J. Mater. Sci. Technol. ›› 2022, Vol. 131: 231-239.DOI: 10.1016/j.jmst.2022.05.015
• Research Article • Previous Articles Next Articles
Lei Wanga,d, Mengqiu Huanga, Xuefeng Yua, Wenbin Youa, Biao Zhaoa, Chongyun Liangb,*(
), Xianhu Liue, Xuefeng Zhangf, Renchao Chea,c,*(
)
Received:2022-04-15
Revised:2022-05-13
Accepted:2022-05-16
Published:2022-06-06
Online:2022-06-06
Contact:
Chongyun Liang,Renchao Che
About author:rcche@fudan.edu.cn (R. Che)1 Those authors contributed equally to this work.
Lei Wang, Mengqiu Huang, Xuefeng Yu, Wenbin You, Biao Zhao, Chongyun Liang, Xianhu Liu, Xuefeng Zhang, Renchao Che. Engineering polarization surface of hierarchical ZnO microspheres via spray-annealing strategy for wide-frequency electromagnetic wave absorption[J]. J. Mater. Sci. Technol., 2022, 131: 231-239.
Fig. 1. (a) Schematic diagram of ZnO microspheres, (b) XRD pattern of as-prepared ZnO microspheres, and (c) crystal plane diffraction intensity ratio.
Fig. 3. TEM images of (a) ZnO-1, (b) ZnO-2, (c) ZnO-3; HRTEM images of (d-i) ZnO-1; (j) interplanar spacing file; (k) HADDF image and (l, m) elements mapping distribution of ZnO-1 microspheres.
Fig. 4. Two-dimensional distribution of the RL values for (a) ZnO-1, (b) ZnO-2, and (c) ZnO-3; 3D histogram distribution of (d) RL values and (e) the EAB values, (f) RL curves of ZnO microspheres at 2.4 mm.
Fig. 6. Electromagnetic parameters of (a) ZnO-1, (b) ZnO-2, and (c) ZnO-3; (d) real part (ε'), (e) imaginary part (ε''),and (f) loss tangent (tanδε) of hierarchical ZnO microspheres.
Fig. 7. HRTEM images of (a) ZnO-1, (d) ZnO-2, and (g) ZnO-3, the corresponding dislocation strain fields distribution map of (b, c) ZnO-1, (e, f) ZnO-2, and (h, i) ZnO-3.
| Sample | Adding mass (%) | RLmin (dB) | Thickness (mm) | EAB (GHz) | Refs. |
|---|---|---|---|---|---|
| TiO2 tube | 60 | -37.0 | 4.0 | 1.4 | [ |
| VO2 microsheets | 20 | -45.8 | 1.9 | 3.4 | [ |
| Urchinlike MnO2 | 50 | -41.0 | 1.6 | 2.8 | [ |
| Dendritic-like ZnO | 50 | -42.0 | 2.0 | 3.5 | [ |
| Bead-like Co-doped ZnO | - | -12.2 | 2.5 | 3.2 | [ |
| CuS microspheres | 30 | -31.5 | 1.8 | 3.6 | [ |
| MoS2 nanosheets | 60 | -47.8 | 2.0 | 5.2 | [ |
| SnO2 Foam | 30 | -37.6 | 2.0 | 5.6 | [ |
| Net-like ZnO | 50 | -37.0 | 2.0 | 5.9 | [ |
| Hierarchical ZnO microspheres | 50 | -31.6 | 2.4 | 7.6 | This work |
| ZnO whiskers | 50 | -20.5 | 1.2 | 8.8 | [ |
Table 1. Reflection loss ability of pure dielectric EM wave absorption composites.
| Sample | Adding mass (%) | RLmin (dB) | Thickness (mm) | EAB (GHz) | Refs. |
|---|---|---|---|---|---|
| TiO2 tube | 60 | -37.0 | 4.0 | 1.4 | [ |
| VO2 microsheets | 20 | -45.8 | 1.9 | 3.4 | [ |
| Urchinlike MnO2 | 50 | -41.0 | 1.6 | 2.8 | [ |
| Dendritic-like ZnO | 50 | -42.0 | 2.0 | 3.5 | [ |
| Bead-like Co-doped ZnO | - | -12.2 | 2.5 | 3.2 | [ |
| CuS microspheres | 30 | -31.5 | 1.8 | 3.6 | [ |
| MoS2 nanosheets | 60 | -47.8 | 2.0 | 5.2 | [ |
| SnO2 Foam | 30 | -37.6 | 2.0 | 5.6 | [ |
| Net-like ZnO | 50 | -37.0 | 2.0 | 5.9 | [ |
| Hierarchical ZnO microspheres | 50 | -31.6 | 2.4 | 7.6 | This work |
| ZnO whiskers | 50 | -20.5 | 1.2 | 8.8 | [ |
| [1] |
B.L. Wang, Q. Wu, Y.G. Fu, T. Liu, J. Mater. Sci. Technol. 86 (2021) 91-109.
DOI URL |
| [2] |
L. Wang, X. Li, X.F. Shi, M.Q. Huang, X.H. Li, Q.W. Zeng, R.C. Che, Nanoscale 13 (2021) 2136-2156.
DOI PMID |
| [3] |
H.P. Pang, Y.P. Duan, X.H. Dai, L.X. Huang, X. Yang, T. Zhang, X.J. Liu, J. Mater. Sci. Technol. 88 (2021) 203-214.
DOI URL |
| [4] | M.Q. Huang, L. Wang, Q. Liu, W.B. You, R.C. Che, Chem. Eng. J. 429 (2022) 132191. |
| [5] |
J.C. Shu, X.Y. Yang, X.R. Zhang, X.Y. Huang, M.S. Cao, L. Li, H.J. Yang, W.Q. Cao, Carbon N Y 162 (2020) 157-171.
DOI URL |
| [6] | J.C. Shu, W.Q. Cao, M.S. Cao, Adv. Funct. Mater. 31 (2021) 2100470. |
| [7] |
L. Wang, X.T. Shi, J.L. Zhang, Y.L. Zhang, J.W. Gu, J. Mater. Sci. Technol. 52 (2020) 119-126.
DOI |
| [8] |
J. Liu, W.Q. Cao, H.B. Jin, J. Yuan, D.Q. Zhang, M.S. Cao, J. Mater. Chem. C 3 (2015) 4670-4677.
DOI URL |
| [9] | H.F. Li, Y.H. Huang, G.B. Sun, X.Q. Yan, Y. Yang, J. Wang, Y. Zhang, J. Phys. Chem. C 114 (2010) 10 088-10 091. |
| [10] |
M. Zhou, X. Zhang, J.M. Wei, S.L. Zhao, L. Wang, B.X. Feng, J. Phys. Chem. C 115 (2011) 1398-1402.
DOI URL |
| [11] | G.H. He, Y.P. Duan, H.F. Pang, J.J. Hu, Adv. Mater. Interfaces 7 (2020) 20 0 0407. |
| [12] |
T. Xia, C. Zhang, N.A. Oyler, X.B. Chen, Adv. Mater. 25 (2013) 6905-6910.
DOI URL |
| [13] |
Y. Song, F.X. Yin, C.W. Zhang, W.B. Guo, L.Y. Han, Y. Yuan, Nano-Micro Lett. 13 (2021) 76.
DOI PMID |
| [14] |
B. Zhao, B.B. Fan, Y.W. Xu, G. Shao, X.D. Wang, W.Y. Zhao, R. Zhang, ACS Appl. Mater. Interfaces 7 (2015) 26217-26225.
DOI URL |
| [15] |
R.M. Wang, P.M. Bai, B. Zhao, Z.Y. Bai, X.Q. Guo, R. Zhang, J. Mater. Sci.: Mater. Electron. 32 (2021) 25725-25734.
DOI URL |
| [16] |
B. Zhao, G. Shao, B.B. Fan, W.Y. Zhao, Y.J. Xie, R. Zhang, J. Mater. Chem. A 3 (2015) 10345-10352.
DOI URL |
| [17] |
X.J. Zhang, S. Li, S.W. Wang, Z.J. Yin, J.Q. Zhu, A.P. Guo, G.S. Wang, P.G. Yin, L. Guo, J. Phys. Chem. C 120 (2016) 22019-22027.
DOI URL |
| [18] | X.H. Liang, X.M. Zhang, W. Liu, D.M. Tang, B.S. Zhang, G.B. Ji, J. Mater. Chem. C 4 (2016) 6 816-6 821. |
| [19] |
W.L. Wang, G.X. Sun, X.N. Sun, M. Huang, Y.J. Liang, J.Q. Bi, J. Mater. Sci-Mater. Electron. 32 (2021) 24351-24362.
DOI URL |
| [20] |
S. Gao, G.Z. Zhang, Y. Wang, X.P. Han, Y. Huang, P.B. Liu, J. Mater. Sci. Technol. 88 (2021) 56-65.
DOI URL |
| [21] |
J. Troyano, C. Çamur, L. Garzón-Tovar, A. Carné-Sánchez, I. Imaz, D. Maspoch, Acc. Chem. Res. 53 (2020) 1206-1217.
DOI URL |
| [22] |
Z. Yu, R. Zhou, M.W. Ma, R.Q. Zhu, P. Miao, P. Liu, J. Kong, J. Mater. Sci. Technol. 114 (2022) 206-214.
DOI URL |
| [23] |
J.H. Luo, M.N. Feng, Z.Y. Dai, C.Y. Jiang, W. Yao, N.X. Zhai, Nano Res. 15 (2022) 5781-5789.
DOI URL |
| [24] |
R. Kumar, O. Al-Dossary, G. Kumar, A. Umar, Nano-Micro Lett. 7 (2015) 97-120.
DOI URL |
| [25] |
X.D. Wang, C.J. Summers, Z.L. Wang, Nano Lett. 4 (2004) 423-426.
DOI URL |
| [26] |
Y.Q. Wang, H.B. Zhao, J.B. Cheng, B.W. Liu, Q. Fu, Y.Z. Wang, Nano-Micro Lett. 14 (2022) 76.
DOI URL |
| [27] | M.Q. Huang, L. Wang, W.B. You, R.C. Che, Small 17 (2021) 2101416. |
| [28] |
P. Miao, J.W. Cao, J. Kong, J. Li, T. Wang, K.J. Chen, Nanoscale 12 (2020) 13311-13315.
DOI URL |
| [29] |
B.Y. Zhu, P. Miao, J. Kong, X.L. Zhang, G.Y. Wang, K.J. Chen, Cryst. Growth Des. 19 (2019) 1518-1524.
DOI URL |
| [30] |
L. Wang, M.Q. Huang, X.F. Yu, W.B. You, J. Zhang, X.H. Liu, M. Wang, R.C. Che, Nano-Micro Lett. 12 (2020) 150.
DOI PMID |
| [31] |
L. Tang, J.L. Zhang, Y.S. Tang, J. Kong, T.X. Liu, J.W. Gu, J. Mater. Sci. Technol. 75 (2021) 225-251.
DOI |
| [32] | S. Gao, G.S. Wang, L. Guo, S.H. Yu, Small 16 (2020) 1906668. |
| [33] |
Z.C. Liu, F. Pan, B.W. Deng, Z. Xiang, W. Lu, Carbon N Y 174 (2021) 59-69.
DOI URL |
| [34] | L. Wang, M.Q. Huang, X. Qian, L.L. Liu, W.B. You, J. Zhang, M. Wang, R.C. Che, Small 17 (2021) 2100970. |
| [35] | X.J. Zhu, Y.Y. Dong, F. Pan, Z. Xiang, Z.C. Liu, B.W. Deng, X. Zhang, Z. Shi, W. Lu, Compos. Commun. 25 (2021) 100731. |
| [36] |
G.Z. Wang, Z. Gao, S.W. Tang, C.Q. Chen, F.F. Duan, S.C. Zhao, S.W. Lin, Y.H. Feng, L. Zhou, Y. Qin, ACS Nano 6 (2012) 11009-11017.
DOI URL |
| [37] | X.F. Xu, S.H. Shi, Y.L. Tang, G.Z. Wang, M.F. Zhou, G.Q. Zhao, X.C. Zhou, S.W. Lin, F.B. Meng, Adv. Sci. 8 (2021) 2002658. |
| [38] |
F.B. Meng, H.G. Wang, F. Huang, Y.F. Guo, D.Hui Z.Y.Wang, Z.W. Zhou, Compos. Pt. B-Eng. 137 (2018) 260-277.
DOI URL |
| [39] |
H.B. Z. J.B. Cheng, M. Cao, M.E. Li, A.N. Zhang, S.L. Li, Y.Z. Wang, ACS Appl. Mater. Interfaces 12 (2020) 26301-26312.
DOI URL |
| [40] | S.N. Zheng, Z.H. Zeng, J. Qiao, Y. Liu, J.R. Liu, Compos. Pt. A-Appl. Sci.Manuf. 155 (2022) 106814. |
| [41] |
L. Wang, H.L. Xing, S.T. Gao, X.L. Ji, Z.Y. Shen, J. Mater. Chem. C 5 (2017) 2005-2014.
DOI URL |
| [42] | Y.C. Zhang, S.T. Gao, Y. Wang, Compos. Commun. 31 (2022) 101135. |
| [43] |
Z.W. Zhang, Z.H. Cai, Z.Y. Wang, Y.L. Peng, L. Xia, S.P. Ma, Z.Z. Yin, Y. Huang, Nano-Micro Lett. 13 (2021) 56.
DOI URL |
| [44] | Z.R. Jia, K.J. Lin, G.L. Wu, H. Xing, H.J. Wu, Nano 13 (2018) 1830 0 05. |
| [45] | J.W. Wang, Z.R. Jia, X.H. Liu, J.L. Dou, B.H. Xu, B.B. Wang, G.L. Wu, Nano-Micro Lett. 13 (2021) 175. |
| [46] |
J.B. Cheng, Y.Q. Wang, A.N. Zhang, H.B. Zhao, Y.Z. Wang, Carbon N Y 183 (2021) 205-215.
DOI URL |
| [47] | H.Q. Zhao, Y. Cheng, W. Liu, L.J. Yang, B.S. Zhang, L.Y.P. Wang, G.B. Ji, Z.C.J. Xu, Nano-Micro Lett. 11 (2019) 24. |
| [48] |
M. Zhou, W.H. Gu, G.H. Wang, J. Zheng, C.C. Pei, F.Y. Fan, G.B. Ji, J. Mater. Chem. A 8 (2020) 24267-24283.
DOI URL |
| [49] |
C.Q. Song, X.W. Yin, M.K. Han, X.L. Li, Z.X. Hou, L.T. Zhang, L.F. Cheng, Carbon N Y 116 (2017) 50-58.
DOI URL |
| [50] |
B. Quan, X.H. Liang, G.B. Ji, Y. Cheng, W. Liu, J.N. Ma, Y.N. Zhang, D.R. Li, G.Y. Xu, J. Alloy. Compd. 728 (2017) 1065-1075.
DOI URL |
| [51] |
J. He, S.T. Gao, Y.C. Zhang, X.Z. Zhang, H.X. Li, J. Mater. Sci. Technol. 104 (2022) 98-108.
DOI URL |
| [52] |
J.Y. Dong, R. Ullal, J. Han, S.H. Wei, X. Ouyang, J.Z. Dong, W. Gao, J. Mater. Chem. A 3 (2015) 5285-5288.
DOI URL |
| [53] |
Y. Chen S. Q. Ma, X. Li, X.C. Zhao, X.W. Cheng, J.P. Liu, J. Alloy. Compd. 791 (2019) 307-315.
DOI |
| [54] |
R.F. Zhuo, H.T. Feng, J.T. Chen, D. Yan, J.J. Feng, H.J. Li, B.S. Geng, S. Cheng, X.Y. Xu, P.X. Yan, Phys. Chem. C. 112 (2008) 11767-11775.
DOI URL |
| [55] |
X.G. Huang, M.J. Zhang, Y.S. Qin, Y.Y. Chen, Ceram. Int. 45 (2019) 7789-7796.
DOI URL |
| [56] |
Z.W. Zhou, L.S. Chu, S.H. Hu, Mater. Sci. Eng. B 126 (2006) 93-96.
DOI URL |
| [1] | Menglong Xu, Linfeng Wei, Li Ma, Jiawei Lu, Tao Liu, Ling Zhang, Ling Zhao, Chul B. Park. Microcellular foamed polyamide 6/carbon nanotube composites with superior electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 117(0): 215-224. |
| [2] | Siyao Guo, Yunfeng Bao, Ying Li, Hailong Guan, Dongyi Lei, Tiejun Zhao, Baomin Zhong, Zhihong Li. Super broadband absorbing hierarchical CoFe alloy/porous carbon@carbon nanotubes nanocomposites derived from metal-organic frameworks [J]. J. Mater. Sci. Technol., 2022, 118(0): 218-228. |
| [3] | Zhang Yunfei, Li Yulong, Wei Mengmeng, Yang Dengtao, Zhang Qiuyu, Zhang Baoliang. Core-shell structured Co@NC@MoS2 magnetic hierarchical nanotubes: Preparation and microwave absorbing properties [J]. J. Mater. Sci. Technol., 2022, 128(0): 148-159. |
| [4] | Sun Hengda, Zhang Ying, Wu Yue, Zhao Yue, Zhou Ming, Liu Lie, Tang Shaolong, Ji Guangbin. Broadband absorption of macro pyramid structure based flame retardant absorbers [J]. J. Mater. Sci. Technol., 2022, 128(0): 228-238. |
| [5] | Yingzhi Jiao, Siyao Cheng, Fan Wu, Jiaoyan Shi, Aming Xie, Xufei Zhu, Wei Dong. Microporous polythiophene (MPT)-guest complex derived magnetic metal sulfides/carbon nanocomposites for broadband electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 100(0): 206-215. |
| [6] | Fei Pan, Lei Cai, Yanyan Dong, Xiaojie Zhu, Yuyang Shi, Wei Lu. Mixed-dimensional hierarchical configuration of 2D Ni2P nanosheets anchored on 1D silk-derived carbon fiber for extraordinary electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 101(0): 85-94. |
| [7] | Ting-Ting Liu, Mao-Qing Cao, Yong-Sheng Fang, Yu-Hang Zhu, Mao-Sheng Cao. Green building materials lit up by electromagnetic absorption function: A review [J]. J. Mater. Sci. Technol., 2022, 112(0): 329-344. |
| [8] | Chunhua Sun, Zirui Jia, Shuang Xu, Dongqi Hu, Chuanhui Zhang, Guanglei Wu. Synergistic regulation of dielectric-magnetic dual-loss and triple heterointerface polarization via magnetic MXene for high-performance electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 113(0): 128-137. |
| [9] | Zibao Jiao, Wenjun Huyan, Junru Yao, Zhengjun Yao, Jintang Zhou, Peijiang Liu. Heterogeneous ZnO@CF structures and their excellent microwave absorbing properties with thin thickness and low filling [J]. J. Mater. Sci. Technol., 2022, 113(0): 166-174. |
| [10] | Jia Zhao, Ying Wei, Yi Zhang, Qingguo Zhang. 3D flower-like hollow CuS@PANI microspheres with superb X-band electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 126(0): 141-151. |
| [11] | Fenghui Cao, Jia Xu, Minjie Liu, Feng Yan, Qiuyun Ouyang, Xitian Zhang, Xiaoli Zhang, Yujin Chen. Regulation of impedance matching feature and electronic structure of nitrogen-doped carbon nanotubes for high-performance electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 108(0): 1-9. |
| [12] | Chenxi Wang, Zirui Jia, Shuangqiao He, Jixi Zhou, Shuo Zhang, Mengli Tian, Bingbing Wang, Guanglei Wu. Metal-organic framework-derived CoSn/NC nanocubes as absorbers for electromagnetic wave attenuation [J]. J. Mater. Sci. Technol., 2022, 108(0): 236-243. |
| [13] | Hua Jian, Qinrui Du, Qiaoqiao Men, Li Guan, Ruosong Li, Bingbing Fan, Xin Zhang, Xiaoqin Guo, Biao Zhao, Rui Zhang. Structure-dependent electromagnetic wave absorbing properties of bowl-like and honeycomb TiO2/CNT composites [J]. J. Mater. Sci. Technol., 2022, 109(0): 105-113. |
| [14] | Zhen Yu, Rui Zhou, Mingwei Ma, Runqiu Zhu, Peng Miao, Pei Liu, Jie Kong. ZnO/nitrogen-doped carbon nanocomplex with controlled morphology for highly efficient electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 114(0): 206-214. |
| [15] | Yue Liu, Xuehua Liu, Xinyu E, Bingbing Wang, Zirui Jia, Qingguo Chi, Guanglei Wu. Synthesis of MnxOy@C hybrid composites for optimal electromagnetic wave absorption capacity and wideband absorption [J]. J. Mater. Sci. Technol., 2022, 103(0): 157-164. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
