J. Mater. Sci. Technol. ›› 2022, Vol. 131: 221-230.DOI: 10.1016/j.jmst.2022.05.035
• Research Article • Previous Articles Next Articles
Yaojia Rena, Hong Wua,*(
), Bin Liua, Yong Liua, Sheng Guob, Z.B. Jiaoc, Ian Bakerd
Received:2022-03-16
Revised:2022-05-22
Accepted:2022-05-23
Published:2022-06-17
Online:2022-06-17
Contact:
Hong Wu
About author:*E-mail address: hwucsu@csu.edu.cn (H. Wu)Yaojia Ren, Hong Wu, Bin Liu, Yong Liu, Sheng Guo, Z.B. Jiao, Ian Baker. A comparative study on microstructure, nanomechanical and corrosion behaviors of AlCoCuFeNi high entropy alloys fabricated by selective laser melting and laser metal deposition[J]. J. Mater. Sci. Technol., 2022, 131: 221-230.
Fig. 1. (a) XRD patterns and (b, c) EBSD phase maps of HEA specimens processed by SLM and LMD, where red and blue represent the BCC and FCC phases, respectively, and white in Fig. 1(b) points to cracks.
Fig. 2. OM (a, b) and SE (c-f) images from the cross-sections of (a, c, e) SLM- and (b, d, f) LMD-processed AlCoCuFeNi specimens; (e, f) the enlarged views of encircled regions in (c, d).
| Samples | Partitioning ratio (η) | ||||
|---|---|---|---|---|---|
| Al | Co | Cu | Fe | Ni | |
| SLM-processed specimen | 0.66 | 0.72 | 1.83 | 0.58 | 0.74 |
| LMD-processed specimen | 1.06 | 1.33 | 4.80 | 1.02 | 1.21 |
Table 1. Partitioning ratios (η) of Al, Co, Cu, Fe, and Ni in the SLM- and LMD-processed specimens.
| Samples | Partitioning ratio (η) | ||||
|---|---|---|---|---|---|
| Al | Co | Cu | Fe | Ni | |
| SLM-processed specimen | 0.66 | 0.72 | 1.83 | 0.58 | 0.74 |
| LMD-processed specimen | 1.06 | 1.33 | 4.80 | 1.02 | 1.21 |
Fig. 6. TEM analysis of the AlCoCuFeNi specimen processed by SLM: (a) BF image, with the inset SAED pattern from the area encircled by the orange square, corresponding to the BCC matrix; (b) HAADF image for the area encircled by the red square in (a), and EDS line scan results across the marked red line; (c) HR-TEM image of the precipitate, with the inset FFT pattern showing a twinning relation in the FCC phase; (d) X-ray maps of Al, Co, Cu, Fe, and Ni from the area shown in (b).
Fig. 7. TEM analysis of the AlCoCuFeNi specimen processed by LMD: (a) BF image; (b) HAADF image for the area encircled by red lines in (a), and EDS line scan results across the marked red line; (c) HRTEM image of the precipitate, with the inset FFT pattern of FCC phase; (d) X-ray maps of Al, Co, Cu, Fe, and Ni from the area shown in (b).
Fig. 8. HAADF image of rod-like precipitates and the corresponding X-ray maps of Al, Co, Cu, Fe, and Ni. The inset SAED pattern corresponds to the B2 phase.
Fig. 12. (a) Open circuit potential (OCP) as a function of time and (b) potentiodynamic polarization curves for the SLM- and LMD-processed AlCoCuFeNi specimens in a 3.5 wt.% NaCl solution at room temperature.
| Specimens | Ecorr (V) | icorr (μA cm−2) | βa (V dec−1) | βc (V dec−1) | Epit (V) | Rp (Ω cm2) |
|---|---|---|---|---|---|---|
| SLM | −0.31 | 0.86 | 9.77 | −13.98 | −0.03 | 2.91 × 106 |
| LMD | −0.25 | 3.25 | 12.88 | −15.16 | −0.14 | 0.93 × 106 |
Table 2. Fitting results from polarization curves for the SLM- and LMD-processed AlCoCuFeNi specimens in a 3.5 wt.% NaCl solution.
| Specimens | Ecorr (V) | icorr (μA cm−2) | βa (V dec−1) | βc (V dec−1) | Epit (V) | Rp (Ω cm2) |
|---|---|---|---|---|---|---|
| SLM | −0.31 | 0.86 | 9.77 | −13.98 | −0.03 | 2.91 × 106 |
| LMD | −0.25 | 3.25 | 12.88 | −15.16 | −0.14 | 0.93 × 106 |
| Alloys | Preparation | Phase | Hardness (HV) | Solution | Ecorr (V) | icorr (μA/cm2) |
|---|---|---|---|---|---|---|
| AlCoCuFe2.1Ni [ | GTA | BCC + FCC | 407 | 3.5 wt.% NaCl | −0.64 | 8.79 |
| AlCoCuFe2.1Ni [ | U-GTA | BCC + FCC | 468 | 3.5 wt.% NaCl | −0.45 | 6.31 |
| CoCrCuFeNi [ | PTA | FCC | 195 | 6 mol/L HCl | −0.4 | 1.1 × 102 |
| CoCrCuFeNbNi [ | PTA | FCC + Laves | 350 | 6 mol/L HCl | −0.4 | 8.9 × 102 |
| AlCoCuFeNi [ | AC | BCC + B2 + FCC | 391 | - | - | - |
| AlCoCuFeNi [ | AC | BCC + B2 + FCC | 387 | 0.5 mol/L H2SO4 | −0.058 | 7.93 |
| AlCoCuFeNi This work | SLM | BCC + FCC | 761 | 3.5 wt.% NaCl | −0.31 | 0.86 |
| AlCoCuFeNi This work | LMD | BCC + B2 + FCC | 538 | 3.5 wt.% NaCl | −0.25 | 3.25 |
Table 3. Hardness and corrosion behavior of various Cu-containing HEAs.
| Alloys | Preparation | Phase | Hardness (HV) | Solution | Ecorr (V) | icorr (μA/cm2) |
|---|---|---|---|---|---|---|
| AlCoCuFe2.1Ni [ | GTA | BCC + FCC | 407 | 3.5 wt.% NaCl | −0.64 | 8.79 |
| AlCoCuFe2.1Ni [ | U-GTA | BCC + FCC | 468 | 3.5 wt.% NaCl | −0.45 | 6.31 |
| CoCrCuFeNi [ | PTA | FCC | 195 | 6 mol/L HCl | −0.4 | 1.1 × 102 |
| CoCrCuFeNbNi [ | PTA | FCC + Laves | 350 | 6 mol/L HCl | −0.4 | 8.9 × 102 |
| AlCoCuFeNi [ | AC | BCC + B2 + FCC | 391 | - | - | - |
| AlCoCuFeNi [ | AC | BCC + B2 + FCC | 387 | 0.5 mol/L H2SO4 | −0.058 | 7.93 |
| AlCoCuFeNi This work | SLM | BCC + FCC | 761 | 3.5 wt.% NaCl | −0.31 | 0.86 |
| AlCoCuFeNi This work | LMD | BCC + B2 + FCC | 538 | 3.5 wt.% NaCl | −0.25 | 3.25 |
| [1] |
Y. Ye, Q. Wang, J. Lu, C. Liu, Y. Yang, Mater. Today 19 (2016) 349-362.
DOI URL |
| [2] | Y. Yang, Y. Ren, Y. Tian, K. Li, W. Zhang, Q. Shan, Y. Tian, Q. Huang, H. Wu, J. Alloys Compd. 884 (2021) 161070. |
| [3] | Y. Yang, Y. Ren, Y. Tian, K. Li, L. Bai, Q. Huang, Q. Shan, Y. Tian, H. Wu, Surf. Coat. Technol. 432 (2022) 128009. |
| [4] | C. Han, Q. Fang, Y. Shi, S.B. Tor, C.K. Chua, K. Zhou, Adv. Mater. 32 (2020) 1903855. |
| [5] | I.S. Liu, J. Micromech, Mol. Phys. 06 (2021) 89-94. |
| [6] |
Y. Ren, L. Liang, Q. Shan, A. Cai, H. Wu, Virtual Phys. Prototyp. 15 (2020) 543-554.
DOI URL |
| [7] |
X. Xian, L. Lin, Z. Zhong, C. Zhang, C. Chen, K. Song, J. Cheng, Y. Wu, Mater. Sci. Eng. A 713 (2018) 134-140.
DOI URL |
| [8] | M. Zhang, X. Zhou, D. Wang, L. He, X. Ye, W. Zhang, J. Alloys Compd. 893 (2022) 162259. |
| [9] | F.Y. Cho, S.W. Tung, F.Y. Ouyang, Mater. Chem. Phys. 278 (2022) 125678. |
| [10] |
Y. Yu, J. Wang, J. Li, H. Kou, H. Duan, Tribol. Int. 92 (2015) 203-210.
DOI URL |
| [11] |
E. Zhou, D. Qiao, Y. Yang, D. Xu, F. Wang, J. Mater. Sci. Technol. 46 (2020) 201-210.
DOI URL |
| [12] |
S.M. Oh, S.I. Hong, Mater. Chem. Phys. 210 (2017) 120-125.
DOI URL |
| [13] |
Y. Wen, A. Hirata, Z. Zhang, T. Fujita, C. Liu, J. Jiang, M. Chen, Acta Mater. 61 (2013) 2133-2147.
DOI URL |
| [14] | Q. Fan, C. Chen, C. Fan, Z. Liu, X. Cai, S. Lin, C. Yang, Surf. Coat. Technol. 120 (2021) 127364. |
| [15] |
A. Verma, P. Tarate, A. Abhyankar, M. Mohape, D. Gowtam, V. Deshmukh, T. Shanmugasundaram, Scr. Mater. 161 (2019) 28-31.
DOI URL |
| [16] | R. Sonkusare, S. Yadav, N. Gurao, K. Biswas, in: High Entropy Alloys in Bulk Form: Processing Challenges and Possible Remedies, High Entropy Alloys, CRC Press, 2020, pp. 125-168. |
| [17] |
Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater. Sci. 61 (2014) 1-93.
DOI URL |
| [18] |
J. Cieslak, J. Tobola, K. Berent, M. Marciszko, J. Alloys Compd. 740 (2018) 264-272.
DOI URL |
| [19] |
B. Braeckman, F. Boydens, H. Hidalgo, P. Dutheil, M. Jullien, A.-.L. Thomann, D. Depla, Thin Solid Films 580 (2015) 71-76.
DOI URL |
| [20] | T. Zhang, C.T. Liu, Adv. Powder Mater. 1 (2022) 10 0 014. |
| [21] | A. Adeyemi, E.T. Akinlabi, R.M. Mahamood, Mater. Today Proc. 5 (2018) 18510-18517. |
| [22] | K.O. Abdulrahman, E.T. Akinlabi, R.M. Mahamood, S. Pityana, M. Tlotleng, Mater. Today Proc. 5 (2018) 19738-19746. |
| [23] | H. Fan, Y. Liu, S. Yang, J. Micromech, Mol. Phys. 6 (2021) 2050018. |
| [24] | J.E. Sun, B. Zhang, X. Qu, J. Micromech, Mol. Phys. 6 (2021) 2141001. |
| [25] | M. He, Y. Ni, S. Wang, J. Micromech, Mol. Phys. 6 (2021) 2141003. |
| [26] | D. Carluccio, M. Bermingham, D. Kent, A.G. Demir, B. Previtali, M.S. Dargusch, Adv. Eng. Mater. 21 (2019) 1900049. |
| [27] |
D. Karlsson, A. Marshal, F. Johansson, M. Schuisky, M. Sahlberg, J.M. Schneider, U. Jansson, J. Alloys Compd. 784 (2019) 195-203.
DOI URL |
| [28] | J. Zhang, B. Song, C. Cai, L. Zhang, Y. Shi, Adv. Powder Mater. 1 (2022) 10 0 010. |
| [29] |
R. Li, M. Wang, Z. Li, P. Cao, T. Yuan, H. Zhu, Acta Mater. 193 (2020) 83-98.
DOI URL |
| [30] | Z. Hu, X. Nie, Y. Qi, H. Zhang, H. Zhu, Addit. Manuf. 37 (2021) 101709. |
| [31] |
Y. Lee, Y. Bandari, P. Nandwana, B. Gibson, B. Richardson, S. Simunovic, Appl. Sci. 9 (2019) 5115.
DOI URL |
| [32] |
M. Benoit, S. Sun, M. Brandt, M. Easton, J. Manuf. Process. 64 (2021) 1484-1492.
DOI URL |
| [33] |
Y. Wen, Y. Li, A. Hirata, Y. Zhang, T. Fujita, T. Furuhara, C. Liu, A. Chiba, M. Chen, Acta Mater. 61 (2013) 7726-7740.
DOI URL |
| [34] |
E. Pickering, R. Muñoz-Moreno, H. Stone, N. Jones, Scr. Mater. 113 (2016) 106-109.
DOI URL |
| [35] | M.L. Ali, E. Haque, M.Z. Rahaman, J. Alloys Compd. 873 (2021) 159843. |
| [36] | S. Sui, Y. Chew, Z. Hao, F. Weng, C. Tan, Z. Du, G. Bi, Adv. Powder Mater. 1 (2022) 10 0 0 02. |
| [37] | C. Zhang, K. Feng, H. Kokawa, B. Han, Z. Li, Mater. Sci. Eng. A 789 (2020) 139672. |
| [38] | M. Moradi, A. Hasani, Z. Pourmand, J. Lawrence, Opt. Laser Technol. 144 (2021) 107380. |
| [39] |
L. Thijs, M.M. Sistiaga, R. Wauthle, Q. Xie, J.P. Kruth, J.V. Humbeeck, Acta Mater. 61 (2013) 4657-4668.
DOI URL |
| [40] |
L. Han, L.P. Jeurgens, C. Cancellieri, J. Wang, Y. Xu, Y. Huang, Y. Liu, Z. Wang, Acta Mater. 200 (2020) 857-868.
DOI URL |
| [41] | A. Singh, T. Hiroto, H. Watanabe, N. Ikeo, T. Mukai, K. Tsuchiya, Mater. Charact. 182 (2021) 111556. |
| [42] |
R. Goodall, T. Clyne, Acta Mater. 54 (2006) 54 89-54 99.
DOI URL |
| [43] | H. Wu, Y. Ren, J. Ren, L. Liang, R. Li, Q. Fang, A. Cai, Q. Shan, Y. Tian, I. Baker, J. Alloys Compd. 873 (2021) 159823. |
| [44] | W.H. Ailor, Handbook On Corrosion Testing and Evaluation, John Wiley and Sons, Inc, New York, 1971 Symposium on the State of the Art in Corrosion Testing, Toronto, Canada, June 21-26, 1970. |
| [45] |
Y. Yu, N. Xu, S. Zhu, Z. Qiao, J. Zhang, J. Yang, W. Liu, J. Mater. Sci. Technol. 69 (2021) 48-59.
DOI URL |
| [46] | C. Du, L. Hu, Q. Pan, K. Chen, P. Zhou, G. Wang, Mater. Sci. Eng. A 832 (2022) 142413. |
| [47] |
Y. Cai, X. Li, H. Xia, Y. Cui, S.M. Manladan, L. Zhu, M. Shan, D. Sun, T. Wang, X. Lv, J. Manuf. Process. 72 (2021) 294-308.
DOI URL |
| [48] | Y. Cai, M. Shan, Y. Cui, S.M. Manladan, X. Lv, L. Zhu, D. Sun, T. Wang, J. Han, J. Alloys Compd. 887 (2021) 161323. |
| [49] | Y. Cai, L. Zhu, Y. Cui, J. Han, Mater. Lett. 289 (2021) 129445. |
| [50] | X. Qi, P. Huan, X. Wang, H. Di, X. Shen, Q. Sun, Z. Liu, J. He, Mater. Charact. 179 (2021) 111344. |
| [51] |
Y. Ye, B. Musico, Z. Lu, L. Xu, Z. Lei, V. Keppens, H. Xu, T. Nieh, Intermetallics 109 (2019) 167-173.
DOI |
| [52] |
S. Chen, Q. Yu, Scr. Mater. 163 (2019) 148-151.
DOI URL |
| [53] |
Y.M. Wang, T. Voisin, J.T. McKeown, J. Ye, N.P. Calta, Z. Li, Z. Zeng, Y. Zhang, W. Chen, T.T. Roehling, Nat. Mater. 17 (2018) 63-71.
DOI URL |
| [54] |
S. Chen, W. Li, X. Xie, J. Brechtl, B. Chen, P. Li, G. Zhao, F. Yang, J. Qiao, P.K. Liaw, J. Alloys Compd. 752 (2018) 464-475.
DOI URL |
| [55] | N. Burbery, G. Po, R. Das, N. Ghoniem, W. Ferguson, J. Micromech. Mol. Phys. 2 (2017) 1750 0 03. |
| [56] | D. Gu, H. Zhang, D. Dai, C. Ma, S. Li, Corros. Sci. 170 (2020) 108657. |
| [57] | J. Cheng, X. Liang, B. Xu, Surfa. Coat. Technol. 240 (2014) 184-190. |
| [58] |
C. Liu, W. Peng, C. Jiang, H. Guo, J. Tao, X. Deng, Z. Chen, J. Mater. Sci. Technol. 35 (2019) 1175-1183.
DOI URL |
| [59] |
D. Xiao, P. Zhou, W. Wu, H. Diao, M. Gao, M. Song, P. Liaw, Mater. Des. 116 (2017) 438-447.
DOI URL |
| [1] | Yu Yin, Qiyang Tan, Qiang Sun, Wangrui Ren, Jingqi Zhang, Shiyang Liu, Yingang Liu, Michael Bermingham, Houwen Chen, Ming-Xing Zhang. Heterogeneous lamella design to tune the mechanical behaviour of a new cost-effective compositionally complicated alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 113-125. |
| [2] | Xiaodong Lin, Qunjia Peng, Yaolei Han, En-Hou Han, Wei Ke. Effect of thermal ageing and dissolved gas on corrosion of 308L stainless steel weld metal in simulated PWR primary water [J]. J. Mater. Sci. Technol., 2022, 96(0): 308-324. |
| [3] | Qimin Shi, Shoufeng Yang, Yi Sun, Yifei Gu, Ben Mercelis, Shengping Zhong, Bart Van Meerbeek, Constantinus Politis. In-situ formation of Ti-Mo biomaterials by selective laser melting of Ti/Mo and Ti/Mo2C powder mixtures: A comparative study on microstructure, mechanical and wear performance, and thermal mechanisms [J]. J. Mater. Sci. Technol., 2022, 115(0): 81-96. |
| [4] | Meng Cai, Peng Feng, Han Yan, Yuting Li, Shijie Song, Wen Li, Hao Li, Xiaoqiang Fan, Minhao Zhu. Hierarchical Ti3C2Tx@MoS2 heterostructures: A first principles calculation and application in corrosion/wear protection [J]. J. Mater. Sci. Technol., 2022, 116(0): 151-160. |
| [5] | Inime Ime Udoh, Hongwei Shi, Enobong Felix Daniel, Jianyang Li, Songhua Gu, Fuchun Liu, En-Hou Han. Active anticorrosion and self-healing coatings: A review with focus on multi-action smart coating strategies [J]. J. Mater. Sci. Technol., 2022, 116(0): 224-237. |
| [6] | Hui Shen, Qingquan Zhang, Ying Yang, Yang Ren, Yanbao Guo, Yafeng Yang, Zhonghan Li, Zhiwei Xiong, Xiangguang Kong, Zhihui Zhang, Fangmin Guo, Lishan Cui, Shijie Hao. Selective laser melted high Ni content TiNi alloy with superior superelasticity and hardwearing [J]. J. Mater. Sci. Technol., 2022, 116(0): 246-257. |
| [7] | Wu Qi, Wenrui Wang, Xiao Yang, Lu Xie, Jiaming Zhang, Dongyue Li, Yong Zhang. Effect of Zr on phase separation, mechanical and corrosion behavior of heterogeneous CoCrFeNiZrx high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 109(0): 76-85. |
| [8] | H. Zhang, Y. Wang, J.J. Wang, D.R. Ni, D. Wang, B.L. Xiao, Z.Y. Ma. Achieving superior mechanical properties of selective laser melted AlSi10Mg via direct aging treatment [J]. J. Mater. Sci. Technol., 2022, 108(0): 226-235. |
| [9] | Xubing Wei, Shaomiao Shi, Chuangming Ning, Zhibin Lu, Guangan Zhang. Si-DLC films deposited by a novel method equipped with a co-potential auxiliary cathode for anti-corrosion and anti-wear application [J]. J. Mater. Sci. Technol., 2022, 109(0): 114-128. |
| [10] | Cheng Li, Guanhong Lei, Jizhao Liu, Awen Liu, C.L. Ren, Hefei Huang. A potential candidate structural material for molten salt reactor: ODS nickel-based alloy [J]. J. Mater. Sci. Technol., 2022, 109(0): 129-139. |
| [11] | Jing Wu, Meng Li, Chuanchuan Lin, Pengfei Gao, Rui Zhang, Xuan Li, Jixi Zhang, Kaiyong Cai. Moderated crevice corrosion susceptibility of Ti6Al4V implant material due to albumin-corrosion interaction [J]. J. Mater. Sci. Technol., 2022, 109(0): 209-220. |
| [12] | Y.K. Xiao, H. Chen, Z.Y. Bian, T.T. Sun, H. Ding, Q. Yang, Y. Wu, Q. Lian, Z. Chen, H.W. Wang. Enhancing strength and ductility of AlSi10Mg fabricated by selective laser melting by TiB2 nanoparticles [J]. J. Mater. Sci. Technol., 2022, 109(0): 254-266. |
| [13] | Pengfei Zhou, Dong Liu, Yuyun Chen, Mingpeng Chen, Yunxiao Liu, Shi Chen, Chi Tat Kwok, Yuxin Tang, Shuangpeng Wang, Hui Pan. Corrosion engineering boosting bulk Fe50Mn30Co10Cr10 high-entropy alloy as high-efficient alkaline oxygen evolution reaction electrocatalyst [J]. J. Mater. Sci. Technol., 2022, 109(0): 267-275. |
| [14] | Mohammed Arroussi, Qing Jia, Chunguang Bai, Shuyuan Zhang, Jinlong Zhao, Zhizhou Xia, Zhiqiang Zhang, Ke Yang, Rui Yang. Inhibition effect on microbiologically influenced corrosion of Ti-6Al-4V-5Cu alloy against marine bacterium Pseudomonas aeruginosa [J]. J. Mater. Sci. Technol., 2022, 109(0): 282-296. |
| [15] | Guangyu Ren, Lili Huang, Kunling Hu, Tianxin Li, Yiping Lu, Dongxu Qiao, Haitao Zhang, Dake Xu, Tongmin Wang, Tingju Li, Peter K. Liaw. Enhanced antibacterial behavior of a novel Cu-bearing high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 117(0): 158-166. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
