J Mater Sci Technol ›› 2011, Vol. 27 ›› Issue (3): 218-222.
• Mechanical and Functional Properties of Materials • Previous Articles Next Articles
Hamid Zaigham, F. Ahmad Khalid
Received:
2010-05-14
Revised:
2010-11-08
Online:
2011-03-28
Published:
2011-03-21
Contact:
Hamid Zaigham
[1 ] E.F. Kneller and R. Hawig: IEEE Trans. Magn., 1991, 27(4), 3588.[2 ] M. Ghidini, G. Asti, R. Pellicelli, C. Pernechele and M. Solzi: J. Magn. Magn. Mater., 2007, 316, 159.[3 ] R.D. Shull, J. Iron Steel Res. Int., 2007, 14(4), 69.[4 ] R. Skomski and J.M.D. Coey: Permanent Magnetism, Institute of Physics Publishing, Bristol and Philadelphia, 1999, 298.[5 ] R. Skomski: J. Phys.: Condens. Matter., 2003, 15, R841.[6 ] J.T. Elizalde Galindo, H.A. Davies and J.A. MatutesAquino: Mater. Charact., 2007, 58, 805.[7 ] Z. Chen, Y. Zhang, G.C. Hadjipanayis, Q. Chen and B.M. Ma: J. Alloy. Compd., 1999, 287, 227.[8 ] J.P. Liu, Y. Liu and D.J. Sellmyer: J. Appl. Phys., 1998, 83(11), 6608.[9 ] J.S. Jiang, J.E. Pearson, Z.Y. Liu, B. Kabius, S. Trasobares, D.J. Miller, S.D. Bader, D.R. Lee, D. Haskel, G. Srajer and J.P. Liu: Appl. Phys. Lett., 2004, 85(22), 5293.[10] G.C. Hadjipanayis: J. Magn. Magn. Mater., 1999, 200, 373.[11] A. Bollero, O. Gut°eisch, K.H. Muler and L. Schultz: J. Appl. Phys., 2002, 91(10), 8159.[12] R. Chau, M.B. Maple and W.J. Nellis: J. Appl. Phys., 1996, 93(12), 9236.[13] Q. Zeng, Y. Zhang, M.J. Bonder, G.C. Hadjipanayis and R. Radhakrishan: IEEE Trans. Magn., 2003, 39(5), 2974.[14] N.V. Rama, R. Goplan, M. Manivel Raja, V. Chandrasekaran, D. Chakravarty, R. Sundaresan, R. Ranganathan and K. Hono: J. Magn. Magn. Mater., 2007, 312, 252.[15] I. Betancourt, H.A. Davies: J. Magn. Magn. Mater., 2003, 261(3), 328.[16] K. Kajiwara, K. Hono and S. Hirosawa: Mater. Trans., 2001, 42, 1858.[17] Z.Q. Jin, H. Okumura, H.L.Wang, J.S. Mu~noz, V. Papaefthymiou and G.C. Hadjipanayis: J. Magn. Magn. Mater., 2002, 242-245, 1307.[18] L.Y. Li, J.H. Yi, Y.D. Peng and B.Y. Huang: J. Magn. Magn. Mater., 2007, 308, 80.[19] H. Zaigham and F. Ahmad Khalid: J. Mater. Charact., 2010, 61(11), 1274.[20] A.A. Kundig, R. Goplan, T. Ohkubo and K. Hono: Scripta Mater., 2006, 54, 2047.[21] K.H.J. Buschow: Handbook of Magnetic Materials, Vol. 10, North-Holland, Elsevier, New York, 1997, 503.[22] S. Weshko, J. Gerboc and J. Oreotsky: IEEE Trans. Magn., 1976, 12(6), 974.[23] H. Zaigham and F. Ahmad Khalid: J. Mater. Eng. Perform., 2010, doi: 10.1007/s11665-010-9752-8/jmepeg.[24] Z. Chen, Y. Zhang and G.C. Hadjipanayis: J. Magn. Magn. Mater., 2000, 219, 178.[25] H.P. Klug and L.E. Alexander: Method of Integral Breadths, X-ray Di®raction Procedures for Polycrystalline and Amorphous Materials, 2nd edn, Willey, New York, 1974, 661.[26] G.F. Vander Voort: Magnetic and Electric Materials, Vol. 9, ASM Handbook, 2000, 548.[27] Y.Q. Guo, W. Li, J. Luo, W.C. Feng and J.K. Liang: J. Magn. Magn. Mater., 2006, 303, 367.[28] J.J. Li, J.C. Wang and G.C. Yang: Scripta Mater., 2009, 60, 945.[29] P.C. Millett, R.P. Selvam and A. Saxena: Acta Mater., 2007, 55, 2329.[30] F. Liu and R. Kirchheim: Scripta Mater., 2004, 51, 521.[31] R. Kirchheim: Acta Mater., 2002, 50, 413.[32] H. Natter, M.S. Lo²er, C.E. Krill and R. Hempelmann: Scripta Mater., 2001, 44, 2321.[33] K.A. Darling, R.N. Chan, P.Z. Wong, J.E. Semones, R.O. Scattergood and C.C. Koch: Scripta Mater., 2008, 59, 530.[34] H.A. Davies: J. Magn. Magn. Mater., 1996, 157/158, 11.[35] W. Rave and K. Ramstock: J. Magn. Magn. Mater., 1997, 171, 69.[36] N. Tang, Z. Chen, Y. Zhang, G.C. Hadjipanayis and F. Yang: J. Magn. Magn. Mater., 2000, 219, 173.[37] R.W. McCallum: J. Magn. Magn. Mater., 2005, 292, 135.[38] K. Kang, L.H. Lewis, J.S. Jiang and S.D. Bader: J. Appl. Phys., 2005, 98, 113906.[39] Y. Kato and M. Tsutsumi: IEEE Trans. Magn., 1992, 28(5), 2686.[40] Y.H. Gao, J.H. Zhu, Y.Q. Weng, E.B. Park and C.J. Yang: J. Magn. Magn. Mater., 1999, 191,146.[41] H. Chiriac, M. Marinescu, P. Tiberto and F. Vinai: Mater. Sci. Eng. A, 2001, 304-306, 957.[42] J.S. Jiang, H.G. Kaper and G.K. Leaf: Disc. Contin. Dyn. Syst., Series B, 2001, 1(2), 219.[43] K. Kumar: J. Appl. Phys., 1988, 63(6), R13.[44] M.F. de Campos, F.J.G. landgrave, R. Machado, D. Rodrigues, S.A. Romero, A.C. Neiva and F.P. Missell: J. Alloy. Compd., 1998, 267, 257.[45] I. Pangiotopoulos, L. Withanawasam and G.C. Hadjipanayis: J. Magn. Magn. Mater., 1996, 152, 353. |
[1] | Weiwei Xiao, Na Ni, Xiaohui Fan, Xiaofeng Zhao, Yingzheng Liu, Ping Xiao. Ambient flash sintering of reduced graphene oxide/zirconia composites: Role of reduced graphene oxide [J]. J. Mater. Sci. Technol., 2021, 60(0): 70-76. |
[2] | Wanjun Yu, Yongting Zheng, Yongdong Yu. Precipitation mechanism and microstructural evolution of Al2O3/ZrO2(CeO2) solid solution powders consolidated by spark plasma sintering [J]. J. Mater. Sci. Technol., 2020, 41(0): 149-158. |
[3] | Dongjun Wang, Hao Li, Wei Zheng. Oxidation behaviors of TA15 titanium alloy and TiBw reinforced TA15 matrix composites prepared by spark plasma sintering [J]. J. Mater. Sci. Technol., 2020, 37(0): 46-54. |
[4] | Ji Zou, Guo-Jun Zhang, Zheng-Yi Fu. In-situ ZrB2- hBN ceramics with high strength and low elasticity [J]. J. Mater. Sci. Technol., 2020, 48(0): 186-193. |
[5] | Weiqiang Hu, Zhi Dong, Liming Yu, Zongqing Ma, Yongchang Liu. Synthesis of W-Y2O3 alloys by freeze-drying and subsequent low temperature sintering: Microstructure refinement and second phase particles regulation [J]. J. Mater. Sci. Technol., 2020, 36(0): 84-90. |
[6] | J.S. Cha, D.H. Kim, H.Y. Hong, K. Park. Enhanced thermoelectric performance of spark plasma sintered p-type Ca3-xYxCo4O9+δ systems [J]. J. Mater. Sci. Technol., 2020, 55(0): 212-222. |
[7] | Choong-Jae Lee, Kwang-Ho Jung, Kyung Deuk Min, Bum-Geun Park, Seung-Boo Jung. Fabrication and characterization of Ag flake hybrid circuits with IPL-sintering [J]. J. Mater. Sci. Technol., 2020, 53(0): 13-18. |
[8] | Qingzheng Jiang, Jie Song, Qingfang Huang, Sajjad Ur Rehman, Lunke He, Qingwen Zeng, Zhenchen Zhong. Enhanced magnetic properties and improved corrosion performance of nanocrystalline Pr-Nd-Y-Fe-B spark plasma sintered magnets [J]. J. Mater. Sci. Technol., 2020, 58(0): 138-144. |
[9] | Chuanbing Zhuang, Zhigang Xu, Shangyu Huang, Yu Xia, Chuanbin Wang, Qiang Shen. In situ synthesis of a porous high-Mn and high-Al steel by a novel two-step pore-forming technique in vacuum sintering [J]. J. Mater. Sci. Technol., 2020, 39(0): 82-88. |
[10] | Pablo D. Enrique, Ehsan Marzbanrad, Yahya Mahmoodkhani, Ali Keshavarzkermani, Hashem Al Momani, Ehsan Toyserkani, Norman Y. Zhou. Design of binder jet additive manufactured co-continuous ceramic-reinforced metal matrix composites [J]. J. Mater. Sci. Technol., 2020, 49(0): 81-90. |
[11] | Daquan Liu, Yanxia Wang, Xue Jiang, Huijun Kang, Xiong Yang, Xiaoying Zhang, Tongmin Wang. Ultrahigh electrical conductivities and low lattice thermal conductivities of La, Dy, and Nb Co-doped SrTiO3 thermoelectric materials with complex structures [J]. J. Mater. Sci. Technol., 2020, 52(0): 172-179. |
[12] | Jun Jiang, Pengwan Chen, Weifu Sun. Monitoring micro-structural evolution during aluminum sintering and understanding the sintering mechanism of aluminum nanoparticles: A molecular dynamics study [J]. J. Mater. Sci. Technol., 2020, 57(0): 92-100. |
[13] | Junfeng Gu, Ji Zou, Peiyan Ma, Hao Wang, Jinyong Zhang, Weimin Wang, Zhengyi Fu. Reactive sintering of B4C-TaB2 ceramics via carbide boronizing: Reaction process, microstructure and mechanical properties [J]. J. Mater. Sci. Technol., 2019, 35(12): 2840-2850. |
[14] | Liu Qing, Wang Guofeng, Sui Xiaochong, Liu Yongkang, Li Xiao, Yang Jianlei. Microstructure and mechanical properties of ultra-fine grained MoNbTaTiV refractory high-entropy alloy fabricated by spark plasma sintering [J]. J. Mater. Sci. Technol., 2019, 35(11): 2600-2607. |
[15] | Junho Lee, Dongju Lee, Myung Hoon Song, Wonhyuk Rhee, Ho Jin Ryu, Soon Hyung Hong. In-situ synthesis of TiC/Fe alloy composites with high strength and hardness by reactive sintering [J]. J. Mater. Sci. Technol., 2018, 34(8): 1397-1404. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||