J. Mater. Sci. Technol. ›› 2022, Vol. 122: 101-120.DOI: 10.1016/j.jmst.2021.12.048
• Review Article • Previous Articles Next Articles
Jin Luoa, Keke Guana, Wen Leia,*(), Shaowei Zhangb, Quanli Jiac, Haijun Zhanga,*(
)
Received:
2021-07-16
Revised:
2021-11-16
Accepted:
2021-12-04
Published:
2022-09-20
Online:
2022-03-12
Contact:
Wen Lei,Haijun Zhang
About author:
zhanghaijun@wust.edu.cn (H. Zhang).Jin Luo, Keke Guan, Wen Lei, Shaowei Zhang, Quanli Jia, Haijun Zhang. One dimensional carbon-based composites as cathodes for lithium-sulfur battery[J]. J. Mater. Sci. Technol., 2022, 122: 101-120.
Fig. 1. (a) Schematic representation of LSBs and drawbacks of the sulfur cathode; (b) charge/discharge voltage profile of LSBs and corresponding intermediate sulfur species.
Structural design | Host materials | Synthesis method | Refs. |
---|---|---|---|
1DCM-coated nanostructure | MnO2@HCF | Template-assisted method | [ |
Fe3O4-NC | Polymerization-assisted synthesis | [ | |
SnS@CNTs | Solvothermal method | [ | |
CNT/CoS-NSs | Solvothermal method | [ | |
1DCM-wrapped nanostructure | Peapod-like MnO/C | Polymerization-assisted synthesis | [ |
Co@NHCRs | Template-directed thermal treatment method | [ | |
Sn/SnO2@C | Electrospinning | [ | |
Fe/Fe3C@N-CNT | CVD | [ | |
1DCM-supported nanostructure | CNF@Co3S4 | Hydrothermal method | [ |
C@WS2 | Hydrothermal method | [ | |
Mo2C/CNT | Heat treatment | [ | |
S@PCNFs-Cu | Electrospinning | [ | |
ZIF-8@CNTs | Electrospinning | [ | |
CNF/S/PANI | Polymerization-assisted synthesis | [ |
Table 1. Structural designs, host materials, and synthesis methods for 1DCM-based composites.
Structural design | Host materials | Synthesis method | Refs. |
---|---|---|---|
1DCM-coated nanostructure | MnO2@HCF | Template-assisted method | [ |
Fe3O4-NC | Polymerization-assisted synthesis | [ | |
SnS@CNTs | Solvothermal method | [ | |
CNT/CoS-NSs | Solvothermal method | [ | |
1DCM-wrapped nanostructure | Peapod-like MnO/C | Polymerization-assisted synthesis | [ |
Co@NHCRs | Template-directed thermal treatment method | [ | |
Sn/SnO2@C | Electrospinning | [ | |
Fe/Fe3C@N-CNT | CVD | [ | |
1DCM-supported nanostructure | CNF@Co3S4 | Hydrothermal method | [ |
C@WS2 | Hydrothermal method | [ | |
Mo2C/CNT | Heat treatment | [ | |
S@PCNFs-Cu | Electrospinning | [ | |
ZIF-8@CNTs | Electrospinning | [ | |
CNF/S/PANI | Polymerization-assisted synthesis | [ |
Fig. 3. (a) Illustration of Co-CNF synthesis and redox reaction of LiPSs. Potentiostatic discharge curves of a Li2S8 at 2.115 V on (b) CNF electrode and (c) Co-CNF electrode [55]. (Reproduced with permission. Copyright 2019, Elsevier.) (d) Schematic illustration for the fabrication of Co@NHCRs (Co-CH: cobalt carbonate hydroxide). (e) Electrostatic potential maps of C, N-C, and Co@N-C, and DFT calculations showing the interaction between Li-S and various carbon substrates [40]. (Reproduced with permission. Copyright 2016, Elsevier.).
Fig. 4. (a) Fabrication of the MnO2@HCF/S composite, and comparation between MnO2@HCF/S composite and HCF/S. (b) TEM images of MnO2@SiO2@C, MnO2@HCF, and MnO2@HCF/S. (Reproduced with permission. Copyright 2015, Wiley-VCH.) (c) Prolonged cycling performance of MnO2@HCF/S at 0.5 C and the corresponding Coulombic efficiency [35]. (d) Schematic illustration of the S@Fe3O4-NC@ACC synthesis. (e) Comparison of LiPS adsorption of ACC, NC@ACC, and Fe3O4-NC@ACC [36]. (Reproduced with permission. Copyright 2018, Wiley-VCH.) (f) Schematic of the LiPS adsorption and diffusion on the surface of various non-conductive metal oxides [86]. (Reproduced with permission. Copyright 2016, Springer Nature.).
Host material | Carbon/Carbon source | Synthesis method | Sulfur loading (content) | Electrochemical performance | Refs. |
---|---|---|---|---|---|
MnO2@HCF | Tetraethyl orthosilicate | Template-assisted method and thermal treatment | 3.5 mg cm-2 (71%) | 1216 mAh g-1 at 0.2 C | [ |
MnO2/GO/CNTs | CNTs | One-pot chemical method and thermal treatment | 2.8 mg cm-2 (64%) | 1500 mAh g-1 at 0.05 C | [ |
CNF@S/MnO2 | PAN/PS | Electrospinning and thermal treatment | 1.0-1.2 mg cm-2 (79.5%) | 728 mAh g-1 at 3.0 C | [ |
MnO@PNC | PPy | Thermal treatment | 3.0 mg cm-2 (75%) | 802 mAh g-1 at 5.0 C | [ |
CNTs/MnO | CNTs | Pyrolysis method | 1.0 mg cm-2 (N/A) | 716 mAh g-1 at 5.0 C | [ |
CNF-MnO | PAN | Electrospinning and thermal treatment | 1.0-1.4 mg cm-2 (60%) | 683.2 mAh g-1 at 1.0 C | [ |
Mn3O4@CNF | PAN | Electrospinning and thermal treatment | 11 mg cm-2 (50%) | 1055 mAh g-1 at 0.1 C | [ |
TiO2-ACF | ACF cloth | Electrospinning and thermal treatment | 3.0 mg cm-2 (N/A) | 915 mAh g-1 at 0.2 C | [ |
TiO2-HCFs | PVP | Electrospinning and thermal treatment | 67-80% (Li2S) | 400 mAh g-1(Li2S) at 5 C. | [ |
S-HMT@CNTa | MWCNT s | Hydrothermal treatment | 2.7 mg cm-2 (56%) | 848 mAh g-1at 5.0 C. | [ |
TiO2-B/CNT | CNTs | Hydrothermal treatment | 3.2 mg cm-2 (N/A) | 580 mAh g-1 after 300 cycles at 1.0 C | [ |
Fe3O4-NC@ACC | Carbon fiber cloth and PPy | Thermal treatment | 4.7 mg cm-2 (N/A) | 1316 mAh g-1 at 0.1 C | [ |
Fe3O4@CNTs | PVP | Thermal treatment | 5.5 mg cm-2 (75%) | 538.5 mAh g-1 after 1800 cycles at 1.0 C | [ |
NiFe2O4-CNTs | Carboxylated CNTs | Thermal treatment | 5.0 mg cm-2 (80%) | ∼550 mAh g-1 at 5.0 C | [ |
CNTs/CoO | PMMA and CNTs | Spray drying | 2.2 mg cm-2 (73%) | 1340 mAh g-1 at 0.2 C | [ |
CoO/Co@PCF | Carbon cloth | Thermal treatment | ∼3.0 mg cm-2 (61.2%) | 1214.2 mAh g-1 at 0.1 C | [ |
Co3O4/NCNT/LCNTb | CNTs | Sol-gel method and heat treatment | 12 mg cm-2 (N/A) | 1104 mAh g-1 at 0.5 C | [ |
TiO2/Co3O4-CNTs | C2H2 | CVD | N/A | 1270 mAh g-1 at 0.2 C | [ |
SnO2@rGO/CNTs | CNTs | CVD | N/A (65.5%) | 1205.4 mAh g-1 at 0.1 C | [ |
CeO2/CNTPc | CNTP | Spray drying | 4.6 mg cm-2 (60%) | 1217 mAh g-1 at 0.5 C | [ |
CeO2@CNF | PAN | Electrospinning and thermal treatment | 8.6 mg cm-2 (70.2%) | 789 mAh g-1 after 300 cycles at 0.1 C | [ |
CeO2@CNT | MWNTs | Solvothermal reaction | 1.3-1.6 mg cm-2 (59.8%) | 1359 mAh g-1 at 0.1 C | [ |
Table 2. Performance of metal oxides/1DCM composites.
Host material | Carbon/Carbon source | Synthesis method | Sulfur loading (content) | Electrochemical performance | Refs. |
---|---|---|---|---|---|
MnO2@HCF | Tetraethyl orthosilicate | Template-assisted method and thermal treatment | 3.5 mg cm-2 (71%) | 1216 mAh g-1 at 0.2 C | [ |
MnO2/GO/CNTs | CNTs | One-pot chemical method and thermal treatment | 2.8 mg cm-2 (64%) | 1500 mAh g-1 at 0.05 C | [ |
CNF@S/MnO2 | PAN/PS | Electrospinning and thermal treatment | 1.0-1.2 mg cm-2 (79.5%) | 728 mAh g-1 at 3.0 C | [ |
MnO@PNC | PPy | Thermal treatment | 3.0 mg cm-2 (75%) | 802 mAh g-1 at 5.0 C | [ |
CNTs/MnO | CNTs | Pyrolysis method | 1.0 mg cm-2 (N/A) | 716 mAh g-1 at 5.0 C | [ |
CNF-MnO | PAN | Electrospinning and thermal treatment | 1.0-1.4 mg cm-2 (60%) | 683.2 mAh g-1 at 1.0 C | [ |
Mn3O4@CNF | PAN | Electrospinning and thermal treatment | 11 mg cm-2 (50%) | 1055 mAh g-1 at 0.1 C | [ |
TiO2-ACF | ACF cloth | Electrospinning and thermal treatment | 3.0 mg cm-2 (N/A) | 915 mAh g-1 at 0.2 C | [ |
TiO2-HCFs | PVP | Electrospinning and thermal treatment | 67-80% (Li2S) | 400 mAh g-1(Li2S) at 5 C. | [ |
S-HMT@CNTa | MWCNT s | Hydrothermal treatment | 2.7 mg cm-2 (56%) | 848 mAh g-1at 5.0 C. | [ |
TiO2-B/CNT | CNTs | Hydrothermal treatment | 3.2 mg cm-2 (N/A) | 580 mAh g-1 after 300 cycles at 1.0 C | [ |
Fe3O4-NC@ACC | Carbon fiber cloth and PPy | Thermal treatment | 4.7 mg cm-2 (N/A) | 1316 mAh g-1 at 0.1 C | [ |
Fe3O4@CNTs | PVP | Thermal treatment | 5.5 mg cm-2 (75%) | 538.5 mAh g-1 after 1800 cycles at 1.0 C | [ |
NiFe2O4-CNTs | Carboxylated CNTs | Thermal treatment | 5.0 mg cm-2 (80%) | ∼550 mAh g-1 at 5.0 C | [ |
CNTs/CoO | PMMA and CNTs | Spray drying | 2.2 mg cm-2 (73%) | 1340 mAh g-1 at 0.2 C | [ |
CoO/Co@PCF | Carbon cloth | Thermal treatment | ∼3.0 mg cm-2 (61.2%) | 1214.2 mAh g-1 at 0.1 C | [ |
Co3O4/NCNT/LCNTb | CNTs | Sol-gel method and heat treatment | 12 mg cm-2 (N/A) | 1104 mAh g-1 at 0.5 C | [ |
TiO2/Co3O4-CNTs | C2H2 | CVD | N/A | 1270 mAh g-1 at 0.2 C | [ |
SnO2@rGO/CNTs | CNTs | CVD | N/A (65.5%) | 1205.4 mAh g-1 at 0.1 C | [ |
CeO2/CNTPc | CNTP | Spray drying | 4.6 mg cm-2 (60%) | 1217 mAh g-1 at 0.5 C | [ |
CeO2@CNF | PAN | Electrospinning and thermal treatment | 8.6 mg cm-2 (70.2%) | 789 mAh g-1 after 300 cycles at 0.1 C | [ |
CeO2@CNT | MWNTs | Solvothermal reaction | 1.3-1.6 mg cm-2 (59.8%) | 1359 mAh g-1 at 0.1 C | [ |
Fig. 5. (a) Schematic illustration and (b) SEM and TEM images of the structural advantages of the double-shelled hollow Co9S8@CNTs nanospheres. (c) Optimized adsorption configurations with key bond lengths (bond orders) of Li2S6 on Co9S8, and the corresponding front-view and side-view electron density difference images of Li2S6 on Co9S8 surfaces [107]. (Reproduced with permission. Copyright 2019, Royal Society of Chemistry.) (d) Schematic illustration of the process of synthesizing S/CNF@Co3S4 and the interaction between Li2S6 and Co3S4 nanosheets. (e) Image of the Li2S6 adsorption test and UV-vis spectra for Blank Li2S6, CNF, and CNF@Co3S4 [43]. (f) Schematic illustration for the preparation of WS2 vertically aligned on the CNFs. (g) Long-term cycling stability test over 1500 cycles at 2 C [44]. (Reproduced with permission. Copyright 2016, Wiley-VCH.).
Fig. 6. (a) Li2S6 adsorption by carbon and metal sulfides. (b) Corresponding simulation of Li2S6 adsorbed on the surface of metal sulfides [128]. (Reproduced with permission. Copyright 2017, HighWire.) (c) Schematic diagrams of LiPSs anchored on the polar host surface through S-binding in metal sulfide cathodes [103]. (Reproduced with permission. Copyright 2017, American Chemical Society.).
Host material | Carbon/Carbon source | Synthesis method | Sulfur loading (content) | Electrochemical performance | Refs. |
---|---|---|---|---|---|
MWCNT/Co9S8 | MWCNTs | Hydrothermal | 1.0 mg cm-2 (60%) | 1124 mAh g-1 at 0.1 C | [ |
Co9S8/MWCNTs | MWCNTs | Solvothermal | 1.5 mg cm-2 (76.08%) | 1154 mAh g-1 at 0.1 C | [ |
Co9S8@CNTs | C2H2 | CVD | 5.5 mg cm-2 (68.67%) | 676.7 mAh g-1 at 10 C | [ |
CNF@Co3S4 | PAN | Electrospinning and thermal treatment | 6.8 mg cm-2 (N/A) | 4.1 mA h cm-2 at 0.1 C | [ |
CNTs/Co3S4-NBsa | MWCNTs | Self-templated | 3.5 mg cm-2 (∼70%) | 954 mAh g-1 at 1 C | [ |
CoS/C/CNT | CNTs | Spray drying | 3.0 mg cm-2 (59.2%) | 1031 mAh g-1 at 500 mA g-1 | [ |
CNTs/CoS-NSs | CNT and PAN | Electrospinning and thermal treatment | 1.0-1.5 mg cm-2 (76.5%) | 1425 mAh g-1 at 0.2 C | [ |
FSC/MoS2/CNTsb | Fish scales and CNTs | Thermal treatment and hydrothermal | 1.8-2.0 mg cm-2 (70.47%) | 671.6 mAh g-1 at 2.0 C | [ |
MoS2/CNTs | CNTs | Hydrothermal | 2.6 mg cm-2 (88%) | 1473 mAh g-1 at 0.2 C | [ |
NSCNTs/MoS2c | CNTs | Hydrothermal | 2.2 mg cm-2 (88.3%) | 814 mAh g-1 at 1 C | [ |
TiS2@NSC | Cotton | Thermal treatment | 7.7 mg cm-2 (N/A) | 5.9 mAh cm-2 after 100 cycles at 0.1 C | [ |
SnS2@CNT | CNTs | Hydrothermal | 4.8 mg cm-2 (78%) | 1375 mAh g-1 at 0.1 C | [ |
C@WS2 | CNFs | Hydrothermal | 1.2 mg cm-2 (N/A) | ∼1051 mAh g-1 at 0.1 C | [ |
NiCo2S4@CNTs | Carboxylated CNTs | Hydrothermal | 0.8 mg cm-2 (66%) | 758 mAh g-1 at 2.0 C | [126] |
Table 3. Different metal sulfides integrated with 1DCMs.
Host material | Carbon/Carbon source | Synthesis method | Sulfur loading (content) | Electrochemical performance | Refs. |
---|---|---|---|---|---|
MWCNT/Co9S8 | MWCNTs | Hydrothermal | 1.0 mg cm-2 (60%) | 1124 mAh g-1 at 0.1 C | [ |
Co9S8/MWCNTs | MWCNTs | Solvothermal | 1.5 mg cm-2 (76.08%) | 1154 mAh g-1 at 0.1 C | [ |
Co9S8@CNTs | C2H2 | CVD | 5.5 mg cm-2 (68.67%) | 676.7 mAh g-1 at 10 C | [ |
CNF@Co3S4 | PAN | Electrospinning and thermal treatment | 6.8 mg cm-2 (N/A) | 4.1 mA h cm-2 at 0.1 C | [ |
CNTs/Co3S4-NBsa | MWCNTs | Self-templated | 3.5 mg cm-2 (∼70%) | 954 mAh g-1 at 1 C | [ |
CoS/C/CNT | CNTs | Spray drying | 3.0 mg cm-2 (59.2%) | 1031 mAh g-1 at 500 mA g-1 | [ |
CNTs/CoS-NSs | CNT and PAN | Electrospinning and thermal treatment | 1.0-1.5 mg cm-2 (76.5%) | 1425 mAh g-1 at 0.2 C | [ |
FSC/MoS2/CNTsb | Fish scales and CNTs | Thermal treatment and hydrothermal | 1.8-2.0 mg cm-2 (70.47%) | 671.6 mAh g-1 at 2.0 C | [ |
MoS2/CNTs | CNTs | Hydrothermal | 2.6 mg cm-2 (88%) | 1473 mAh g-1 at 0.2 C | [ |
NSCNTs/MoS2c | CNTs | Hydrothermal | 2.2 mg cm-2 (88.3%) | 814 mAh g-1 at 1 C | [ |
TiS2@NSC | Cotton | Thermal treatment | 7.7 mg cm-2 (N/A) | 5.9 mAh cm-2 after 100 cycles at 0.1 C | [ |
SnS2@CNT | CNTs | Hydrothermal | 4.8 mg cm-2 (78%) | 1375 mAh g-1 at 0.1 C | [ |
C@WS2 | CNFs | Hydrothermal | 1.2 mg cm-2 (N/A) | ∼1051 mAh g-1 at 0.1 C | [ |
NiCo2S4@CNTs | Carboxylated CNTs | Hydrothermal | 0.8 mg cm-2 (66%) | 758 mAh g-1 at 2.0 C | [126] |
Fig. 7. (a) Schematic illustration of the fabrication procedure of multi-yolk/shell structured composite. (b) Schematic illustration of the Li2S nucleation and growth on the composite surface (left) and on the carbon surface (right). (Reproduced with permission. Copyright 2020, Elsevier.) (c) Long-term cycling performance of cathode at a rate of 1 C. (d) Schematic illustration of the synthesis process of Fe/Fe3C@N-CNT/S. (e) Ultralight Fe/Fe3C@N-CNT [42]. (Reproduced with permission. Copyright 2019, Royal Society of Chemistry.) (f) Schematic illustration of the synthesis process of S-Mo2C/CNT. (g) Cycling performance of S-Mo2C/CNT at 1 C over 100 cycles with a sulfur loading of 2.5 mg cm-2 and (h) charge/discharge profiles of S-Mo2C/CNT at different current rates [45]. (Reproduced with permission. Copyright 2018, IOP Publishing.).
Fig. 8. (a) LiPS absorptivity evaluated by UV/vis absorption spectroscopy. (b) Discharge/charge capacity cycled at various current densities from 0.2 to 4 C [152]. (Reproduced with permission. Copyright 2018, Royal Society of Chemistry.) (c) Schematic illustration of the functions of the CNT-MoP component. (d) Rate capability and (e) long-term cycling stability of CNT-MoP/GO-S in comparison with that of CNT/GO-S [158]. (Reproduced with permission. Copyright 2017, Springer Nature.) (f) Schematic of the preparation of the dual-functional graphene/PP/Al2O3 separator. (g) Rate performances at various current densities [164]. (Reproduced with permission. Copyright 2017, Wiley-VCH.).
Fig. 9. (a) Photos of a ZIF-8@CNT hybrid that is flexible and compressible. SEM images of (b) S-ZIF-8@CNTs and (c) L-ZIF-8@CNTs [47]. (Reproduced with permission. Copyright 2018, Wiley-VCH.) (d) Schematic illustration for the synthesis of nanohybrids fabric. (e) SEM and TEM images of the cathode [174]. (Reproduced with permission. Copyright 2018, Royal Society of Chemistry.) (f) Fabrication of the hierarchical S@CNTs/Co3S4@NC electrode. (g) TEM images of CNTs/Co3S4@NC showing highly dispersed Co3S4 nanoparticles within the nanocubes [175]. (Reproduced with permission. Copyright 2019, American Chemical Society.).
Fig. 10. (a) Schematic illustration of the preparation process of N-MXene@CNT microspheres. SEM images of (b) multilayered Ti3C2 MXene and (c) N-Ti3C2@CNT microspheres [189]. (Reproduced with permission. Copyright 2019, Springer Nature.) (d) Schematic display of the growth routine of Mo2C-CNT composites and the formation process of Mo2C. (e) XPS survey scan of Mo2C-CNT/S. (f) Schematic illustration of the interaction between hydroxyl-decorated Mo2C and LiPSs. (g) Cycling performances of the Mo2C-CNT/S and Mo2C/S at 0.1 C [190]. (Reproduced with permission. Copyright 2018, Wiley-VCH.).
Fig. 11. (a) Schematic diagram of the action of the S-CNT-PPy composite towards improving cathode performance [200]. (Copyright 2013, Wiley-VCH.) (b) Schematic illustration and (c) SEM and TEM images of CNF/S/PANI [48]. (Reproduced with permission. Copyright 2018, Wiley-VCH.) (d) Schematic illustration for the synthesis of P@E-CNTs/S [203]. (Reproduced with permission. Copyright 2018, Wiley-VCH.) (e) Schematic illustration and (f) photographs of the flexible SPAN-CNT. (g) Electrochemical performance of SPAN-CNT composites [212]. (Reproduced with permission. Copyright 2019, Elsevier.) (h) Schematic illustration for the nucleation-growth/decomposition of Li2S nanoflakes of the SPAN/CNT nanofibers. (i) Cyclic performance of SPAN/CNT for longer-term operation at 800 mA g-1 [213]. (Reproduced with permission. Copyright 2019, Wiley-VCH.).
Cathode | Precursor | Initial capacity (mAh g-1) | Current density | Capacity retention | Refs. |
---|---|---|---|---|---|
PPy-MWCNT | PPy | 852 | 0.1 C | ∼56%/100 cycles/0.1 C | [ |
CNF-S-PANI | PANI | 1278 | 0.2 C | 76%/300 cycles/0.2 C | [ |
P@E-CNTs/S | PANI | 1215 | 0.2 C | 80%/200 cycles/0.2 C | [ |
SPAN/CNT | PAN | 1610 | 0.2 C | NG/500 cycles/1.0 C | [ |
SPAN/CNT | PAN | 1180 | 800 mA g-1 | No fading | [ |
CoS2-SPAN-PAN | PAN | 1322 | 0.2 C | NG/400 cycles/1.0 C | [ |
Table 4. Electrochemical performance of various polymer/1DCM composite.
Cathode | Precursor | Initial capacity (mAh g-1) | Current density | Capacity retention | Refs. |
---|---|---|---|---|---|
PPy-MWCNT | PPy | 852 | 0.1 C | ∼56%/100 cycles/0.1 C | [ |
CNF-S-PANI | PANI | 1278 | 0.2 C | 76%/300 cycles/0.2 C | [ |
P@E-CNTs/S | PANI | 1215 | 0.2 C | 80%/200 cycles/0.2 C | [ |
SPAN/CNT | PAN | 1610 | 0.2 C | NG/500 cycles/1.0 C | [ |
SPAN/CNT | PAN | 1180 | 800 mA g-1 | No fading | [ |
CoS2-SPAN-PAN | PAN | 1322 | 0.2 C | NG/400 cycles/1.0 C | [ |
[1] | X.D. Hong, J. Mei, L. Wen, Y.Y. Tong, A.J. Vasileff, L.Q. Wang, J. Liang, Z.Q. Sun, S. X. Dou,Adv. Mater. 31 (2019) 1802822. |
[2] | M.D. Zheng, H. Tang, Q. Hu, S.S. Zheng, L.L. Li, J. Xu, H. Pang,Adv. Funct. Mater. 28 (2018) 1707500. |
[3] |
D. Larcher, J.M. Tarascon,Nat. Chem. 7 (2015) 19-29.
DOI URL PMID |
[4] |
K.X. Wang, X.H. Li, J.S. Chen,Adv. Mater. 27 (2015) 527-545.
DOI URL |
[5] |
Y.X. Tang, Y.Y. Zhang, W.L. Li, B. Ma, X.D. Chen,Chem. Soc. Rev. 44 (2015) 5917-6388.
DOI URL |
[6] |
Y. Yang, G.Y. Zheng, Y. Cui,Chem. Soc. Rev. 42 (2013) 3018-3032.
DOI URL |
[7] | Y.J. Liu, P. He, H.S. Zhou,Adv. Energy Mater. 8 (2018) 1701602. |
[8] | T. Tao, S. Lu, Y. Fan, W. Lei, S. Huang, Y. Chen,Adv. Mater. 29 (2017) 1700542. |
[9] | J.H. Zuo,Y.J. Gong, Tungsten 2 (2020) 134-146. |
[10] | X. Fang,H.S. Peng, Small 11 (2015) 1488-1511. |
[11] | D. Bresser, S. Passerini,B. Scrosati, ChemComm 49 (2013) 10545-10562. |
[12] |
A. Manthiram, Y. Fu, S.H. Chung, C. Zu, Y.S. Su,Chem. Rev. 114 (2014) 11751-11787.
DOI URL PMID |
[13] | J.Q. Huang, Q. Zhang, F. Wei,Energy Storage Mater. 1 (2015) 127-145. |
[14] |
F. An, C.X. Lu, J.H. Guo, H.B. Lu,J. Mater. Sci. 47 (2011) 3327-3333.
DOI URL |
[15] |
Y.H. Wu, P.W. Qiao, T.C. Chong, Z.X. Shen,Adv. Mater. 14 (2002) 64-67.
DOI URL |
[16] | G.J. Hu, Z.H. Sun, C. Shi, R.P. Fang, J. Chen, P.X. Hou, C. Liu, H.M. Cheng, F. Li,Adv. Mater. 29 (2017) 1603835. |
[17] | J.L. Hutchison, N.A. Kiselev, E.P. Krinichnaya, A.V. Krestinin, R.O. Loutfy, A.P. Morawsky, V.E. Muradyan, E.D. Obraztsova, J. Sloan, S.V. Terekhov, D. N. Zakharov,Carbon 39 (2001) 761-770. |
[18] | C.D. Scott, S. Arepalli, P. Nikolaev, R.E. Smalley,Appl. Phys. A Mater. Sci. Pro-cess. 72 (2001) 573-580. |
[19] |
Z.M. Tong, L. Huang, W. Lei, H.J. Zhang, S.W. Zhang,J. Energy Chem. 54 (2021) 254-273.
DOI URL |
[20] | L. Ma, K.E. Hendrickson, S.Y. Wei,L.A. Archer, Nano Today 10 (2015) 315-338. |
[21] | S.Q. Qi, J.H. Sun, J.P. Ma, Y. Sun, K. Goossens, P.Jia H.Li, X.Y. Fan, C.W. Bielawski,J. X. Geng, Nanotechnology 30 (2019) 024001. |
[22] |
Y. Zhao, W.L. Wu, J.X. Li, Z.C. Xu, L.H. Guan,Adv. Mater. 26 (2014) 5113-5118.
DOI URL |
[23] |
Y.H. Wu, M.X. Gao, X. Li, Y.F. Liu, H.G. Pan,J. Alloy. Compd. 608 (2014) 220-228.
DOI URL |
[24] | J.S. Lee, W. Kim, J. Jang, A. Manthiram,Adv. Energy Mater. 7 (2017) 1601943. |
[25] | X.X. Peng, Y.Q. Lu, L.L. Zhou, T. Sheng, S.Y. Shen, H.G. Liao, L. Huang, J.T. Li,S.G. Sun, Nano Energy 32 (2017) 503-510. |
[26] |
Z. Li, H.B. Wu, X.W. Lou,Energ. Environ. Sci. 9 (2016) 3061-3070.
DOI URL |
[27] | Y.Z. Liu, G.R. Li, Z.W. Chen, X.S. Peng,J. Mater. Chem. A 5 (2017) 9775-9784. |
[28] | X. Wu, S. Li, B. Wang, J. Liu, M. Yu,Renew. Energy 158 (2020) 509-519. |
[29] | K. Chen, Z.H. Sun, R.P. Fang, Y. Shi, H.M. Cheng, F. Li,Adv. Funct. Mater. 28 (2018) 1707592. |
[30] | K. Mi, S.W. Chen, B.J. Xi, S.S. Kai, Y. Jiang, J.K. Feng, Y.T. Qian, S.L. Xiong,Adv. Funct. Mater. 27 (2017) 1604265. |
[31] | M. Zhang, W. Chen, L.X. Xue, Y. Jiao, T.Y. Lei, J.W. Chu, J.W. Huang, C.H. Gong, C. Y. Yan, Y.C. Yan, Y. Hu, X.F. Wang, J. Xiong,Adv. Energy Mater. 10 (2020) 1903008. |
[32] | L. Zhou, D.L. Danilov, R.A. Eichel, P.H.L. Notten,Adv. Energy Mater. 11 (2021) 2001304. |
[33] | J.Y. Hwang, H.M. Kim, S.K. Lee, J.H. Lee, A. Abouimrane, M.A. Khaleel, I. Bel- harouak, A. Manthiram, Y.K. Sun,Adv. Energy Mater. 6 (2016) 1501480. |
[34] | A.Y. Kim, M.K. Kim, J.Y. Kim, Y. Wen, L. Gu, V.D. Dao, H.S. Choi, D. Byun, J.K. Lee,J. Nano Res. 10 (2017) 2083-2095. |
[35] |
Z. Li, J.T. Zhang, X.W. Lou,Angew Chem. Int. Ed. Engl. 54 (2015) 12886-12890.
DOI URL |
[36] | K. Lu, H. Zhang, S.Y. Gao, H.Y. Ma, J.Z. Chen, Y.W. Cheng,Adv. Funct. Mater. 29 (2019) 1807309. |
[37] | Y.Fang P.He, X.Y. Yu, X.W.D. Lou, Angew. Chem.Int. Ed. 56 (2017) 12202-12205. |
[38] | L.B. Ma, W.J. Zhang, L. Wang, Y. Hu, G.Y. Zhu, Y.R. Wang, R.P. Chen, T. Chen, Z. X. Tie, J. Liu,Z. Jin, ACS Nano 12 (2018) 4868-4876. |
[39] | H. Jiang, Y.J. Hu, S.J. Guo, C.Y. Yan, P.S. Lee,C.Z. Li, ACS Nano 8 (2014) 6038. |
[40] | M.D. Zhang, C. Yu, C.T. Zhao, X.D. Song, X.T. Han, S.H. Liu, C. Hao, J.S. Qiu,Energy Storage Mater. 5 (2016) 223-229. |
[41] |
S.W. Gao, N. Wang, S. Li, D.M. Li, Z.M. Cui, G.C. Yue, J.C. Liu, X.X. Zhao, L. Jiang, Y. Zhao,Angew. Chem. Int. Ed. 59 (2020) 2465-2472.
DOI URL |
[42] | Y.S. Zhang, P. Zhang, B. Li, S.J. Zhang, K.L. Liu, R.S. Hou, X.L. Zhang, S.R.P. Silva, G.S. Shao,Energy Storage Mater. 27 (2020) 159-168. |
[43] | X.Z. Zhang, C.Q. Shang, E.M. Akinoglu, X. Wang, G.F. Zhou,Adv. Sci. 7 (2020) 2002037. |
[44] | T.Y. Lei, W. Chen, J.W. Huang, C.Y. Yan, H.X. Sun, C. Wang, W.L. Zhang, Y.R. Li, J. Xiong,Adv. Energy Mater. 7 (2017) 1601843. |
[45] | R. Razaq, D. Sun, Y. Xin, Q. Li, T.Z. Huang, L. Zheng, Z.L. Zhang,Y.H. Huang, Nanotechnology 29 (2018) 295401. |
[46] | L.C. Zeng, Y. Jiang, J. Xu, M. Wang, W.H. Li,Y. Yu, Nanoscale 7 (2015) 10940-10949. |
[47] | H. Zhang, W.Q. Zhao, M.C. Zou, Y.S. Wang, Y.J. Chen, L. Xu, H.S. Wu, A.Y. Cao,Adv. Energy Mater. 8 (2018) 1800013. |
[48] | P. Zhu, J.D. Zhu, C.Y. Yan, M. Dirican, J. Zang, H. Jia, Y. Li, Y. Kiyak, H.S. Tan, X. W. Zhang,Adv. Mater. Interfaces 5 (2018) 1701598. |
[49] | G. Babu, K. Ababtain, K.Y. Ng, L.M. Arava,Sci. Rep. 5 (2015) 8763. |
[50] |
L. Wei, W.L. Li, T. Zhao, N.X. Zhang, L. Li, F. Wu, R.J. Chen,Chem. Commun. 56 (2020) 3007-3010.
DOI URL |
[51] |
H. Al Salem, G. Babu, C.V. Rao, L.M. Arava,J. Am. Chem. Soc. 137 (2015) 11542-11545.
DOI URL |
[52] | M.E. Zhong, J.D. Guan, Q.J Feng, X.W. Wu, Z.B. Xiao, W. Zhang, S. Tong, N. Zhou, D.X. Gong,Carbon 128 (2018) 86-96. |
[53] |
C.J. Hu, C.K. Yang, J.J. Yang, N.N. Han, R.Y. Yuan, Y.F. Chen, H. Liu, T.H. Xie, R. D. Chen, H.H. Zhou, W. Liu, X.M. Sun,ACS Appl. Energy Mater. 2 (2019) 2904-2912.
DOI URL |
[54] |
Y.J. Li, J.M. Fan, M.S. Zheng, Q.F. Dong,Energy Environ. Sci. 9 (2016) 1998-2004.
DOI URL |
[55] |
S.P. Li, X. Chen, F. Hu, R. Zeng, Y.H. Huang, L.X. Yuan, J. Xie,Electrochim. Acta 304 (2019) 11-19.
DOI URL |
[56] | L.B. Ma, H.N. Lin, W.J. Zhang, P.Y. Zhao, G.Y. Zhu, Y. Hu, R.P. Chen, Z.X. Tie, J. Liu,Z Jin, Nano Lett. 18 (2018) 7949-7954. |
[57] |
S.Y. Zheng, F. Yi, Z.P. Li, Y.J. Zhu, Y.H. Xu, C. Luo, J.H. Yang, C.S. Wang,Adv. Funct. Mater. 24 (2014) 4156-4163.
DOI URL |
[58] | Q.H. Yu, Y. Lu, R.J. Luo, X.M. Liu, K.F. Huo, J.K. Kim, J. He, Y.S. Luo,Adv. Funct. Mater. 28 (2018) 1804520. |
[59] |
Y.R. Wang, X.W. Zhang, P. Chen, H.T. Liao, S.Q. Cheng,Electrochim. Acta 80 (2012) 264-268.
DOI URL |
[60] | R. Cai, J. Chen, J.X. Zhu, C. Xu, W.Y. Zhang, C.M. Zhang, W.H. Shi, H.T. Tan, D. Yang, H.H. Hng, T.M. Lim, Q.Y. Yan,J. Phys. Chem. C 116 (2012) 12468-12474. |
[61] | Q. Li, J.N. Guo, J. Zhao, C.C. Wang,F. Yan, Nanoscale 11 (2019) 647-655. |
[62] |
X. Liu, L. Wang, P. Yu, C.G. Tian, F.F. Sun, J.Y. Ma, W. Li, H.G. Fu,Angew. Chem. Int. Ed. 57 (2018) 16166-16170.
DOI URL PMID |
[63] | Z.X. Shi, Z.T. Sun, J.S. Cai, Z.D. Fan, J. Jin, M.L. Wang, J.Y. Sun,Adv. Funct. Mater. 31 (2020) 2006798. |
[64] | Y. Hu, C. Cheng, T.R. Yan, G.L. Liu, C. Yuan, Y.Y. Yan, Z.H. Gu, P. Zeng, L. R. Zheng, J. Zhang, L. Zhang,Chem. Eng. J. 421 (2021) 129997. |
[65] | J.H. Yom, S.M. Cho, S.W. Hwang, W.Y. Yoon,J. Electrochem. Soc. 163 (2016) A2179-A2184. |
[66] | Z.S. Qiao, F. Zhou, Q.F. Zhang, F. Pei, H.F. Zheng, W.J. Xu, P.F. Liu, Y.T. Ma, Q.S. Xie, L.S. Wang, X.L. Fang, D.L. Peng,Energy Storage Mater. 23 (2019) 62-71. |
[67] | X.R. Gao, Y. Yu, Q.R. Liang, Y.J. Pang, L.Q. Miao, X.M. Liu, Z.K. Kou, J.Q. He, S.J. Pennycook, S.C. Mu, J. Wang,Appl. Catal. B 270 (2020) 118889. |
[68] | Y.S. He, M.J. Li, Y.G. Zhang, Z.Z. Shan, Y. Zhao, J.D. Li, G.H. Liu, C.Y. Liang, Z. Bakenov, Q. Li,Adv. Funct. Mater. 30 (2020) 2000613. |
[69] | B. Fan, D.K. Zhao, W. Xu, Q.K. Wu, W. Zhou, W. Lei, X.H. Liang, L.G. Li,Elec- trochim. Acta 383 (2021) 138371. |
[70] | M.S. Song, S.C. Han, H.S. Kim, J.H. Kim, K.T. Kim, Y.M. Kang, H.J. Ahn, S.X. Dou, J.Y. Lee,J. Electrochem. Soc. 151 (2004) A791-A795. |
[71] | Q. Pang, D. Kundu, M. Cuisinier, L.F. Nazar,Nat. Commun. 5 (2014) 4759. |
[72] |
Z.B. Xiao, Z. Yang, L. Wang, H.G. Nie, M.E. Zhong, Q.Q. Lai, X.J. Xu, L.J. Zhang, S. M. Huang,Adv. Mater. 27 (2015) 2891-2898.
DOI URL |
[73] | X. Liang,L.F. Nazar, ACS Nano 10 (2016) 4192-4198. |
[74] | H. Ahn, Y. Kim, J. Bae, Y.K. Kim, W.B. Kim,Chem. Eng. J. 401 (2020) 126042. |
[75] | X. Liang, C. Hart, Q. Pang, A. Garsuch, T. Weiss, L.F. Nazar,Nat. Commun. 6 (2015) 5682. |
[76] | C. Lin, L.B. Qu, J.T. Li, Z.Y. Cai, H.Y. Liu, P. He, X. Xu, L.Q. Mai,J. Nano Res. 12 (2018) 205-210. |
[77] |
G.D. Park, J. Lee, Y.Z. Piao, Y.C. Kang,Chem. Eng. J. 335 (2018) 600-611.
DOI URL |
[78] |
X.Y. Qian, X.L. Yang, L.N. Jin, D.W. Rao, S.S. Yao, X.Q. Shen, K.S. Xiao, S.B. Qin, J. Xiang,Mater. Res. Bull. 95 (2017) 402-408.
DOI URL |
[79] | X.Q. Zhang, W. Yuan, Y. Yang, Y. Chen, Z.H. Tang, C. Wang, Y.H. Yuan, Y.T. Ye, Y.P. Wu,Y. Tang, Small 16 (2020) 2005998. |
[80] | Z. Wei Seh, W. Li, J.J. Cha, G. Zheng, Y. Yang, M.T. McDowell, P.C. Hsu, Y. Cui,Nat. Commun. 4 (2013) 1331. |
[81] |
K.Y. Xie, K. Zhang, Y.Z. Han, K. Yuan, Q. Song, J.G. Wang, C. Shen, X.R. Liu, B.Q. Wei,Electrochim. Acta 210 (2016) 415-421.
DOI URL |
[82] |
X.R. Wang, X.X. Bi, S.N. Wang, Y. Zhang, H. Du, J. Lu,ACS Appl. Mater. Inter- faces 10 (2018) 16552-16560.
DOI URL |
[83] | J.R. He, L. Luo, Y.F. Chen, A. Manthiram,Adv. Mater. 29 (2017) 1702707. |
[84] | Y.P. Zhang, R. Gu, S. Zheng, K.X. Liao, P.H. Shi, J.C. Fan, Q.J. Xu, Y.L. Min,J. Mater. Chem. A 7 (2019) 21747-21758. |
[85] | B.E. Li, Z.H. Sun, Y. Zhao, Z.S. Zhang,Mater. Lett. 255 (2019) 126529. |
[86] | X.Y. Tao, J.G. Wang, C. Liu, H. Wang, H.B. Yao, G.Y. Zheng, Z.W. Seh, Q.X. Cai, W.Y. Li, G.M. Zhou, C.X. Zu, Y. Cui,Nat. Commun. 7 (2016) 11203. |
[87] | X. Liang, C.Y. Kwok, F. Lodi-Marzano, Q. Pang, M. Cuisinier, H. Huang, C.J. Hart, D. Houtarde, K. Kaup, H. Sommer, T. Brezesinski, J. Janek, L.F. Nazar,Adv. En- ergy Mater. 6 (2016) 1501636. |
[88] |
Y. Li, D.X. Ye, W. Liu, B. Shi, R. Guo, H.B. Zhao, H.J. Pei, J.Q. Xu, J.Y. Xie,ACS Appl. Mater. Interfaces 8 (2016) 28566-28573.
DOI URL |
[89] |
J. Hu, Z.Y. Wang, Y. Fu, L.L. Lyu, Z.G. Lu, L.M. Zhou,Sci. China Mater. 63 (2020) 728-738.
DOI URL |
[90] | T.H. An, D.R. Deng, M. Lei, Q.H. Wu, Z.W. Tian, M.S. Zheng, Q.F. Dong,J. Mater. Chem. A 4 (2016) 12858-12864. |
[91] |
J.H. Zhu, R. Pitcheri, T. Kang, Y. Guo, J. Li, Y.J. Qiu,Ceram. Int. 44 (2018) 16837-16843.
DOI URL |
[92] |
X. Chen, L.X. Yuan, Z.X. Hao, X.X. Liu, J.W. Xiang, Z.R. Zhang, Y.H. Huang, J. Xie,ACS Appl. Mater. Interfaces 10 (2018) 13406-13412.
DOI URL |
[93] | A. Chen, W.F. Liu, H. Hu, T. Chen, B.L. Ling,K.Y. Liu, J. Power Sources 400 (2018) 23-30. |
[94] | Z. Zhang, S. Basu, P.P. Zhu, H. Zhang, A.H. Shao, N. Koratkar, Z.Y. Yang,Carbon 142 (2019) 32-39. |
[95] | J.Y. Wang, W.J. Wang, Y.G. Zhang, Y. Wang,Y. Zhao, Nanotechnology 31 (2020) 025403. |
[96] | W.C. Ren, W. Ma, M.M. Umair, S.F. Zhang,B.T. Tang, ChemSusChem 11 (2018) 2695-2702. |
[97] | D. Bosubabu, J. Sivaraj, P. Gurunathan,K. Ramesha, Energy Fuels 34 (2020) 16810-16818. |
[98] | W.L. Qiu, J. Li, Y.G. Zhang, G. Kalimuldina,Z. Bakenov, Nanotechnology 32 (2021) 075403. |
[99] |
Q.Q. Liu, Q. Jiang, L. Jiang, J.Q. Peng, Y.K. Gao, Z.H. Duan, X.Y. Lu,Appl. Surf. Sci. 462 (2018) 393-398.
DOI URL |
[100] | D. Gueon, J. Yoon, J.T. Hwang, J.H. Moon,Chem. Eng. J. 390 (2020) 124548. |
[101] | H.X. Wang, B. Zhang, X.Q. Zeng, L.J. Yan, J.C. Zheng, M. Ling, Y. Hou, Y.Y. Lu,C. D. Liang, J. Power Sources 473 (2020) 228588. |
[102] | D.J. Xiao, C.X. Lu, C.M. Chen, S.X. Yuan,Energy Storage Mater. 10 (2018) 216-222. |
[103] |
X. Chen, H.J. Peng, R. Zhang, T.Z. Hou, J.Q. Huang, B. Li, Q. Zhang,ACS Energy Lett. 2 (2017) 795-801.
DOI URL |
[104] | N. Kumar, N. Raman, A. Sundaresan, Z. Anorg,Allg. Chem. 640 (2014) 1069-1074. |
[105] |
Q. Pang, D. Kundu, LF. Nazar,Mater. Horiz. 3 (2016) 130-136.
DOI URL |
[106] |
W. Tong, Y.D. Huang, W. Jia, X.C. Wang, Y. Guo, Z.P. Sun, D.Z. Jia, J. Zong,J. Alloy. Compd. 731 (2018) 964-970.
DOI URL |
[107] |
J. Zhou, X.J. Liu, J.B. Zhou, H.Y. Zhao, N. Lin, L.Q. Zhu, Y.C. Zhu, G.M. Wang, Y.T. Qian,Nanoscale Horiz. 4 (2019) 182-189.
DOI URL PMID |
[108] | J. Pu, Z.H. Shen, J.X. Zheng, W.L. Wu, C. Zhu, Q.W. Zhou, H.G. Zhang,F. Pan, Nano Energy 37 (2017) 7-14. |
[109] | M.S. Xu, P. Dong, T. Li, H.M. Hua, Y.T. Li, X. Li, Y.Y. Zhang, Y.J. Zhang, J.B. Zhao,Appl. Surf. Sci. 504 (2020) 144463. |
[110] | Y.L. Zhang, Z.J. Mu, C. Yang, Z.K. Xu, S. Zhang, X.Y. Zhang, Y.J. Li, J.P. Lai, Z.H. Sun, Y. Yang, Y.G. Chao, C.J. Li, X.X. Ge, W.X. Yang, S.J. Guo,Adv. Funct. Mater. 28 (2018) 1707578. |
[111] |
M.X. Wang, L.S. Fan, D. Tian, X. Wu, Y. Qiu, C.Y. Zhao, B. Guan, Y. Wang, N.Q. Zhang, K.N. Sun,ACS Energy Lett. 3 (2018) 1627-1633.
DOI URL |
[112] | G. Rudren,Z. Qing, ACS Nano 8 (2014) 4074-4099. |
[113] | J. Ren, Y.B. Zhou, L. Xia, Q.J. Zheng, J. Liao, E.Y. Long, F.Y. Xie, C.G. Xu, D.M. Lin,J. Mater. Chem. A 6 (2018) 13835-13847. |
[114] |
M.D. Walle, K. Zeng, M. Zhang, Y. Li, Y.N. Liu,Appl. Surf. Sci. 473 (2019) 540-547.
DOI URL |
[115] | K.X. Xiang, X.Y. Wen, J. Hu, S.C. Wang,H. Chen, ChemSusChem 12 (2019) 3602-3614. |
[116] | S.Y. Pan, Z.H. Yin, Q. Cheng, G.Z. Zhang, X.Y. Yu, Z.X. Pan, H.S. Rao, X.H. Zhong,J. Alloy. Compd. 832 (2020) 154947. |
[117] |
S.H. Chung, L. Luo, A. Manthiram,ACS Energy Lett. 3 (2018) 568-573.
DOI URL |
[118] | K. Sun, M.S. Fu, Z.H. Xie, D. Su, H. Zhong, J.M. Bai, E. Dooryhee, H. Gan,Elec- trochim. Acta 292 (2018) 779-788. |
[119] | X. Huang, J.Y. Tang, B. Luo, R. Knibbe, T.E. Lin, H. Hu, M. Rana, Y.X. Hu, X. B. Zhu, Q.F. Gu, D. Wang, L.Z. Wang,Adv. Energy Mater. 9 (2019) 1901872. |
[120] | J. Wang, J. Xu, W.Q. Tang, D.F. Niu, S.J. Zhao, S.Z. Hu,X.S. Zhang, Chem-NanoMat 6 (2020) 976-983. |
[121] | R.R. Li, H.J. Shen, E. Pervaiz, M.H. Yang,Chem. Eng. J. 404 (2021) 126462. |
[122] |
S.X. Jiang, M.F. Chen, X.Y. Wang, P. Zeng, Y.F. Li, H. Liu, X.L. Li, C. Huang, H.B. Shu, Z.G. Luo, C. Wu,Electrochim. Acta 313 (2019) 151-160.
DOI URL |
[123] |
X.Y. Hou, X.M. Liu, Y. Lu, J.B. Cheng, R.J. Luo, Q.H. Yu, X.L. Wei, H.L. Yan, X.X. Ji, J.K. Kim, Y.S. Luo,J. Solid State Electrochem. 21 (2016) 349-359.
DOI URL |
[124] | S. Majumder, M.H. Shao, Y.F. Deng, G.H. Chen,J. Electrochem. Soc. 166 (2019) A5386-A5395. |
[125] |
J. Wu, B. Chen, Q.Q. Liu, A.L. Hu, X.Y. Lu, Q. Jiang,Scr. Mater. 177 (2020) 208-213.
DOI URL |
[126] |
X.L. Lu, Q.F. Zhang, J. Wang, S.H. Chen, J.M. Ge, Z.M. Liu, L.L. Wang, H.B. Ding, D. C. Gong, H.G. Yang, X.Z. Yu, J. Zhu, B.A. Lu,Chem. Eng. J. 358 (2019) 955-961.
DOI URL |
[127] |
G. Babu, N. Masurkar, H. Al Salem, L.M.R. Arava,J. Am. Chem. Soc. 139 (2016) 171-178.
DOI URL |
[128] | G.M. Zhou, H.Z. Tian, Y. Jin, X.Y. Tao, B.F. Liu, R.F. Zhang, Z.W. Seh, D. Zhuo, Y.Y. Liu, J. Sun, J. Zhao, C.X. Zu, D.S. Wu, Q.F. Zhang, Y. Cui, Proc. Natl. Acad. Sci. USA114 (2017) 840-845. |
[129] |
S.Y. Zhao, X.H. Tian, Y.K. Zhou, B. Ma, A. Natarajan,J. Energy Chem. 46 (2020) 22-29.
DOI URL |
[130] |
T. Chen, Z.W. Zhang, B.R. Cheng, R.P. Chen, Y. Hu, L.B. Ma, G.Y. Zhu, J. Liu, Z. Jin,J. Am. Chem. Soc. 139 (2017) 12710-12715.
DOI URL PMID |
[131] |
C.L. Song, Z.H. Li, M.Z. Li, S. Huang, X.J. Hong, L.P. Si, M. Zhang, Y.P. Cai,ACS Appl, Nano Mater. 3 (2020) 9686-9693.
DOI URL |
[132] | B.K. Cao, Y. Chen, L. Li, H. Yin,Y. Mo, ChemSusChem 9 (2016) 3338-3344. |
[133] | H.X. Li, S. Ma, H.Q. Cai, H.H. Zhou, Z.Y. Huang, Z.H. Hou, J.J. Wu, W.J. Yang, H.B. Yi, C.P. Fu, Y.F. Kuang,Energy Storage Mater. 18 (2019) 338-348. |
[134] | Z.S. Wang, X.J. Xu, Z.B. Liu, S.M. Ji, S.O. Ahmed Idris, J. Liu,Electrochim. Acta 332 (2020) 135482. |
[135] | R. Razaq, N.N. Zhang, Y. Xin, Q. Li, J. Wang,Z.L. Zhang, EcoMat 2 (2020) 12020. |
[136] |
H. Al Salem, V.R. Chitturi, G. Babu, J.A. Santana, D. Gopalakrishnan, L. M. Reddy Arava,RSC Adv. 6 (2016) 110301-110306.
DOI URL |
[137] |
T. Yu, Y.H. Deng, L. Wang, R.L. Liu, L.J. Zhang, B. Tu, D.Y. Zhao,Adv. Mater. 19 (2007) 2301-2306.
DOI URL |
[138] | F. Zhou, L.T. Song, L.L. Lu, H.B. Yao,S.H. Yu, ChemNanoMat 2 (2016) 937-941. |
[139] | Y.S. Liu, C. Ma, Y.L. Bai, X.Y. Wu, Q.C. Zhu, X. Liu, X.H. Liang, X. Wei, K.X. Wang, J.S. Chen,J. Mater. Chem. A 6 (2018) 17473-17480. |
[140] | J. Balach, J. Linnemann, T. Jaumann, L. Giebeler,J. Mater. Chem. A 6 (2018) 23127-23168. |
[141] | Y.L. Wu, X.R. Zhu, P.R. Li, T. Zhang, M. Li, J. Deng, Y. Huang, P. Ding, S.X. Wang, R. Zhang, J. Lu, G. Lu, Y.F. Li,Y.G. Li, Nano Energy 59 (2019) 636-643. |
[142] | C. Yuan, X.F. Yang, P. Zeng, J. Mao, K.H. Dai, L. Zhang,X.L. Sun, Nano Energy 84 (2021) 105928. |
[143] | Z.X. Hao, L.X. Yuan, C.J. Chen, J.W. Xiang, Y.Y. Li, Z.M. Huang, P. Hu, Y.H. Huang,J. Mater. Chem. A 4 (2016) 17711-17717. |
[144] | Z.H. Li, Q. He, X. Xu, Y. Zhao, X.W. Liu, C. Zhou, D. Ai, L.X. Xia, L.Q. Mai,Adv. Mater. 30 (2018) 1804089. |
[145] | D.R. Deng, F. Xue, Y.J. Jia, J.C. Ye, C.D. Bai, M.S. Zheng,Q.F. Dong, ACS Nano 11 (2017) 6031. |
[146] |
Z.M. Cui, C.R. Zu, W.D. Zhou, A. Manthiram, J.B. Goodenough,Adv. Mater. 28 (2016) 6926-6931.
DOI URL |
[147] | Y. Yao, H.Y. Wang, H. Yang, S.F. Zeng, R. Xu, F.F. Liu, P.C. Shi, Y.Z. Feng, K. Wang, W.J. Yang, X.J. Wu, W. Luo, Y. Yu,Adv. Mater. 32 (2020) 1905658. |
[148] |
J. Zhang, W.Z. Ma, Z.Y. Feng, F.F. Wu, D.H. Wei, B.J. Xi, S.L. Xiong,J. Energy Chem. 39 (2019) 54-60.
DOI URL |
[149] | H. Pan, X. Huang, C.H. Wang, D.D. Liu, D. Wang, R. Zhang, S.B. Li, C.M. Lv, L. J. Zhao, J.X. Wang, X.X. Huang,Chem. Eng. J. 410 (2021) 128424. |
[150] |
X.L. Wang, G.R. Li, M.J. Li, R.P. Liu, H.B. Li, T.Y. Li, M.Z. Sun, Y.R. Deng, M. Feng, Z.W. Chen,J. Energy Chem. 53 (2021) 234-240.
DOI URL |
[151] |
Y.P. Zheng, H.H. Li, H.Y. Yuan, H.H. Fan, W.L. Li, J.P. Zhang,Appl. Surf. Sci. 434 (2018) 596-603.
DOI URL |
[152] | B. He, W.C. Li, Y. Zhang, X.F. Yu, B.S. Zhang, F. Li, L.A. Hui,J. Mater. Chem. A 6 (2018) 24194-24200. |
[153] | M.Y. Li, K. Fu, Z.X. Wang, C.C. Cao, J.W. Yang, Q.H. Zhai, Z. Zhou, J.W. Ji, Y. M. Xue,C.C. Tang, Chemistry 26 (2020) 17567-17573. |
[154] | C.N. Lv, L. Zhang, X.H. Huang, Y.X. Zhu, X. Zhang, J.S. Hu,S.Y. Lu, Nano Energy 65 (2019) 103995. |
[155] |
Z.C. Sun, M.S. Zhu, X.S. Lv, Y.Y. Liu, C. Shi, Y. Dai, A.J. Wang, T. Majima,Appl. Catal. B 246 (2019) 330-336.
DOI URL |
[156] | S. Huang, E. Huixiang, Y. Yang, Y.F. Zhang, M.H. Ye, C.C. Li,J. Mater. Chem. A 9 (2021) 7458-7480. |
[157] |
H.D. Yuan, X.L. Chen, G.M. Zhou, W.K. Zhang, J.M. Luo, H. Huang, Y.P. Gan, C. Liang, Y. Xia, J. Zhang, J.G. Wang, X.Y. Tao,ACS Energy Lett. 2 (2017) 1711-1719.
DOI URL |
[158] | Y.Y. Mi, W. Liu, X.L. Li, J.L. Zhuang, H.H. Zhou, H.L. Wang,J. Nano Res. 10 (2017) 3698-3705. |
[159] | Z.Q. Ye, Y. Jiang, J. Qian, W.L. Li, T. Feng, L. Li, F. Wu,R.J. Chen, Nano Energy 64 (2019) 103965. |
[160] | S.F. Ng, M.Y.L. Lau, W.J. Ong,Adv. Mater. 33 (2021) 2008654. |
[161] | Q.J. Shao, Z.S. Wu, J. Chen,Energy Storage Mater. 22 (2019) 284-310. |
[162] | J. Jiang, J.H. Zhu, W. Ai, X.L. Wang, Y.L. Wang, C.J. Zou, W. Huang, T. Yu,Nat. Commun. 6 (2015) 8622. |
[163] | L. Zhang, Z.X. Chen, N.C. Dongfang, M.X. Li, C.Z. Diao, Q.S. Wu, X. Chi, P. L. Jiang, Z.D. Zhao, L. Dong, R.C. Che, K.P. Loh, H.B. Lu,Adv. Energy Mater. 8 (2018) 1802431. |
[164] | J.Y. Hwang, H.M. Kim, S. Shin, Y.K. Sun,Adv. Funct. Mater. 28 (2018) 1704294. |
[165] | M.B. Zheng, Y. Chi, Q. Hu, H. Tang, X.L. Jiang, L. Zhang, S.T. Zhang, H. Pang, Q. Xu,J. Mater. Chem. A 7 (2019) 17204-17241. |
[166] | Y.F. Zhu, S. Wang, Z.C. Miao, Y. Liu,S.L. Chou, Small 14 (2018) 1801987. |
[167] | J. Xu, T. Lawson, H.B. Fan, D.W. Su, G.X. Wang,Adv. Energy Mater. 8 (2018) 170607. |
[168] |
Y.F. Yue, B.K. Guo, Z.A. Qiao, P.F. Fulvio, J.H. Chen, A.J. Binder, C.C. Tian, S. Dai,Microporous Mesoporous Mat. 198 (2014) 139-143.
DOI URL |
[169] | Z.X. Zhao, S. Wang, R. Liang, Z. Li, Z.C. Shi, G.H. Chen,J. Mater. Chem. A 2 (2014) 13509-13512. |
[170] | Y.Y. Mao, G.R. Li, Y. Guo, Z.P. Li, C.D. Liang, X.S. Peng,Z. Lin, Nat Commun 8 (2017) 14628. |
[171] |
Q.L. Zhu, Q. Xu,Chem. Soc. Rev. 43 (2014) 5468-5512.
DOI URL |
[172] |
N. Stock, S. Biswas,Chem. Rev. 112 (2012) 933-969.
DOI URL |
[173] |
Q.H. Yang, Q. Xu, H.L. Jiang,Chem. Soc. Rev. 46 (2017) 4774-4808.
DOI URL |
[174] |
G.R. Li, W. Lei, D. Luo, Y.P. Deng, Z.P. Deng, D.L. Wang, A.P. Yu, Z.W. Chen,Energ. Environ. Sci. 11 (2018) 2372-2381.
DOI URL |
[175] | H. Zhang, M.C. Zou, W.Q. Zhao, Y.S. Wang, Y.J. Chen, Y.Z. Wu, L.X. Dai,A.Y. Cao, ACS Nano 13 (2019) 3982-3991. |
[176] |
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J.J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. Barsoum,Adv. Mater. 23 (2011) 4248-4253.
DOI URL |
[177] | L.Y. Xiu, W. Pei, S. Zhou, Z.Y. Wang, P.J. Yang, J.J. Zhao, J.S. Qiu,Adv. Funct. Mater. 30 (2020) 1910028. |
[178] |
J.Q. Zhang, Y.F. Zhao, X. Guo, C. Chen, C.L. Dong, R.S. Liu, C.P. Han, Y.D. Li, Y. Gogotsi, G.X. Wang,Nat. Catal. 1 (2018) 985-992.
DOI URL |
[179] | X.Q. Xie, M.Q. Zhao, B. Anasori, K. Maleski, C.E. Ren, J.W. Li, B.W. Byles, E. Pomerantseva, G.X. Wang,Y. Gogotsi, Nano Energy 26 (2016) 513-523. |
[180] | D.B. Xiong, X.F. Li, Z.M. Bai,S.G. Lu, Small 14 (2018) 1703419. |
[181] | S. Ahn, T.H. Han, K. Maleski, J. Song, Y.H. Kim, M.H. Park, H.Y. Zhou, S. Yoo, Y. Gogotsi, T.W. Lee,Adv. Mater. 32 (2020) 2000919. |
[182] | C. Wang, Y.Z. Wang, X.T. Jiang, J.W. Xu, W.C. Huang, F. Zhang, J.F. Liu, F. M. Yang, Y.F. Song, Y.Q. Ge, Q. Wu, M. Zhang, H. Chen, J. Liu, H. Zhang,Adv. Opt. Mater. 7 (2019) 190060. |
[183] |
M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi,Adv. Mater. 26 (2014) 992-1005.
DOI URL |
[184] |
X. Liang, A. Garsuch, L.F. Nazar,Angew. Chem. Int. Ed. 54 (2015) 3907-3911.
DOI URL PMID |
[185] | X. Liang, Y. Rangom, C.Y. Kwok, Q. Pang, L.F. Nazar,Adv. Mater. 29 (2017) 1603040. |
[186] | J.X. Nan, X. Guo, J. Xiao, X. Li, W.H. Chen, W.J. Wu, H. Liu, Y. Wang, M.H. Wu,G. X. Wang, Small 17 (2019) 1902085. |
[187] |
X.Q. Xing, Q.H. Liu, W.Q. Xu, W.B. Liang, J.Q. Liu, B.G. Wang, J.P. Lemmon,ACS Appl. Energy Mater. 2 (2019) 2364-2369.
DOI URL |
[188] | Y. Yao, W.L. Feng, M.L. Chen, X.W. Zhong, X.J. Wu, H.B. Zhang,Y. Yu, Small 14 (2018) 1802516. |
[189] | J.L. Wang, Z. Zhang, X.F. Yan, S.L. Zhang, Z.H. Wu, Z.H. Zhuang, W.Q. Han,Nano Micro Lett. 12 (2019) 4. |
[190] | L.P. Lv, C.F. Guo, W.W. Sun,Y. Wang, Small 15 (2018) 1804338. |
[191] |
S.S. Li, H. Li, G.R. Zhu, B. Jin, H.M. Liu, Q. Jiang,Appl. Surf. Sci. 479 (2019) 265-272.
DOI URL |
[192] |
L.F. Xiao, Y.L. Cao, J. Xiao, B. Schwenzer, M.H. Engelhard, L.V. Saraf, Z.M. Nie, G.J. Exarhos, J. Liu,Adv. Mater. 24 (2012) 1176-1181.
DOI URL |
[193] |
B. Oschmann, J.J. Park, C.J. Kim, K. Char, Y.E. Sung, R. Zentel,Chem. Mater. 27 (2015) 7011-7017.
DOI URL |
[194] |
G.C. Li, G.R. Li, S.H. Ye, X.P. Gao,Adv. Energy Mater. 2 (2012) 1238-1245.
DOI URL |
[195] | G.Q. Ma, Z.Y. Wen, J. Jin, Y. Lu, K. Rui, X.W. Wu, M.F. Wu,J.C. Zhang, J. Power Sources 254 (2014) 353-359. |
[196] |
Z.W. Seh, Y.M. Sun, Q.F. Zhang, Y. Cui,Chem. Soc. Rev. 45 (2016) 5605-5634.
DOI URL |
[197] |
G.X. Wang, L. Yang, Y. Chen, J.Z. Wang, S. Bewlay, H.K. Liu,Electrochim. Acta 50 (2005) 4649-4654.
DOI URL |
[198] |
S.S. Li, B. Jin, H. Li, C.W. Dong, B. Zhang, J.H. Xu, Q. Jiang,J. Electroanal. Chem. 806 (2017) 41-49.
DOI URL |
[199] |
J. Wang, J. Chen, K. Konstantinov, L. Zhao, S.H. Ng, G.X. Wang, Z.P. Guo, H.K. Liu,Electrochim. Acta 51 (2006) 4634-4638.
DOI URL |
[200] | J.Z. Wang, L. Lu, D.Q. Shi, R. Tandiono, Z.X. Wang, K. Konstantinov,H.K. Liu, ChemPlusChem 78 (2013) 318-324. |
[201] |
Y. Liu, J. Zhang, X.C. Liu, J.X. Guo, L.F. Pan, H.F. Wang, Q.M. Su, G.H. Du,Mater. Lett. 133 (2014) 193-196.
DOI URL |
[202] |
L. Li, G.D. Ruan, Z.W. Peng, Y. Yang, H.L. Fei, A.R. Raji, E.L. Samuel, J.M. Tour,ACS Appl. Mater. Interfaces 6 (2014) 15033-15039.
DOI URL |
[203] | M. Yan, H. Chen, Y. Yu, H. Zhao, C.F. Li, Z.Y. Hu, P. Wu, L.H. Chen, H.E. Wang, D. L. Peng, H.X. Gao, T. Hasan, Y. Li, B.L. Su,Adv. Energy Mater. 8 (2018) 1801066. |
[204] | L. Ma, H.L. Zhuang, S. Wei, K.E. Hendrickson, M.S. Kim, G. Cohn, R.G. Hennig,L. A. Archer, ACS Nano 10 (2016) 1050-1059. |
[205] | A.N. Arias, A.Y. Tesio, V. Flexer,J. Electrochem. Soc. 165 (2018) A6119-A6135. |
[206] | S.S. Zhang, J. Power Sources231 (2013) 153-162. |
[207] | T.N.L. Doan, M. Ghaznavi, Y. Zhao, Y.G. Zhang, A. Konarov, M. Sadhu, R. Tan- girala,P. Chen, J. Power Sources 241 (2013) 61-69. |
[208] |
Z.X. Xu, J.L. Wang, J. Yang, X.W. Miao, R.J. Chen, J. Qian, R.R. Miao,Angew. Chem. Int. Ed. 128 (2016) 10528-10531.
DOI URL |
[209] |
J.L. Wang, J. Yang, J.Y. Xie, N.X. Xu,Adv. Mater. 14 (2002) 963-965.
DOI URL |
[210] | J.L. Wang, J. Yang, C.R. Wan, K. Du, J.Y. Xie, N.X. Xu,Adv. Funct. Mater. 13 (2003) 487-492. |
[211] |
J.L. Wang, Y.S. He, J. Yang,Adv. Mater. 27 (2015) 569-575.
DOI URL |
[212] | A. Abdul Razzaq, Y.Z. Yao, R. Shah, P.W. Qi, L.X. Miao, M.Z. Chen, X.H. Zhao, Y. Peng, Z. Deng,Energy Storage Mater. 16 (2019) 194-202. |
[213] | X.F. Wang, Y.M. Qian, L.N. Wang, H. Yang, H.L. Li, Y. Zhao, T.X. Liu,Adv. Funct. Mater. 29 (2019) |
[214] | L.C. Yin, J.L. Wang, J. Yang, Y.N. Nuli,J. Mater. Chem. 21 (2011) 6807. |
[215] |
Y. Liu, A.K. Haridas, Y. Lee, K.K. Cho, J.H. Ahn,Appl. Surf. Sci. 472 (2019) 135-142.
DOI URL |
[216] |
L. Wang, X.M. He, J.J. Li, M. Chen, J. Gao, C.Y. Jiang,Electrochim. Acta 72 (2012) 114-119.
DOI URL |
[217] |
A. Abdul Razzaq, X.T. Yuan, Y.J. Chen, J.P. Hu, Q.Q. Mu, Y. Ma, X.H. Zhao, L. X. Miao, J.H. Ahn, Y. Peng, Z. Deng,J. Mater. Chem. A 8 (2020) 1298-1306.
DOI URL |
[218] | X. Liang, Z.Y. Wen, Y. Liu, H. Zhang, J. Jin, M.F. Wu,X.W. Wu, J. Power Sources 206 (2012) 409-413. |
[1] | Junjie Wang, Zongde Kou, Shu Fu, Shangshu Wu, Sinan Liu, Mengyang Yan, Zhiqiang Ren, Di Wang, Zesheng You, Si Lan, Horst Hahn, Xun-Li Wang, Tao Feng. Ultrahard BCC-AlCoCrFeNi bulk nanocrystalline high-entropy alloy formed by nanoscale diffusion-induced phase transition [J]. J. Mater. Sci. Technol., 2022, 115(0): 29-39. |
[2] | Qimin Shi, Shoufeng Yang, Yi Sun, Yifei Gu, Ben Mercelis, Shengping Zhong, Bart Van Meerbeek, Constantinus Politis. In-situ formation of Ti-Mo biomaterials by selective laser melting of Ti/Mo and Ti/Mo2C powder mixtures: A comparative study on microstructure, mechanical and wear performance, and thermal mechanisms [J]. J. Mater. Sci. Technol., 2022, 115(0): 81-96. |
[3] | Ting He, Jiajia Ru, Yutong Feng, Dapeng Bi, Jiansheng Zhang, Feng Gu, Chi Zhang, Jinhu Yang. Templated spherical coassembly strategy to fabricate MoS2/C hollow spheres with physical/chemical polysulfides trapping for lithium-sulfur batteries [J]. J. Mater. Sci. Technol., 2022, 98(0): 136-142. |
[4] | You Shi, Yang Bai, Yanzhou Lei, Haoruo Zhang, Shengtai Zhou, Huawei Zou, Mei Liang, Yang Chen. Simultaneously enhanced heat dissipation and tribological properties of polyphenylene sulfide-based composites via constructing segregated network structure [J]. J. Mater. Sci. Technol., 2022, 99(0): 239-250. |
[5] | Gwanghyo Choi, Won Seok Choi, Yoon Sun Lee, Dahye Kim, Ji Hyun Sung, Seungjun An, Chang-Seok Oh, Amine Hattal, Madjid Djemai, Brigitte Bacroix, Guy Dirras, Pyuck-Pa Choi. Decomposition behavior of yttria-stabilized zirconia and its effect on directed energy deposited Ti-based composite material [J]. J. Mater. Sci. Technol., 2022, 112(0): 138-150. |
[6] | Lei Zhou, Jiaping Zhang, Dou Hu, Qiangang Fu, Wuqing Ding, Jiaqi Hou, Bing Liu, Mingde Tong. High temperature oxidation and ablation behaviors of HfB2-SiC/SiC coatings for carbon/carbon composites fabricated by dipping-carbonization assisted pack cementation [J]. J. Mater. Sci. Technol., 2022, 111(0): 88-98. |
[7] | Yuan Zhang, Guoqi Tan, Mingyang Zhang, Qin Yu, Zengqian Liu, Yanyan Liu, Jian Zhang, Da Jiao, Faheng Wang, Longchao Zhuo, Zhefeng Zhang, Robert O. Ritchie. Bioinspired tungsten-copper composites with Bouligand-type architectures mimicking fish scales [J]. J. Mater. Sci. Technol., 2022, 96(0): 21-30. |
[8] | Qiangang Fu, Pei Zhang, Lei Zhuang, Lei Zhou, Jiaping Zhang, Jie Wang, Xianghui Hou, Ralf Riedel, Hejun Li. Micro/nano multiscale reinforcing strategies toward extreme high-temperature applications: Take carbon/carbon composites and their coatings as the examples [J]. J. Mater. Sci. Technol., 2022, 96(0): 31-68. |
[9] | Q. Yan, B. Chen, L. Cao, K.Y. Liu, S. Li, L. Jia, K. Kondoh, J.S. Li. Improved mechanical properties in titanium matrix composites reinforced with quasi-continuously networked graphene nanosheets and in-situ formed carbides [J]. J. Mater. Sci. Technol., 2022, 96(0): 85-93. |
[10] | Jiahui Li, Yvonne Durandet, Xiaodong Huang, Guangyong Sun, Dong Ruan. Additively manufactured fiber-reinforced composites: A review of mechanical behavior and opportunities [J]. J. Mater. Sci. Technol., 2022, 119(0): 219-244. |
[11] | Shuang Liu, Mengjie Sheng, Hao Wu, Xuetao Shi, Xiang Lu, Jinping Qu. Biological porous carbon encapsulated polyethylene glycol-based phase change composites for integrated electromagnetic interference shielding and thermal management capabilities [J]. J. Mater. Sci. Technol., 2022, 113(0): 147-157. |
[12] | Muhammad Mushtaq, Xianwei Guo, Zihe Zhang, Zhiyuan Lin, Xiaolong Li, Zhangquan Peng, Haijun Yu. Dual-function redox mediator enhanced lithium-oxygen battery based on polymer electrolyte [J]. J. Mater. Sci. Technol., 2022, 113(0): 199-206. |
[13] | Jiang Guo, Xu Li, Zhuoran Chen, Jianfeng Zhu, Xianmin Mai, Renbo Wei, Kai Sun, Hu Liu, Yunxia Chen, Nithesh Naik, Zhanhu Guo. Magnetic NiFe2O4/Polypyrrole nanocomposites with enhanced electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 108(0): 64-72. |
[14] | Seungchan Cho, Junghwan Kim, Ilguk Jo, Jae Hyun Park, Jaekwang Lee, Hyun-Uk Hong, Bong Ho Lee, Wook Ryol Hwang, Dong-Woo Suh, Sang-Kwan Lee, Sang-Bok Lee. Effect of molybdenum on interfacial properties of titanium carbide reinforced Fe composite [J]. J. Mater. Sci. Technol., 2022, 107(0): 252-258. |
[15] | Haicheng Wang, Huating Wu, Huifang Pang, Yuhua Xiong, Shuwang Ma, Yuping Duan, Yanglong Hou, Changhui Mao. Lightweight PPy aerogel adopted with Co and SiO2 nanoparticles for enhanced electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 97(0): 213-222. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||