J]. J. Mater. Sci. Technol., 2020, 38(0): 39-46. |
[5] | Maryam Jamalian, David P.Field. Gradient microstructure and enhanced mechanical performance of magnesium alloy by severe impact loading [J]. J. Mater. Sci. Technol., 2020, 36(0): 45-49. |
[6] | Zhe Xue, Xinyu Zhang, Jiaqian Qin, Mingzhen Ma, Riping Liu. Controlling the strength of Zr (10 $\bar{1}$ 2) grain boundary by nonmetallic impurities doping: A DFT study [J]. J. Mater. Sci. Technol., 2020, 36(0): 140-148. |
[7] | Xiru Hua, Qiang Yang, Dongdong Zhang, Fanzhi Meng, Chong Chen, Zihao You, Jinghuai Zhang, Shuhui Lv, Jian Meng. Microstructures and mechanical properties of a newly developed high-pressure die casting Mg-Zn-RE alloy [J]. J. Mater. Sci. Technol., 2020, 53(0): 174-184. |
[8] | R.Z. Xu, Q. Yang, D.R. Ni, B.L. Xiao, C.Z. Liu, Z.Y. Ma. Influencing mechanism of pre-existing nanoscale Al5Fe2 phase on Mg-Fe interface in friction stir spot welded Al-free ZK60-Q235 joint [J]. J. Mater. Sci. Technol., 2020, 42(0): 220-228. |
[9] | Qun Luo, Yanlin Guo, Bin Liu, Yujun Feng, Jieyu Zhang, Qian Li, Kuochih Chou. Thermodynamics and kinetics of phase transformation in rare earth-magnesium alloys: A critical review [J]. J. Mater. Sci. Technol., 2020, 44(0): 171-190. |
[10] | Sang-Hoon Kim, Sang Won Lee, Byoung Gi Moon, Ha Sik Kim, Sung Hyuk Park. Variation in dynamic deformation behavior and resultant yield asymmetry of AZ80 alloy with extrusion temperature [J]. J. Mater. Sci. Technol., 2020, 46(0): 225-236. |
[11] | Xiao-Yuan Wang, Yu-Fei Wang, Cheng Wang, Shun Xu, Jian Rong, Zhi-Zheng Yang, Jin-Guo Wang, Hui-Yuan Wang. A simultaneous improvement of both strength and ductility by Sn addition in as-extruded Mg-6Al-4Zn alloy [J]. J. Mater. Sci. Technol., 2020, 49(0): 117-125. |
[12] | Pengfei Zhang, Yunchang Xin, Ling Zhang, Shiwei Pan, Qing Liu. On the texture memory effect of a cross-rolled Mg-2Zn-2Gd plate after unidirectional rolling [J]. J. Mater. Sci. Technol., 2020, 41(0): 98-104. |
[13] | Xiao-Li Fan, Chang-Yang Li, Yu-Bo Wang, Yuan-Fang Huo, Shuo-Qi Li, Rong-Chang Zeng. Corrosion resistance of an amino acid-bioinspired calcium phosphate coating on magnesium alloy AZ31 [J]. J. Mater. Sci. Technol., 2020, 49(0): 224-235. |
[14] | Shijun Zhao. Defect properties in a VTaCrW equiatomic high entropy alloy (HEA) with the body centered cubic (bcc) structure [J]. J. Mater. Sci. Technol., 2020, 44(0): 133-139. |
[15] | Hongguang Liu, Fuyong Cao, Guang-Ling Song, Dajiang Zheng, Zhiming Shi, Mathew S. Dargusch, Andrej Atrens. Review of the atmospheric corrosion of magnesium alloys [J]. J. Mater. Sci. Technol., 2019, 35(9): 2003-2016. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||