J. Mater. Sci. Technol. ›› 2022, Vol. 131: 204-211.DOI: 10.1016/j.jmst.2022.05.033
• Research Article • Previous Articles Next Articles
Anqi Zhanga,b, Daheng Liua,b, Teng Yanga,b, Song Maa,b,*(
), Zhidong Zhanga,b
Received:2022-03-29
Revised:2022-05-08
Accepted:2022-05-08
Published:2022-06-17
Online:2022-06-17
Contact:
Song Ma
About author:*Shenyang National Laboratory for Material Science, In- stitute of Metal Research, 72 Wenhua Road, Shenyang 110016, China. E-mail address: songma@imr.ac.cn (S. Ma)Anqi Zhang, Daheng Liu, Teng Yang, Song Ma, Zhidong Zhang. Transport property of topological crystalline insulator SnTe (100) and ferrimagnetic insulator heterostructures[J]. J. Mater. Sci. Technol., 2022, 131: 204-211.
Fig. 1. (a) XRD pattern of the EuIG (110)/GGG (110) film and SnTe (100)/EuIG (110) film. (b) XRD pattern of the YIG (111)/GGG (111) film and SnTe (100)/YIG (111) film. (c) Schematic for atomic arrangement on the crystal plane of SnTe (100), EuIG (110), and YIG (111). (d) Schematic diagram of SnTe (100) crystal plane arrangement on EuIG (110) and YIG (111) crystal plane.
Fig. 2. (a) RHEED image of the EuIG (110) substrate after degassing. (b) RHEED image of the grown SnTe (100)/EuIG (110) film. (c) HRTEM image of the grown SnTe (100)/EuIG (110)/GGG (110) film. The downward panel shows the enlarged part marked with the red circle. (d, e) AFM images of the surface of the EuIG (110) and YIG (111) layers grown by PLD with a thickness of 25 nm and the size of the scanned area is 1 μm ×1 μm. White circles and arrows represent grains and their growth direction. (f, g) AFM images of the surface of the SnTe (100)/EuIG (110) and SnTe (100)/YIG (111) layers and the size of the scanned area is 3 μm × 3 μm.
Fig. 4. (a) Temperature dependence of sheet resistance of SnTe/EuIG and SnTe/YIG films. Rs -T of the SnTe/EuIG and SnTe/YIG films below 80 K is shown in the inset. (b) MR curves in vertical field measured at 5 K of SnTe/EuIG and SnTe/YIG films and the zoomed MR curves under high magnetic fields (inset). (c) Hall curves in vertical magnetic fields of SnTe/EuIG and SnTe/YIG films at 5 K. (d) Drude model fitting Hall curve of SnTe/EuIG film at 5 K.
Fig. 5. (a) MR in vertical magnetic fields of SnTe/EuIG film at different temperatures. The magnetic field in the illustration ranges from -2 T to 2 T. (b) Hall curves in vertical magnetic fields of SnTe/EuIG film at different temperatures and the zoomed Hall curves under high magnetic fields (inset). (c) MR in vertical magnetic fields of SnTe/YIG film at different temperatures. The magnetic field in the illustration ranges from -2 T to 2 T. (d) Hall curves in vertical magnetic fields of SnTe/YIG film at different temperatures and the zoomed Hall curves under high magnetic fields (inset).
| [1] | L.A. Fu, Phys. Rev. Lett. 106 (2011) 106802. |
| [2] | I. Pletikosić, G.D. Gu, T. Valla, Phys. Rev. Lett. 112 (2014) 146403. |
| [3] |
I. Zeljkovic, Y. Okada, M. Serbyn, R. Sankar, D. Walkup, W.W. Zhou, J.W. Liu, G.Q. Chang, Y.J. Wang, M. Zahid Hasan, F.C. Chou, H. Lin, A. Bansil, L. Fu, V. Madhavan, Nat. Mater. 14 (2015) 318-324.
DOI PMID |
| [4] | J. Tang, B. Gao, S.Q. Lin, J. Li, Z.W. Chen, F. Xiong, W. Li, Y. Chen, Y.Z. Pei, Adv. Funct. Mater. 28 (2018) 1803586. |
| [5] |
H.M. Pang, Y.T. Qiu, D.Y. Wang, Y.X. Qin, R. Huang, Z.Z. Yang, X. Zhang, L.D. Zhao, J. Am. Chem. Soc. 143 (2021) 8538-8542.
DOI URL |
| [6] |
Z.Y. Chen, X.M. Guo, F.J. Zhang, Q. Shi, M.J. Tang, R. Ang, J. Mater. Chem. A 8 (2020) 16790-16813.
DOI URL |
| [7] | Z.Y. Chen, J. Li, J. Tang, F.J. Zhang, Y. Zhong, H.T. Liu, R. Ang, J. Mater. Sci. Tech-nol. 89 (2020) 45-51. |
| [8] | Z.Y. Chen, Q. Sun, F.J. Zhang, J.J. Mao, Y. Chen, M. Li, Z.G. Chen, R. Ang, Mater. Today Phys. 17 (2021) 100340. |
| [9] | T.H. Hsieh, H. Lin, J.W. Liu, W.H. Duan, A. Bansil, L. Fu, Nat. Commun. 3 (2013) 1901. |
| [10] | L. Zhao, J.F. Wang, B.L. Gu, W.H. Duan, Phys. Rev. B 91 (2015) 195320. |
| [11] | L. Zhao, J.F. Wang, J.W. Liu, Y. Xu, B.L. Gu, Q.K. Xue, W.H. Duan, Phys. Rev. B 92 (2015) 041408. |
| [12] | S.V. Eremeev, Y.M. Koroteev, I.A. Nechaev, E.V. Chulkov, Phys. Rev. B 89 (2014) 165424. |
| [13] | B.A. Assaf, P.Wei F.Katmis, Z.Zhang B.Satpati, S.P. Bennett, V.G. Harris, J.S. Moodera, D. Heiman, Appl. Phys. Lett. 105 (2014) 102108. |
| [14] |
Y. Tanaka, Z. Ren, T. Sato, K. Nakayama, S. Souma, T. Takahashi, K. Segawa, Y. Ando, Nat. Phys. 8 (2012) 800-803.
DOI URL |
| [15] | Y.H. Choi, N.H. Jo, K.J. Lee, H.W. Lee, Y.H. Jo, J. Kajino, T. Takabatake, K.T. Ko, J.H. Park, M.H. Jung, Appl. Phys. Lett. 101 (2012) 152103. |
| [16] | F. Wei, S. Ma, Z.D. Zhang, J. Phys. D 52 (2019) 285301. |
| [17] |
C.W. Liu, F. Wei, K. Premasiri, S. Liu, S.H. Ma, Z.D. Zhang, X.P.A. Gao, Nano Lett. 18 (2018) 6538-6543.
DOI URL |
| [18] | A.Q. Zhang, F. Wei, C.H. Yan, F. Wang, S. Ma, Z.D. Zhang, Nanotechnology 30 (2019) 275703. |
| [19] | F. Wei, X.P.A. Gao, S. Ma, Z.D. Zhang, Phys. Status Solidi B 256 (2019) 1900139. |
| [20] | F. Wang, H.R. Zhang, J. Jiang, Y.F. Zhao, J. Yu, W. Liu, D. Li, M.H.W. Chan, J.R. Su, Z.D. Zhang, Phys. Rev. B 97 (2018) 115414. |
| [21] | F. Wei, C.W. Liu, D. Li, C.Y. Wang, H.R. Zhang, J.R. Sun, X.P.A. Gao, S. Ma, Z.D. Zhang, Phys. Rev. B 98 (2018) 161301. |
| [22] |
R. Yu, W. Zhang, H.J. Zhang, S.C. Zhang, X. Dai, Z. Fang, Science 329 (2010) 61-64.
DOI URL |
| [23] |
C.Z. Chang, J.S. Zhang, X. Feng, J. Shen, Z.C. Zhang, M.H. Guo, K. Li, Y.B. Ou, P. Wei, L.L. Wang, Science 340 (2013) 167-170.
DOI URL |
| [24] | C.Z. Chang, M. Li, J. Phys. Condens. Matter. 28 (2016) 123002. |
| [25] |
Y.L. Chen, J.H. Chu, J.G. Analytis, Z.K. Liu, K. Igarashi, H.H. Kuo, X.L. Qi, S.K. Mo, R.G. Moore, D.H. Lu, M. Hashimoto, T. Sasagawa, S.C. Zhang, I.R. Fisher, Z. Hus-sain, Z.X. Shen, Science 329 (2010) 659-662.
DOI PMID |
| [26] |
M.R. Lang, M. Montazeri, M.C. Onbasli, X.F. Kou, Y.B. Fan, P. Upadhyaya, K.Y. Yao, F. Liu, Y. Jiang, W.J. Jiang, K.L. Wong, G.Q. Yu, J.S. Tang, T.X. Nie, L. He, R.N. Schwartz, Y. Wang, C.A. Ross, K.L. Wang, Nano Lett. 14 (2014) 3459-3465.
DOI URL |
| [27] |
F. Katmis, V. Lauter, F.S. Nogueira, B.A. Assaf, M.E. Jamer, P. Wei, B. Satpati, J.W. Freeland, I. Eremin, D. Heiman, P. Jarillo-Herrero, J.S. Moodera, Nature 533 (2016) 513-516.
DOI URL |
| [28] | M. Serbyn, L. Fu, Phys. Rev. B 90 (2014) 035402. |
| [29] | B.A. Assaf, F. Katmis, P. Wei, C.Z. Chang, B. Satpati, J.S. Moodera, D. Heiman, Phys. Rev. B 91 (2015) 195310. |
| [30] |
J.G. Checkelsky, J.T. Ye, Y. Onose, Y. Iwasa, Y. Tokura, Nat. Phys. 8 (2012) 729-733.
DOI URL |
| [31] |
S.Y. Xu, M. Neupane, C. Liu, D. Zhang, A. Richardella, L.A. Wray, N. Alidoust, M. Leandersson, T. Balasubramanian, J. Sanchez-Barriga, O. Rader, G. Landolt, B. Slomski, J.H. Dil, J. Osterwalder, T.R. Chang, H.T. Jeng, H. Lin, A. Bansil, N. Samarth, M.Z. Hasan, Nat. Phys. 8 (2012) 616-622.
DOI URL |
| [32] | Y. Tanaka, T. Sato, K. Nakayama, S. Souma, T. Takahashi, Z. Ren, M. Novak, K. Segawa, Y. Ando, Phys. Rev. B 87 (2013) 155105. |
| [33] | P. Wei, F. Katmis, B.A. Assaf, H. Steinberg, P. Jarillo-Herrero, D. Heiman, J.S. Moodera, Phys. Rev. Lett. 110 (2013) 186807. |
| [34] | Z.L. Jiang, F. Katmis, C. Tang, P. Wei, J.S. Moodera, J. Shi, Appl. Phys. Lett. 104 (2014) 222409. |
| [35] |
W.Q. Liu, L. He, Y.B. Xu, K. Murata, M.C. Onbasli, M.R. Lang, N.J. Maltby, S.P. Li, C.A. Ross, Nano Lett. 15 (2015) 764-769.
DOI URL |
| [36] | Z.L. Jiang, C.Z. Chang, C. Tang, J.G. Zheng, J.S. Moodera, J. Shi, AIP Adv. 6 (2016) 055809. |
| [37] | M. Aldosary, J.X. Li, C. Tang, Y.D. Xu, J.G. Zheng, K.N. Bozhilov, J. Shi, Appl. Phys. Lett. 108 (2016) 242401. |
| [38] | E.R. Rosenberg, L. Beran, C.O. Avci, C. Zeledon, B. Song, C. Gonzalez-Fuentes, J. Mendil, P. Gambardella, M. Veis, C. Garcia, G.S.D. Beach, C.A. Ross, Phys. Rev. Mater. 2 (2018) 094405. |
| [39] | J.J. Bauer, E.R. Rosenberg, C.A. Ross, Appl. Phys. Lett. 114 (2019) 052403. |
| [40] | X.L. Qi, T.L. Hughes, S.C. Zhang, Phys. Rev. B 78 (2008) 195424. |
| [41] |
J.Y. Deng, K.F. Dong, P. Yang, Y.G. Peng, G.P. Ju, J.F. Hu, G.M. Chow, J.S. Chen, J. Magn. Magn. Mater. 446 (2018) 125-134.
DOI URL |
| [42] | J.W. Mathews, A.E. Blakeslee, J. Cryst. Growth 27 (1974) 118-125. |
| [43] |
J. Narayan, B.C. Larson, J. Appl. Phys. 93 (2003) 278.
DOI URL |
| [44] |
C.H. Yan, F. Wei, Y. Bai, F. Wang, A.Q. Zhang, S. Ma, W. Liu, Z.D. Zhang, J. Mater. Sci. Technol. 44 (2020) 223-228.
DOI |
| [45] | S.D.Albright K.Zou, M.D.Morales-Acosta O.E.Dagdeviren, G.H. Simon, C. Zhou, S. Mandal, S. Ismail-Beigi, U.D. Schwarz, E.I. Altman, APL Mater. 7 (2019) 051106. |
| [46] |
K. Kobayashi, Surf. Sci. 639 (2015) 54-65.
DOI URL |
| [47] | A.A. Taskin, F. Yang, S. Sasaki, K. Segawa, Y. Ando, Phys. Rev. B 89 (2014) 121302. |
| [48] | R. Akiyama, K. Fujisawa, T. Yamaguchi, R. Ishikawa, S. Kuroda, Nano Res. 9 (2015) 4 90-4 98. |
| [49] |
K.L.I. Kobayashi, Y. Kato, Y. Katayama, K.F. Komatsubara, Phys. Rev. Lett. 37 (1976) 772-774.
DOI URL |
| [50] |
Y. Tanabe, K.K. Huynh, R. Nouchi, S. Heguri, G. Mu, J.T. Xu, H. Shimotani, K. Tanigaki, J. Phys. Chem. C 118 (2014) 3533-3538.
DOI URL |
| [51] |
L. He, F.X. Xiu, X.X. Yu, M. Teague, W.J. Jiang, Y.B. Fan, X.F. Kou, M.R. Lang, Y. Wang, G. Huang, N.C. Yeh, K.L. Wang, Nano Lett. 12 (2012) 1486-1490.
DOI URL |
| [52] | S. Wiedmann, A. Jost, C. Thienel, C. Brüne, P. Leubner, H. Buhmann, L.W. Molenkamp, J.C. Maan, U. Zeitler, Phys. Rev. B 91 (2015) 205311. |
| [1] | Lin Hao, Gang He, Shanshan Jiang, Zhenxiang Dai, Ganhong Zheng, Jinyu Lu, Lesheng Qiao, Jingbiao Cui. Fermi level unpinning achievement and transport modification in Hf1-xYbxOy/Al2O3/GaSb laminated stacks by doping engineering [J]. J. Mater. Sci. Technol., 2022, 121(0): 130-139. |
| [2] | C.H. Yan, F. Wei, Y. Bai, F. Wang, A.Q. Zhang, S. Ma, W. Liu, Z.D. Zhang. Structure and topological transport in Pb-doping topological crystalline insulator SnTe (001) film [J]. J. Mater. Sci. Technol., 2020, 44(0): 223-228. |
| [3] | Liubing Huang, Jia Grace Lu. Synthesis, Characterizations and Applications of Cadmium Chalcogenide Nanowires: A Review [J]. J. Mater. Sci. Technol., 2015, 31(6): 556-572. |
| [4] | Yunyan Liu, Shanying Yang, Gongxiang Wei, Jiaoqing Pan, Yuzhen Yuan, Chuanfu Cheng. Influence of Substrate Temperature on Stress and Morphology Characteristics of Co Doped ZnO Films Prepared by Laser-Molecular Beam Epitaxy [J]. J. Mater. Sci. Technol., 2013, 29(12): 1134-1138. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
