J. Mater. Sci. Technol. ›› 2022, Vol. 131: 212-220.DOI: 10.1016/j.jmst.2022.06.004
• Research Article • Previous Articles Next Articles
Xuefeng Taoa, Zhao Yangb, Menghao Chenga, Rui Yana, Fan Chena, Sujiao Caoa,c, Shuang Lia, Tian Maa,c,*(
), Chong Chenga, Wei Yanga,*(
)
Received:2022-01-25
Revised:2022-04-22
Accepted:2022-06-04
Published:2022-06-18
Online:2022-06-18
Contact:
Tian Ma,Wei Yang
About author:weiyang@scu.edu.cn (W. Yang)Xuefeng Tao, Zhao Yang, Menghao Cheng, Rui Yan, Fan Chen, Sujiao Cao, Shuang Li, Tian Ma, Chong Cheng, Wei Yang. Phosphorus modulated porous CeO2 nanocrystallines for accelerated polysulfide catalysis in advanced Li-S batteries[J]. J. Mater. Sci. Technol., 2022, 131: 212-220.
Fig. 1. (a) Schematic illustration of the synthetic route to P-CeO2. (b) SEM image of Ce-MOFs. (c, d) TEM images of P-CeO2. (e, f) HR-TEM images of P-CeO2. (g) SAED pattern of P-CeO2. (h) HAADF-STEM image and EDX elemental mapping images of P-CeO2.
Fig. 2. (a) The XRD patterns of CeO2 and P-CeO2. (b) The N2 adsorption-desorption isotherm of CeO2 and P-CeO2. (c) The TGA curves of the sulfur loading of CeO2 and P-CeO2. (d) The atomic element contents of CeO2 and P-CeO2. (e) High-resolution XPS spectra of P 2p of P-CeO2. (f) High-resolution XPS spectra of Ce 3d of CeO2 and P-CeO2. (g) High-resolution XPS spectra of O 1 s of P-CeO2. (h) The Raman spectra of CeO2 and P-CeO2.
Fig. 3. (a) Galvanostatic charge?discharge curves of two cathodes at 0.1 C (ΔE, Q1, Q2). (b) ΔE and Q2/Q1 values calculated from the corresponding charge?discharge curves in (a). (c) The fitting EIS spectra of two cathodes before the cycle and the equivalent circuit diagram. (d) Galvanostatic charge?discharge profiles of P-CeO2 cathode at different current densities. (e) Polarization voltage of two cathodes between the discharge and charge plateaus at different current densities. (f) The energy efficiency and (g) rate capabilities of two cathodes at different current densities.
Fig. 4. (a) The discharge?charge profiles of P-CeO2. (b) Ex-situ EIS of P-CeO2 electrode at the different status of discharge and charge. Cycling performances and corresponding coulombic efficiency of two cathodes at a high current rate of 0.2 C (c), 0.5 C (d), and 1.0 C (e). (f) Comparison of the decay rate per cycle with other Li-S anode materials at 1.0-2.0 C in the literature.
Fig. 5. (a) The CV curves of the asymmetric cells at 0.1 mV s?1. (b) Tafel plots of the oxidation process of polysulfide for CeO2 and P-CeO2 cathodes. Tafel plots of the two reduction process of polysulfide for CeO2 and P-CeO2 cathodes (c, d). (e) CV curves of P-CeO2 cathode at different scan rates. Plots of the oxidization (f) and reduction (g, h) peak currents versus square root of scan rates. (i) Schematic of the redox conversion kinetics of LiPS in the P-CeO2 cathode.
Fig. 6. (a) The UV-vis adsorption spectra of P-CeO2 and CeO2 with Li2S6 solution. (b) High-resolution XPS spectra of S 2p of Li2S6. (c) High-resolution XPS spectra of P 2p of P-CeO2 and P-CeO2 with Li2S6. (d) Schematic illustration of symmetric batteries. (e) The CV curves of symmetric batteries CeO2 and P-CeO2 with Li2S6 and blank group (without Li2S6). (f) EIS plots of symmetric batteries of CeO2 and P-CeO2 with Li2S6. Potentiostatic discharge curves of Li2S8 tetraglyme solution on CeO2 (g) and P-CeO2 (h). (i) Charge voltage profiles of CeO2 and P-CeO2 cathodes in the first cycle.
| [1] | J. Xu, T. Lawson, H. Fan, D. Su, G. Wang, Adv. Energy Mater. 8 (2018) 1702607. |
| [2] | S. Urbonaite, T. Poux, P. Novák, Adv. Energy Mater. 5 (2015) 1500118. |
| [3] |
C. Geng, W. Hua, D. Wang, G. Ling, C. Zhang, Q.H. Yang, SusMat 1 (2021) 51-65.
DOI URL |
| [4] | C.X. Bi, M. Zhao, L.P. Hou, Z.X. Chen, X.Q. Zhang, B.Q. Li, H. Yuan, J.Q. Huang, Adv. Sci. 9 (2022) 2103910. |
| [5] |
F. Shi, C. Chen, Z.L. Xu, Adv. Fiber Mater. 3 (2021) 275-301.
DOI URL |
| [6] | W. Chen, T. Lei, W. Lv, Y. Hu, Y. Yan, Y. Jiao, W. He, Z. Li, C. Yan, J. Xiong, Adv. Mater. 30 (2018) 1804084. |
| [7] | Y. Ansari, S. Zhang, B. Wen, F. Fan, Y.M. Chiang, Adv. Energy Mater. 9 (2018) 1802213. |
| [8] | R. Yan, T. Ma, M. Cheng, X. Tao, Z. Yang, F. Ran, S. Li, B. Yin, C. Cheng, W. Yang, Adv. Mater. 33 (2021) 2008784. |
| [9] |
Y. Wu, X. Liu, D. Han, X. Song, L. Shi, Y. Song, S. Niu, Y. Xie, J. Cai, S. Wu, J. Kang, J. Zhou, Z. Chen, X. Zheng, X. Xiao, G. Wang, Nat. Commun. 9 (2018) 1425.
DOI URL |
| [10] |
Z. Yang, Z. Zhao, H. Zhou, M. Cheng, R. Yan, X. Tao, S. Li, X. Liu, C. Cheng, F. Ran, ACS Appl. Mater. Interfaces 13 (2021) 51174-51185.
DOI URL |
| [11] |
Z. Wei, Y. Ren, J. Sokolowski, X. Zhu, G. Wu, InfoMat 2 (2020) 483-508.
DOI URL |
| [12] | M. Zhao, X. Chen, X.Y. Li, B.Q. Li, J.Q. Huang, Adv. Mater. 33 (2021) 2007298. |
| [13] |
M. Zhao, X.Y. Li, X. Chen, B.Q. Li, S. Kaskel, Q. Zhang, J.Q. Huang, eScience 1 (2021) 44-52.
DOI URL |
| [14] |
Z. Yuan, H.J. Peng, T.Z. Hou, J.Q. Huang, C.M. Chen, D.W. Wang, X.B. Cheng, F. Wei, Q. Zhang, Nano Lett. 16 (2016) 519-527.
DOI PMID |
| [15] |
X. Liu, Z. Xiao, C. Lai, S. Zou, M. Zhang, K. Liu, Y. Yin, T. Liang, Z. Wu, J. Mater. Sci. Technol. 48 (2020) 84-91.
DOI URL |
| [16] | M. Cheng, R. Yan, Z. Yang, X. Tao, T. Ma, S. Cao, F. Ran, S. Li, W. Yang, C. Cheng, Adv. Sci. 9 (2021) 2102217. |
| [17] |
N. Liu, H. Ma, L. Wang, Y. Zhao, Z. Bakenov, X. Wang, J. Mater. Sci. Technol. 84 (2021) 124-132.
DOI URL |
| [18] |
H. Lin, L. Yang, X. Jiang, G. Li, T. Zhang, Q. Yao, G.W. Zheng, J.Y. Lee, Energy Environ. Sci. 10 (2017) 1476-1486.
DOI URL |
| [19] | X. Liu, J.Q. Huang, Q. Zhang, L. Mai, Adv. Mater. 29 (2017) 1601759. |
| [20] |
J.K. Norskov, T. Bligaard, J. Rossmeisl, C.H. Christensen, Nat. Chem. 1 (2009) 37-46.
DOI URL |
| [21] |
Q. Pang, X. Liang, C.Y. Kwok, L.F. Nazar, Nat. Energy 1 (2016) 16132.
DOI URL |
| [22] |
B. Papandrea, X. Xu, Y. Xu, C.Y. Chen, Z. Lin, G. Wang, Y. Luo, M. Liu, Y. Huang, L. Mai, X. Duan, Nano Res. 9 (2016) 240-248.
DOI URL |
| [23] | X. Song, S. Wang, Y. Bao, G. Liu, W. Sun, L.X. Ding, H. Liu, H. Wang, J. Mater. Chem. A 5 (2017) 6 832-6 839. |
| [24] |
Z. Sun, J. Zhang, L. Yin, G. Hu, R. Fang, H.M. Cheng, F. Li, Nat. Commun. 8 (2017) 14627.
DOI URL |
| [25] | J. Wang, W.Q. Han, Adv. Funct. Mater. 32 (2021) 2107166. |
| [26] |
S. Li, B. Chen, Y. Wang, M.Y. Ye, P.A. van Aken, C. Cheng, A. Thomas, Nat. Mater. 20 (2021) 1240-1247.
DOI URL |
| [27]. |
Z. Wu, J. Yang, W. Shao, M. Cheng, X. Luo, M. Zhou, S. Li, T. Ma, C. Cheng, C. Zhao, Adv. Fiber Mater. (2022), doi: 10.1007/s42765-022-00138-7
DOI |
| [28] |
L. Yue, C. Ma, S. Yan, Z. Wu, W. Zhao, Q. Liu, Y. Luo, B. Zhong, F. Zhang, Y. Liu, A.A. Alshehri, K.A. Alzahrani, X. Guo, X. Sun, Nano Res. 15 (2021) 186-194.
DOI URL |
| [29] |
C. Yan, G. Chen, X. Zhou, J. Sun, C. Lv, Adv. Funct. Mater. 26 (2016) 1428-1436.
DOI URL |
| [30] |
H. Jin, X. Liu, S. Chen, A. Vasileff, L. Li, Y. Jiao, L. Song, Y. Zheng, S.Z. Qiao, ACS Energy Lett. 4 (2019) 805-810.
DOI URL |
| [31] |
D. Voiry, H. Yamaguchi, J. Li, R. Silva, D.C. Alves, T. Fujita, M. Chen, T. Asefa, V.B. Shenoy, G. Eda, M. Chhowalla, Nat. Mater. 12 (2013) 850-855.
DOI URL |
| [32] |
L. Peng, Z. Wei, C. Wan, J. Li, Z. Chen, D. Zhu, D. Baumann, H. Liu, C.S. Allen, X. Xu, A.I. Kirkland, I. Shakir, Z. Almutairi, S. Tolbert, B. Dunn, Y. Huang, P. Sautet, X. Duan, Nat. Catal. 3 (2020) 762-770.
DOI URL |
| [33] | W. Liu, H. Zhi, X. Yu, Energy Storage Mater. 16 (2019) 290-322. |
| [34] | Z. Sun, X.L. Wu, Z. Peng, J. Wang, S. Gan, Y. Zhang, D. Han, L. Niu, Small 15 (2019) 1902491. |
| [35] |
E. Casals, M.F. Gusta, J. Piella, G. Casals, W. Jimenez, V. Puntes, Front. Immunol. 8 (2017) 970.
DOI URL |
| [36] |
J. Chen, S. Patil, S. Seal, J.F. McGinnis, Nat. Nanotechnol. 1 (2006) 142-150.
DOI URL |
| [37] |
F.E. Esch, S.F. Fabris, L.Z. Zhou, T.M. Montini, C.A. Africh, P.F. Fornasiero, G.C. Comelli, R.R. Rosei, Science 309 (2005) 752-755.
DOI URL |
| [38] | Z. Kong, Y. Li, Y. Wang, Y. Zhang, K. Shen, X. Chu, H. Wang, J. Wang, L. Zhan, Chem. Eng. J. 392 (2020) 123697. |
| [39] | D. Xiao, C. Lu, C. Chen, S. Yuan, Energy Storage Mater. 10 (2018) 216-222. |
| [40] |
C. Du, X. Gao, C. Cheng, Z. Zhuang, X. Li, W. Chen, Electrochim. Acta 266 (2018) 348-356.
DOI URL |
| [41] |
W. Dong, Y. Huang, Microchim. Acta 187 (2019) 11.
DOI URL |
| [42] | W. Qi, W. Jiang, F. Xu, J. Jia, C. Yang, B. Cao, Chem. Eng. J. 382 (2020) 122852. |
| [43] |
T. Xu, J. Song, M.L. Gordin, H. Sohn, Z. Yu, S. Chen, D. Wang, ACS Appl. Mater. Interfaces 5 (2013) 11355-13562.
DOI URL |
| [44] |
S.R. Chen, Y.P. Zhai, G.L. Xu, Y.X. Jiang, D.Y. Zhao, J.T. Li, L. Huang, S.G. Sun, Electrochim. Acta 56 (2011) 9549-9555.
DOI URL |
| [45] | B. Liu, H. Li, B. Cao, J. Jiang, R. Gao, J. Zhang, Adv. Funct. Mater. 28 (2018) 1801527. |
| [46] |
M.A.R. Anjum, J.S. Lee, ACS Catal. 7 (2017) 3030-3038.
DOI URL |
| [47] |
Y. Peng, C. Wang, J. Li, Appl. Catal. B 144 (2014) 538-546.
DOI URL |
| [48] | A.H.P. Burroughs, A.F. Orchard, G. Thornton, Dalton Trans. 17 (1976) 1686-1698. |
| [49] |
Y. Huang, B. Long, M. Tang, Z. Rui, M.S. Balogun, Y. Tong, H. Ji, Appl. Catal. B 181 (2016) 779-787.
DOI URL |
| [50] |
C. Liu, H. Xian, Z. Jiang, L. Wang, J. Zhang, L. Zheng, Y. Tan, X. Li, Appl. Catal. B 176-177 (2015) 542-552.
DOI URL |
| [51] | L. Kong, B.Q. Li, H.J. Peng, R. Zhang, J. Xie, J.Q. Huang, Q. Zhang, Adv. Energy Mater. 8 (2018) 1800849. |
| [52] | L. Hu, C. Dai, H. Liu, Y. Li, B. Shen, Y. Chen, S.J. Bao, M. Xu, Adv. Energy Mater. 8 (2018) 1800709. |
| [53] | C. Zhang, J.J. Biendicho, T. Zhang, R. Du, J. Li, X. Yang, J. Arbiol, Y. Zhou, J.R. Morante, A. Cabot, Adv. Funct. Mater. 29 (2019) 1903842. |
| [54] | C.Y. Fan, Y.P. Zheng, X.H. Zhang, Y.H. Shi, S.Y. Liu, H.C. Wang, X.L. Wu, H.Z. Sun, J.P. Zhang, Adv. Energy Mater. 8 (2018) 1703638. |
| [55] |
S. Niu, W. Lv, C. Zhang, Y. Shi, J. Zhao, B. Li, Q.H. Yang, F. Kang, J. Power Sources 295 (2015) 182-189.
DOI URL |
| [56] |
Y. Zhang, P. Zhang, S. Zhang, Z. Wang, N. Li, S.R.P. Silva, G. Shao, InfoMat 3 (2021) 790-803.
DOI URL |
| [57] |
C. Barchasz, J.C. Leprêtre, F. Alloin, S. Patoux, J. Power Sources 199 (2012) 322-330.
DOI URL |
| [58] |
P. Zeng, C. Liu, X. Zhao, C. Yuan, Y. Chen, H. Lin, L. Zhang, ACS Nano 14 (2020) 11558-11569.
DOI PMID |
| [59] |
D. Yang, C. Zhang, J.J. Biendicho, X. Han, Z. Liang, R. Du, M. Li, J. Li, J. Arbiol, J. Llorca, Y. Zhou, J.R. Morante, A. Cabot, ACS Nano 14 (2020) 15492-15504.
DOI URL |
| [60] |
H. Yuan, X. Chen, G. Zhou, W. Zhang, J. Luo, H. Huang, Y. Gan, C. Liang, Y. Xia, J. Zhang, J. Wang, X. Tao, ACS Energy Lett. 2 (2017) 1711-1719.
DOI URL |
| [61] |
X. Tao, J. Wang, C. Liu, H. Wang, H. Yao, G. Zheng, Z.W. Seh, Q. Cai, W. Li, G. Zhou, C. Zu, Y. Cui, Nat. Commun. 7 (2016) 11203.
DOI URL |
| [62] | J. Shen, X. Xu, J. Liu, Z. Wang, S. Zuo, Z. Liu, D. Zhang, J. Liu, M. Zhu, Adv. Energy Mater. 11 (2021) 2100673. |
| [63] | R. Wang, J. Yang, X. Chen, Y. Zhao, W. Zhao, G. Qian, S. Li, Y. Xiao, H. Chen, Y. Ye, G. Zhou, Adv. Energy Mater. 10 (2020) 1903550. |
| [64] |
J. Zhang, J. Zhang, K. Liu, T. Yang, J. Tian, C. Wang, M. Chen, X. Wang, ACS Appl. Mater. Interfaces 11 (2019) 46767-46775.
DOI URL |
| [65] |
J. Shen, X. Xu, J. Liu, Z. Liu, F. Li, R. Hu, J. Liu, X. Hou, Y. Feng, Y. Yu, M. Zhu, ACS Nano 13 (2019) 8986-8996.
DOI URL |
| [66] |
Y. Zhong, L. Yin, P. He, W. Liu, Z. Wu, H. Wang, J. Am. Chem. Soc. 140 (2018) 1455-1459.
DOI URL |
| [67] | Y. Zhu, S. Wang, Z. Miao, Y. Liu, S.L. Chou, Small 14 (2018) e1801987. |
| [68] |
K. Xu, X. Liu, J. Liang, J. Cai, K. Zhang, Y. Lu, X. Wu, M. Zhu, Y. Liu, Y. Zhu, G. Wang, Y. Qian, ACS Energy Lett. 3 (2018) 420-427.
DOI URL |
| [69] |
M. Lao, G. Zhao, X. Li, Y. Chen, S.X. Dou, W. Sun, ACS Appl. Energy Mater. 1 (2017) 167-172.
DOI URL |
| [1] | Riguang Cheng, Yanxun Guan, Yumei Luo, Chenchen Zhang, Sheng Wei, Mengmeng Zhao, Qi Lin, Hao Li, Shiyou Zheng, Federico Rosei, Lixian Sun, Fen Xu, Hongge Pan. Guanine-assisted N-doped ordered mesoporous carbons as efficient capacity decaying suppression materials for lithium-sulfur batteries [J]. J. Mater. Sci. Technol., 2022, 101(0): 155-164. |
| [2] | Yongqiang Ren, Xiuyan Li, Yinan Wang, Qinghua Gong, Shaonan Gu, Tingting Gao, Xuefeng Sun, Guowei Zhou. Self-template formation of porous yolk-shell structure Mo-doped NiCo2O4 toward enhanced lithium storage performance as anode material [J]. J. Mater. Sci. Technol., 2022, 102(0): 186-194. |
| [3] | Yan Xing, Wenqing Dan, Yicun Fan, Xing'ao Li. Low temperature synthesis of high-entropy (Y0.2Yb0.2Sm0.2Eu0.2Er0.2)2O3 nanofibers by a novel electrospinning method [J]. J. Mater. Sci. Technol., 2022, 103(0): 215-220. |
| [4] | Yuanchang Li, Wenda Li, Xiujuan Yan, Zhenfang Zhou, Xiaosong Guo, Jing Liu, Changming Mao, Zhonghua Zhang, Guicun Li. Terminal sulfur atoms formation via defect engineering strategy to promote the conversion of lithium polysulfides [J]. J. Mater. Sci. Technol., 2022, 103(0): 221-231. |
| [5] | Jin Luo, Keke Guan, Wen Lei, Shaowei Zhang, Quanli Jia, Haijun Zhang. One dimensional carbon-based composites as cathodes for lithium-sulfur battery [J]. J. Mater. Sci. Technol., 2022, 122(0): 101-120. |
| [6] | Usman Qumar, Jahan Zeb Hassan, Rukhsar Ahmad Bhatti, Ali Raza, Ghazanfar Nazir, Walid Nabgan, Muhammad Ikram. Photocatalysis vs adsorption by metal oxide nanoparticles [J]. J. Mater. Sci. Technol., 2022, 131(0): 122-166. |
| [7] | Heng Ma, Xin Liu, Ning Liu, Yan Zhao, Yongguang Zhang, Zhumabay Bakenov, Xin Wang. Defect-rich porous tubular graphitic carbon nitride with strong adsorption towards lithium polysulfides for high-performance lithium-sulfur batteries [J]. J. Mater. Sci. Technol., 2022, 115(0): 140-147. |
| [8] | Biao Wang, Dongyue Sun, Yilun Ren, Xiaoya Zhou, Yujie Ma, Shaochun Tang, Xiangkang Meng. MOFs derived ZnSe/N-doped carbon nanosheets as multifunctional interlayers for ultralong-Life lithium-sulfur batteries [J]. J. Mater. Sci. Technol., 2022, 125(0): 97-104. |
| [9] | Linggen Kong, Inna Karatchevtseva, Tao Wei, Nicholas Scales. Synthesis of hierarchical mesoporous Ln2Ti2O7 (Ln = Y, Tb-Yb) pyrochlores and uranyl sorption properties [J]. J. Mater. Sci. Technol., 2022, 113(0): 22-32. |
| [10] | Ting He, Jiajia Ru, Yutong Feng, Dapeng Bi, Jiansheng Zhang, Feng Gu, Chi Zhang, Jinhu Yang. Templated spherical coassembly strategy to fabricate MoS2/C hollow spheres with physical/chemical polysulfides trapping for lithium-sulfur batteries [J]. J. Mater. Sci. Technol., 2022, 98(0): 136-142. |
| [11] | Sepideh Pourhashem, Abdolvahab Seif, Farhad Saba, Elham Garmroudi Nezhad, Xiaohong Ji, Ziyang Zhou, Xiaofan Zhai, Majid Mirzaee, Jizhou Duan, Alimorad Rashidi, Baorong Hou. Antifouling nanocomposite polymer coatings for marine applications: A review on experiments, mechanisms, and theoretical studies [J]. J. Mater. Sci. Technol., 2022, 118(0): 73-113. |
| [12] | Wenjuan Wang, Yan Zhao, Yongguang Zhang, Ning Liu, Zhumabay Bakenov. Nickel embedded porous macrocellular carbon derived from popcorn as sulfur host for high-performance lithium-sulfur batteries [J]. J. Mater. Sci. Technol., 2021, 74(0): 69-77. |
| [13] | Yin Liu, Cuili Xiang, Hailiang Chu, Shujun Qiu, Jennifer McLeod, Zhe She, Fen Xu, Lixian Sun, Yongjin Zou. Binary Co-Ni oxide nanoparticle-loaded hierarchical graphitic porous carbon for high-performance supercapacitors [J]. J. Mater. Sci. Technol., 2020, 37(0): 135-142. |
| [14] | Zhenya Luo, Xiao Wang, Weixin Lei, Pengtao Xia, Yong Pan. Confining sulfur in sandwich structure of bamboo charcoal and aluminum fluoride (BC@S@AlF3) as a long cycle performance cathode for Li-S batteries [J]. J. Mater. Sci. Technol., 2020, 55(0): 159-166. |
| [15] | Na Li, Fei Chen, Xiangtao Chen, Zhongxu Chen, Yang Qi, Xiaodong Li, Xudong Sun. A bipolar modified separator using TiO2 nanosheets anchored on N-doped carbon scaffold for high-performance Li-S batteries [J]. J. Mater. Sci. Technol., 2020, 55(0): 152-158. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
