J. Mater. Sci. Technol. ›› 2022, Vol. 118: 73-113.DOI: 10.1016/j.jmst.2021.11.061
• Review Article • Previous Articles Next Articles
Sepideh Pourhashema,b,c, Abdolvahab Seifd, Farhad Sabae, Elham Garmroudi Nezhade, Xiaohong Jia,b,c, Ziyang Zhoua,b,c,f, Xiaofan Zhaia,b,c, Majid Mirzaeeg, Jizhou Duana,b,c,**(), Alimorad Rashidid,*(
), Baorong Houa,b,c
Received:
2021-07-24
Revised:
2021-10-11
Accepted:
2021-11-24
Published:
2022-08-10
Online:
2022-02-25
Contact:
Jizhou Duan,Alimorad Rashidi
About author:
** Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China. E-mail addresses: duanjz@qdio.ac.cn (J. Duan).Sepideh Pourhashem, Abdolvahab Seif, Farhad Saba, Elham Garmroudi Nezhad, Xiaohong Ji, Ziyang Zhou, Xiaofan Zhai, Majid Mirzaee, Jizhou Duan, Alimorad Rashidi, Baorong Hou. Antifouling nanocomposite polymer coatings for marine applications: A review on experiments, mechanisms, and theoretical studies[J]. J. Mater. Sci. Technol., 2022, 118: 73-113.
Fig. 1. A descriptive plot (Baier curve) of the generally observed strength of biological adhesion to substrate of different initial critical surface tensions. The minimum is always found in the zone between 20 and 30 mN/m, although at different absolute levels depending upon the specific biological system, the time of contact, and the acting mechanical forces of removal [31].
Fig. 2. The number of published papers about “antifouling nanocomposites” and “antibacterial nanocomposites” during 2005-2020 based on the PubMed Central and Publisher web sites [60].
Polymer matrix | Nanofillers | Nanofiller property | Nanofiller amounts(wt.%) | Optimum nanofiller amount(wt.%) | Fabrication method | Substrate | Antifouling test | Main results | Refs. |
---|---|---|---|---|---|---|---|---|---|
Acrylic latex | Nano ZnO | Synthesized by distillation method | - | - | Emulsion polymerization vs. mechanical mixing | - | Monitoring inhibition zone against E. coli (Gram-negative) and Staphylococcus aureus (S. aureus as Gram-positive) bacteria) | Coatings prepared by emulsion polymerization method have higher antibacterial activity compared to mechanical mixing method. | [ |
Acrylic paint | ZnO/amine composites | ZnO nanoparticles with average size of 30-95 nm were prepared by ball milling | 1, 2, and 3 | - | - | Clean plastic sheets | Agar diffusion test; turbidity method | ZnO particle size, dispersion quality of nano-ZnO in paint, and amine effects to produce active oxygen species are key factors in antifouling paints | [ |
Alkyd paint | ZnO | Synthesized through size reduction method by ball milling | 20 | 20 | Ball milling | - | Immersion in natural seawater | Antifouling performance of ZnO nanopaints in marine environment. | [ |
Chitosan | ZnO | Commercial ZnO powder (35-45 nm) | 13.3% | 13.3% | Solution mixing | Glass slides | Anti-diatom activity against Navicula sp. and antibacterial activity against the marine bacterium Pseudoalteromonas nigrifaciens; mesocosm study using tanks containing natural sea water. | Antifouling behavior under light | [ |
PDMS | ZnO nanorods | Modified wet chemical technique (diameter of 35 nm) | 0.05, 0.1, 0.5, 1, 3, and 5 | 0.5 | Solution mixing | - | Biological test against Gram-positive (Micrococcus spp.) and Gram-negative (Pseudomonas putida) bacteria and Fungi (Aspergillus niger); examining the biofilm by polarized optical microscope; filed test in natural seawater | Increasing fouling resistance, enhancing hydrophobicity, and decreasing surface free energy by adding well-dispersed ZnO nanorods. | [ |
Epoxy | ZnO modified with (3-aminopropyl) triethoxy silane (APTES-ZnO) | Chemical synthesis of ZnO nanoparticles (size < 16 nm) | 0, 1, 3, 5, and 7 | 7 | Solution mixing | - | Inhibition zone against pathogenic bacteria such as Streptomyces, S. aureus, Pseudomonas aeruginosa (P. aeruginosa), and fungi Aspergillus niger | Inhibition zone effect against all pathogens. | [ |
Waterborne polyurethane | APTES-ZnO | Synthesis of flower-like ZnO nano- whiskers | 0, 0.5, 1, 1.5, 2, and 4 | 4 (for antibacterial activity); 1 wt.% (for tensile strength) | Solution mixing | Teflon plates | Antibacterial activity against E. coli and S. aureus; measuring the survival ratio by counting the mean number of bacteria on films | Mechanical strength, thermal stability, water swelling, and the antibacterial effect against E. coli and S. aureus. | [ |
Perfluorodecyl trichlorosilane (FDTS)- PDMS | ZnO | Commercial ZnO(90±10 nm) | - | - | Solution mixing | Q235 steel | - | The anti-corrosion, mechanical, and antifouling properties of coating depend on the amount of FDTS. | [ |
Epoxy | APTES- ZnO | Commercial ZnO nanoparticles | 2.5, 5, and 7.5 | 2.5 | Ultra-sonication | Mild steel | Field test in coastal area | Improved anti-fouling and anticorrosion performance. | [ |
Epoxy | ZnO modified by (3-Glycidyloxypropyl) trimethoxysilane(GPTMS- ZnO) | Commercial ZnO (diameter < 50 nm) | 1 | 1 | Solution mixing | Steel | Visual inspection and measuring the mass of marine deposits at different periods of time for coatings immersed in real work conditions | Enhanced corrosion and fouling resistance | [ |
Epoxy | ZnO and APTES- ZnO | ZnO synthesis by precipitation method | 2.5 | 2.5 | Mixing | Mild steel | Inhibition zone against E. coli | High anticorrosion and antibacterial activity by adding APTES-ZnO into epoxy coating. | [ |
Epoxy- PDMS- APTES | ZnO | Commercial ZnO (average particle size of 20 nm) | 1, 3, and 6.5 | 1 | Solution mixing | Steel | Antibacterial activity by visualizing the fate of microorganisms adhered on the surfaces; the antifouling efficacy by visual observation after exposing to seawater | Increasing water contact angle, surface roughness, abrasion resistance, pull-off strength, hardness, corrosion resistance, and fouling resistance. | [ |
Solvent free polyurethane with a sulphur containing polyol (polythiourethane, PTU) | Tetrapodal shaped ZnO (t-ZnO) | Flame transport synthesis | 0, 1, 5, and 10 | 5 | Stirring | Polyvinyl chloride(PVC), AlMg3 | Antifouling activity by immersion in seawater | Improving antifouling and mechanical properties of coatings. | [ |
Epoxy | ZnO and polyaniline (PANI)-ZnO | Synthesized ZnO nanorods | 1.5, 3, 4.5 wt.% of PANI-ZnO;4.5 wt.% PANI-ZnO with different wt.% of ZnO nanorods (0.5, 1, and 2 wt.%). | 4.5 wt.% PANI ZnO and 2 wt.% ZnO nanorods | Mixing | Steel | Antifouling characterization in marine seawater; and antibacterial activity against Gram-negative and Gram-positive bacteria | The conductive polymers could reduce the settlement of algae and barnacles. Slow release-rate of nano-ZnO and prolong antifouling performance. | [ |
Table 1. A summary of researches about the antifouling polymer coatings loaded with nano-ZnO.
Polymer matrix | Nanofillers | Nanofiller property | Nanofiller amounts(wt.%) | Optimum nanofiller amount(wt.%) | Fabrication method | Substrate | Antifouling test | Main results | Refs. |
---|---|---|---|---|---|---|---|---|---|
Acrylic latex | Nano ZnO | Synthesized by distillation method | - | - | Emulsion polymerization vs. mechanical mixing | - | Monitoring inhibition zone against E. coli (Gram-negative) and Staphylococcus aureus (S. aureus as Gram-positive) bacteria) | Coatings prepared by emulsion polymerization method have higher antibacterial activity compared to mechanical mixing method. | [ |
Acrylic paint | ZnO/amine composites | ZnO nanoparticles with average size of 30-95 nm were prepared by ball milling | 1, 2, and 3 | - | - | Clean plastic sheets | Agar diffusion test; turbidity method | ZnO particle size, dispersion quality of nano-ZnO in paint, and amine effects to produce active oxygen species are key factors in antifouling paints | [ |
Alkyd paint | ZnO | Synthesized through size reduction method by ball milling | 20 | 20 | Ball milling | - | Immersion in natural seawater | Antifouling performance of ZnO nanopaints in marine environment. | [ |
Chitosan | ZnO | Commercial ZnO powder (35-45 nm) | 13.3% | 13.3% | Solution mixing | Glass slides | Anti-diatom activity against Navicula sp. and antibacterial activity against the marine bacterium Pseudoalteromonas nigrifaciens; mesocosm study using tanks containing natural sea water. | Antifouling behavior under light | [ |
PDMS | ZnO nanorods | Modified wet chemical technique (diameter of 35 nm) | 0.05, 0.1, 0.5, 1, 3, and 5 | 0.5 | Solution mixing | - | Biological test against Gram-positive (Micrococcus spp.) and Gram-negative (Pseudomonas putida) bacteria and Fungi (Aspergillus niger); examining the biofilm by polarized optical microscope; filed test in natural seawater | Increasing fouling resistance, enhancing hydrophobicity, and decreasing surface free energy by adding well-dispersed ZnO nanorods. | [ |
Epoxy | ZnO modified with (3-aminopropyl) triethoxy silane (APTES-ZnO) | Chemical synthesis of ZnO nanoparticles (size < 16 nm) | 0, 1, 3, 5, and 7 | 7 | Solution mixing | - | Inhibition zone against pathogenic bacteria such as Streptomyces, S. aureus, Pseudomonas aeruginosa (P. aeruginosa), and fungi Aspergillus niger | Inhibition zone effect against all pathogens. | [ |
Waterborne polyurethane | APTES-ZnO | Synthesis of flower-like ZnO nano- whiskers | 0, 0.5, 1, 1.5, 2, and 4 | 4 (for antibacterial activity); 1 wt.% (for tensile strength) | Solution mixing | Teflon plates | Antibacterial activity against E. coli and S. aureus; measuring the survival ratio by counting the mean number of bacteria on films | Mechanical strength, thermal stability, water swelling, and the antibacterial effect against E. coli and S. aureus. | [ |
Perfluorodecyl trichlorosilane (FDTS)- PDMS | ZnO | Commercial ZnO(90±10 nm) | - | - | Solution mixing | Q235 steel | - | The anti-corrosion, mechanical, and antifouling properties of coating depend on the amount of FDTS. | [ |
Epoxy | APTES- ZnO | Commercial ZnO nanoparticles | 2.5, 5, and 7.5 | 2.5 | Ultra-sonication | Mild steel | Field test in coastal area | Improved anti-fouling and anticorrosion performance. | [ |
Epoxy | ZnO modified by (3-Glycidyloxypropyl) trimethoxysilane(GPTMS- ZnO) | Commercial ZnO (diameter < 50 nm) | 1 | 1 | Solution mixing | Steel | Visual inspection and measuring the mass of marine deposits at different periods of time for coatings immersed in real work conditions | Enhanced corrosion and fouling resistance | [ |
Epoxy | ZnO and APTES- ZnO | ZnO synthesis by precipitation method | 2.5 | 2.5 | Mixing | Mild steel | Inhibition zone against E. coli | High anticorrosion and antibacterial activity by adding APTES-ZnO into epoxy coating. | [ |
Epoxy- PDMS- APTES | ZnO | Commercial ZnO (average particle size of 20 nm) | 1, 3, and 6.5 | 1 | Solution mixing | Steel | Antibacterial activity by visualizing the fate of microorganisms adhered on the surfaces; the antifouling efficacy by visual observation after exposing to seawater | Increasing water contact angle, surface roughness, abrasion resistance, pull-off strength, hardness, corrosion resistance, and fouling resistance. | [ |
Solvent free polyurethane with a sulphur containing polyol (polythiourethane, PTU) | Tetrapodal shaped ZnO (t-ZnO) | Flame transport synthesis | 0, 1, 5, and 10 | 5 | Stirring | Polyvinyl chloride(PVC), AlMg3 | Antifouling activity by immersion in seawater | Improving antifouling and mechanical properties of coatings. | [ |
Epoxy | ZnO and polyaniline (PANI)-ZnO | Synthesized ZnO nanorods | 1.5, 3, 4.5 wt.% of PANI-ZnO;4.5 wt.% PANI-ZnO with different wt.% of ZnO nanorods (0.5, 1, and 2 wt.%). | 4.5 wt.% PANI ZnO and 2 wt.% ZnO nanorods | Mixing | Steel | Antifouling characterization in marine seawater; and antibacterial activity against Gram-negative and Gram-positive bacteria | The conductive polymers could reduce the settlement of algae and barnacles. Slow release-rate of nano-ZnO and prolong antifouling performance. | [ |
Fig. 4. Antibacterial activity of chitosan and chitosan/ZnO nanocomposite coatings on the growth of P. nigrifaciens after 1, 2, and 5 days of incubation in marine broth under (a) light and (b) dark conditions. Data are means ?+SD [46].
Fig. 5. Field test results of (A, A1, A2, and A3) bare PDMS foul-release coating, (B, B1, B2, and B2) silicone/ZnO nanorods composite coating (0.5 wt. % nanorods), and (C, C1, C2, and C3) silicone/ZnO nanorods composite coating (5 wt. % NRs) during 6 months immersion in natural seawater [96].
Fig. 7. Photograph of specimens (a) before immersion in sea water, (b) after immersion in sea water for 3 months, (c) after immersion in sea water for 9 months, and (d) specimens’ surfaces after washing with water. E, EP1.5, EN1.5, EN3, EN4.5, EN4.5-Z0.5, EN4.5-Z1, and EN4.5-Z2 represent pure epoxy, epoxy/1.5% PANI, epoxy/1.5% PANI-ZnO, epoxy/3% PANI-ZnO, epoxy/4.5% PANI-ZnO, epoxy/4.5% PANI-ZnO and 0.5% ZnO, epoxy/4.5% PANI-ZnO and 1% ZnO, and epoxy/4.5% PANI-ZnO and 2% ZnO, respectively [104].
Polymer matrix | Nanofillers | Nanofiller property | Nanofiller amounts (wt.%) | Optimum nanofiller amount (wt.%) | Fabrication method | Substrate | Antifouling test | Main results | Refs. |
---|---|---|---|---|---|---|---|---|---|
Fluorinated acrylic paint | APTES modified TiO2 | TiO2 with 10 nm particle size | 3.0 | 3.0 | Solution mixing | Aluminum plates | Immersion in marine environment in warm months | Hydrophobic and low surface energy coating with antifouling property | [ |
Chlorinated polyether resin | Nano-TiO2, nano-ZnO, and CuO | TiO2 with size less than 40 nm | Nano-TiO2 (5, 6, 10, and 15), nano-ZnO (5), | - | Solution mixing | Glass slides | Immersion in culture media containing diatoms and spores; fluorescence microscopy | Bactericidal activity through replacing CuO with nano-TiO2 and nano-ZnO | [ |
Chitosan | Ag and TiO2 nanoparticles | Ag (14 nm); TiO2 (18 nm) | 0.25, 0.5, and 0.75 | 0.5 Ag/ 0.75 TiO2 | Solution mixing | - | The biofouling inhibition by examining the marine microalgal species Dunaliella salina, under dark and UV conditions | Biofouling control through photoactive induced ROS mechanism | [ |
Vinyl-terminated PDMS | Nano-TiO2 | Sol-gel synthesis of Rutile TiO2 | 0.01, 0.05, 0.1, 0.5, 1.0, 3.0, and 5.0 | 0.5 | Solution mixing | - | Biodegradability test against Gram staining differentiated bacterial and mold species under UV irradiation; polarized optical microscopy; field test in natural marine water | Self-cleaning and photo-bactericidal properties under UV irradiation | [ |
Epoxy resin | APTES-TiO2 | Synthesis by microwave method | 1, 3, 5, and 7 | 3 | Mechanical mixing | Mild steel | Visual inspection in marine environment; antibacterial test against Gram-positive S. aureus and Gram-negative P. aeruginosa bacteria by inhibition zone measurements | Anti-corrosion and anti-fouling properties | [ |
Vinyl-terminated PDMS | TiO2-SiO2 core-shell particles | Synthesis by hydrothermal method followed by sol-gel method | 0.05, 0.1, 0.5, 1.0, 3.0, and 5.0 | 0.5 | Mixing | Steel | Bacterial adhesion assay and barnacle cyprid settlement assay; filed test in natural marine water | Foul-release performance through their superhydrophobic structure and photocatalytic degradation | [ |
Copolymer of vinyl chloride andvinyl isobutyl ether | CuO, nano-TiO2, nano-ZnO | - | Nano-additives: 5-20%; CuO: 10-30% | - | Mixing | Steel | Anti-microbial activity by measuring inhibition zone and settlement resistance test against E. coli and S. aureus; antifouling test in seawater | Combining bactericidal capacity of CuO with photochemical effect of nano-additives in preparing antifouling paints; reducing the amount of CuO in antifouling paints; application for protection of tidal-zone ship hulls. | [ |
Table 2. A summary of researches about the antifouling polymer coatings loaded with nano-TiO2.
Polymer matrix | Nanofillers | Nanofiller property | Nanofiller amounts (wt.%) | Optimum nanofiller amount (wt.%) | Fabrication method | Substrate | Antifouling test | Main results | Refs. |
---|---|---|---|---|---|---|---|---|---|
Fluorinated acrylic paint | APTES modified TiO2 | TiO2 with 10 nm particle size | 3.0 | 3.0 | Solution mixing | Aluminum plates | Immersion in marine environment in warm months | Hydrophobic and low surface energy coating with antifouling property | [ |
Chlorinated polyether resin | Nano-TiO2, nano-ZnO, and CuO | TiO2 with size less than 40 nm | Nano-TiO2 (5, 6, 10, and 15), nano-ZnO (5), | - | Solution mixing | Glass slides | Immersion in culture media containing diatoms and spores; fluorescence microscopy | Bactericidal activity through replacing CuO with nano-TiO2 and nano-ZnO | [ |
Chitosan | Ag and TiO2 nanoparticles | Ag (14 nm); TiO2 (18 nm) | 0.25, 0.5, and 0.75 | 0.5 Ag/ 0.75 TiO2 | Solution mixing | - | The biofouling inhibition by examining the marine microalgal species Dunaliella salina, under dark and UV conditions | Biofouling control through photoactive induced ROS mechanism | [ |
Vinyl-terminated PDMS | Nano-TiO2 | Sol-gel synthesis of Rutile TiO2 | 0.01, 0.05, 0.1, 0.5, 1.0, 3.0, and 5.0 | 0.5 | Solution mixing | - | Biodegradability test against Gram staining differentiated bacterial and mold species under UV irradiation; polarized optical microscopy; field test in natural marine water | Self-cleaning and photo-bactericidal properties under UV irradiation | [ |
Epoxy resin | APTES-TiO2 | Synthesis by microwave method | 1, 3, 5, and 7 | 3 | Mechanical mixing | Mild steel | Visual inspection in marine environment; antibacterial test against Gram-positive S. aureus and Gram-negative P. aeruginosa bacteria by inhibition zone measurements | Anti-corrosion and anti-fouling properties | [ |
Vinyl-terminated PDMS | TiO2-SiO2 core-shell particles | Synthesis by hydrothermal method followed by sol-gel method | 0.05, 0.1, 0.5, 1.0, 3.0, and 5.0 | 0.5 | Mixing | Steel | Bacterial adhesion assay and barnacle cyprid settlement assay; filed test in natural marine water | Foul-release performance through their superhydrophobic structure and photocatalytic degradation | [ |
Copolymer of vinyl chloride andvinyl isobutyl ether | CuO, nano-TiO2, nano-ZnO | - | Nano-additives: 5-20%; CuO: 10-30% | - | Mixing | Steel | Anti-microbial activity by measuring inhibition zone and settlement resistance test against E. coli and S. aureus; antifouling test in seawater | Combining bactericidal capacity of CuO with photochemical effect of nano-additives in preparing antifouling paints; reducing the amount of CuO in antifouling paints; application for protection of tidal-zone ship hulls. | [ |
Fig. 8. (I) Biodegradability measurements for unfilled and filled PDMS/TiO2 nanocomposites using different microorganisms after UV irradiation. (II) (A-G) Field trials of fabricated nanofiller TiO2 (0.5%)/PDMS nanocomposites throughout 360 days of immersion in seawater [120].
Fig. 9. Antimicrobial activities of TiO2-APTES-DGEBA nanohybrid coatings against (I) S. aureus, (II) P. aeruginosa, and (III) A. nigerand; (IV) scanning electron microscopy (SEM) image of S. Aureus after treatment. Photograph are taken after the TiO2-APTES-DGEBA coated panels were immersed in seawater: (a) after 6th month, (b) after 12th month and SEM images taken, (c) after 6th month, and (d) after 12th months; C1, C2, C3, and C4 represent the epoxy coatings loaded with 1, 3, 5, and 7 wt.% APTES modified TiO2 nanoparticles, respectively [121].
Fig. 10. Relationships among relative adhesion, value of (γ·E)1/2, and nano-SiO2 additions: (a) relationship between nano-SiO2 additions and (γ·E)1/2; (b) relationship between relative adhesion and (γ·E)1/2 [128].
Fig. 11. Field experiment results: (A, A1 and A2) for the virgin PDMS foul-release coating; (B, B1 and B2) for the formulated PDMS/β-MnO2 nanorod composites (0.5 wt. % nanorods); (C, C1 and C2) for the formulated PDMS/β-MnO2 nanorod composites (3 wt. % nanofillers) up to 90 days of immersion in natural seawater [134].
Polymer matrix | Nanofillers | Nanofiller property | Nanofiller amounts (wt.%) | Optimum nanofiller amount (wt.%) | Fabrication method | Substrate | Antifouling tests | Main results | Refs. |
---|---|---|---|---|---|---|---|---|---|
PDMS | MWCNTs and natural sepiolote (NS) | MWCNTs: diameter 10 nm and length 0.1-10 μm.NS: diameter 10-30 nm and length 2-5 μm. | MWCNTs: 0.05 and 0.2NS: 3.5 and 1;0.05 MWCNTS + 10 NS | 0.05 MWCNTS + 10 NS | Mechanically mixing | Glass slides | Laboratory assays involving soft-fouling (Ulva) and hard-fouling (Balanus) organisms | Significant enhancement in fouling release behavior of silicone elastomer by adding 0.05 wt.% MWCNTs. | [ |
PDMS | MWCNTs | MWCNTs: diameter 10 nm and length 0.1-10 μm. | 0.05, 0.1, and 0.2 | 0.1 | Mechanically mixing | Glass slides | Laboratory assays with the marine alga (seaweed) Ulva | The bulk properties of the coating is unchanged, while the fouling release properties depend on the wt.% of the nanofiller and the dispersion method. | [ |
PDMS | Fluorinated MWCNTs | 3-step synthesis procedure | 0.05, 0.1, and 0.2 | 0.05, 0.1, and 0.2 | Solution mixing | Aluminum plates | Evaluating the fouling release properties by the pseudobarnacle adhesion strength measurements | The mechanical properties have not changed, while the fouling release properties enhance significantly. | [ |
Rosin based antifouling paint | Carboxyl functionalized MWCNTs | Diameter 20-45 nm and length 5 μm | 0.05, 0.1, 0.2, 0.5, and 0.7 | 0.5 and 0.7 | Mixing | - | - | The addition of the MWCNTs improves the impact resistance of the paint. | [ |
PDMS | MWCNTs and graphene oxide | MWCNTs with specific surface area of 1.87-7.76 m2/g; graphene oxide monolayer powder | MWCNTs: 0.25, 0.5, 0.75, and 1.0; graphene oxide: 0.5 and 0.75 | 0.5 | Solution mixing | Metal plates | Immersion in seawater | Increasing the mechanical strength and small extent enhancement in antifouling and cleaning performance of the coatings | [ |
Table 3. A summary of researches about the antifouling polymer coatings loaded with CNTs.
Polymer matrix | Nanofillers | Nanofiller property | Nanofiller amounts (wt.%) | Optimum nanofiller amount (wt.%) | Fabrication method | Substrate | Antifouling tests | Main results | Refs. |
---|---|---|---|---|---|---|---|---|---|
PDMS | MWCNTs and natural sepiolote (NS) | MWCNTs: diameter 10 nm and length 0.1-10 μm.NS: diameter 10-30 nm and length 2-5 μm. | MWCNTs: 0.05 and 0.2NS: 3.5 and 1;0.05 MWCNTS + 10 NS | 0.05 MWCNTS + 10 NS | Mechanically mixing | Glass slides | Laboratory assays involving soft-fouling (Ulva) and hard-fouling (Balanus) organisms | Significant enhancement in fouling release behavior of silicone elastomer by adding 0.05 wt.% MWCNTs. | [ |
PDMS | MWCNTs | MWCNTs: diameter 10 nm and length 0.1-10 μm. | 0.05, 0.1, and 0.2 | 0.1 | Mechanically mixing | Glass slides | Laboratory assays with the marine alga (seaweed) Ulva | The bulk properties of the coating is unchanged, while the fouling release properties depend on the wt.% of the nanofiller and the dispersion method. | [ |
PDMS | Fluorinated MWCNTs | 3-step synthesis procedure | 0.05, 0.1, and 0.2 | 0.05, 0.1, and 0.2 | Solution mixing | Aluminum plates | Evaluating the fouling release properties by the pseudobarnacle adhesion strength measurements | The mechanical properties have not changed, while the fouling release properties enhance significantly. | [ |
Rosin based antifouling paint | Carboxyl functionalized MWCNTs | Diameter 20-45 nm and length 5 μm | 0.05, 0.1, 0.2, 0.5, and 0.7 | 0.5 and 0.7 | Mixing | - | - | The addition of the MWCNTs improves the impact resistance of the paint. | [ |
PDMS | MWCNTs and graphene oxide | MWCNTs with specific surface area of 1.87-7.76 m2/g; graphene oxide monolayer powder | MWCNTs: 0.25, 0.5, 0.75, and 1.0; graphene oxide: 0.5 and 0.75 | 0.5 | Solution mixing | Metal plates | Immersion in seawater | Increasing the mechanical strength and small extent enhancement in antifouling and cleaning performance of the coatings | [ |
Polymer matrix | Nanofillers | Nanofiller property | Nanofiller amounts(wt.%) | Optimum nanofiller amount(wt.%) | Fabrication method | Substrate | Antifouling test | Main results | Refs. |
---|---|---|---|---|---|---|---|---|---|
Alkyd paint | GO | GO synthesis by Hummers method | 0.16 | 0.16 | Ball-mill | Galvanized iron | Antibacterial study against E. coli, S. aureus, and Pseudomonas aeruginosa; field study in seawater | Anticorrosion paint with antibacterial activity against 3 different bacterial strains and antifouling behavior in the seawater. | [ |
Epoxy- PDMS- APTES | GO | Surface area > 120 m2/g, thickness 0.8∼2 nm | 1, 3, and 5 | 1 | Solution mixing | Mild steel | Field immersion | Superior mechanical properties and adhesion strength, high water contact angle, better thermal stability, excellent corrosion resistance, and antifouling performance. | [ |
Epoxy | PANI- GO | GO synthesis by Hummers’ method | 3, 6, 12, and 24 | 12 and 6 | Stirring | Carbon steel | Field immersion | High anti-corrosion and antifouling performance. | [ |
Epoxy | PANI/ P-phenylenediamine/ GO | GO synthesis by modified Hummers’ method | 2 | 2 | In situ polymerization | Carbon steel | Immersion in simulated environment of seawater | High anticorrosion and antifouling performance. | [ |
Silicone rubber | GO-Al2O3 | GO synthesis by Hummers method; synthesis of Al2O3 nanorods (150 nm length and 20 nm diameter) by hydrothermal method | 0.1, 0.5, 1, 3, and 5 | 1 | Solution mixing | Mild steel | Antibacterial activity against Gram-positive bacteria (Micrococcus spp.), Gram-negative bacteria (Pseudomonas putida), and fungus (Aspergillus niger); measuring bio-degradability and turbidity | Increasing the contact angle (151°), decreasing surface free energy (13.25 mN/m), providing micro-nano roughness, thermal stability, and marine antifouling properties. | [ |
Fluorocarbon resin coating | GO-TiO2 | Commercial TiO2 (20% rutile and 80% anatase) with average particle size of 25 nm | - | - | Solution mixing | Slide glasses | Plate counting method in unsterilized fresh seawater | High sterilization under UV light irradiation.The graphene transfer the photo-generated electrons from TiO2 to the surface of the graphene, and reduces the recombination of photo-generated electron-hole pairs. | [ |
Acrylic resin | rGO@Cu2O | GO synthesis by Hummers method, and in situ decoration with Cu2O | - | - | Solution mixing | Steel | Antifouling study by immersion in seawater | Antifouling paint in seawater with water contact angle=113°, high adhesion strength, and high antifouling performance during 365 days of immersion in seawater. | [ |
Organically modified silicate sol | GO and AgNPs@rGO | Synthesis of AgNPs on GO sheets by heat treatment | 0.25 | 0.25 | Solution mixing | Copper alloy | Antibacterial and anti-algae tests by using E. coli as the model bacteria, and Phaeodactylum tricornutum, Navicula torguatum as model algae | High corrosion resistance and antibacterial coatings.The coverage area of the Chlorella, Navicular, and Phaeodactylum tricornutum on the nanocomposite coating deceased to 46%, 27%, and 8%, respectively. | [ |
Chitosan | GO and AgNPs | GO synthesis by Hummers method; AgNPs synthesis by chemical method | - | - | Solution mixing | - | Gram-negative E. coli and Gram-positive B. subtilis; agar plate assay and Congo red agar plate assay | High antibacterial activity against E. coli and B. subtilis | [ |
Table 4. A summary of researches about antifouling polymer coatings loaded with graphene-based nanomaterials.
Polymer matrix | Nanofillers | Nanofiller property | Nanofiller amounts(wt.%) | Optimum nanofiller amount(wt.%) | Fabrication method | Substrate | Antifouling test | Main results | Refs. |
---|---|---|---|---|---|---|---|---|---|
Alkyd paint | GO | GO synthesis by Hummers method | 0.16 | 0.16 | Ball-mill | Galvanized iron | Antibacterial study against E. coli, S. aureus, and Pseudomonas aeruginosa; field study in seawater | Anticorrosion paint with antibacterial activity against 3 different bacterial strains and antifouling behavior in the seawater. | [ |
Epoxy- PDMS- APTES | GO | Surface area > 120 m2/g, thickness 0.8∼2 nm | 1, 3, and 5 | 1 | Solution mixing | Mild steel | Field immersion | Superior mechanical properties and adhesion strength, high water contact angle, better thermal stability, excellent corrosion resistance, and antifouling performance. | [ |
Epoxy | PANI- GO | GO synthesis by Hummers’ method | 3, 6, 12, and 24 | 12 and 6 | Stirring | Carbon steel | Field immersion | High anti-corrosion and antifouling performance. | [ |
Epoxy | PANI/ P-phenylenediamine/ GO | GO synthesis by modified Hummers’ method | 2 | 2 | In situ polymerization | Carbon steel | Immersion in simulated environment of seawater | High anticorrosion and antifouling performance. | [ |
Silicone rubber | GO-Al2O3 | GO synthesis by Hummers method; synthesis of Al2O3 nanorods (150 nm length and 20 nm diameter) by hydrothermal method | 0.1, 0.5, 1, 3, and 5 | 1 | Solution mixing | Mild steel | Antibacterial activity against Gram-positive bacteria (Micrococcus spp.), Gram-negative bacteria (Pseudomonas putida), and fungus (Aspergillus niger); measuring bio-degradability and turbidity | Increasing the contact angle (151°), decreasing surface free energy (13.25 mN/m), providing micro-nano roughness, thermal stability, and marine antifouling properties. | [ |
Fluorocarbon resin coating | GO-TiO2 | Commercial TiO2 (20% rutile and 80% anatase) with average particle size of 25 nm | - | - | Solution mixing | Slide glasses | Plate counting method in unsterilized fresh seawater | High sterilization under UV light irradiation.The graphene transfer the photo-generated electrons from TiO2 to the surface of the graphene, and reduces the recombination of photo-generated electron-hole pairs. | [ |
Acrylic resin | rGO@Cu2O | GO synthesis by Hummers method, and in situ decoration with Cu2O | - | - | Solution mixing | Steel | Antifouling study by immersion in seawater | Antifouling paint in seawater with water contact angle=113°, high adhesion strength, and high antifouling performance during 365 days of immersion in seawater. | [ |
Organically modified silicate sol | GO and AgNPs@rGO | Synthesis of AgNPs on GO sheets by heat treatment | 0.25 | 0.25 | Solution mixing | Copper alloy | Antibacterial and anti-algae tests by using E. coli as the model bacteria, and Phaeodactylum tricornutum, Navicula torguatum as model algae | High corrosion resistance and antibacterial coatings.The coverage area of the Chlorella, Navicular, and Phaeodactylum tricornutum on the nanocomposite coating deceased to 46%, 27%, and 8%, respectively. | [ |
Chitosan | GO and AgNPs | GO synthesis by Hummers method; AgNPs synthesis by chemical method | - | - | Solution mixing | - | Gram-negative E. coli and Gram-positive B. subtilis; agar plate assay and Congo red agar plate assay | High antibacterial activity against E. coli and B. subtilis | [ |
Fig. 13. Fluorescence images showing E. coli populations after 48 h: (a) the control surface, (b) the surface coated with the GO-nanopaint (viable cells are observed to be in green, and dead cells in red (scale bar - 8 μm)), and (c) the percentage of dead cells in the three different cultures on the GO-nanopaint-coated surfaces after 24 and after 48 h. (d) The GO-nanopaint coated substrates and the bare substrates were immersed in a lagoon with tidal water directly connected to Jeju Sea, and (e) the digital images of bare and painted substrates before immersion and after 3 weeks [178].
Fig. 14. Images of field-environment test: (a) and (b) before immersion, (c) and (d) after immersion, (e) and (f) optical micrographs of EPN and EPG-1 coating systems [179].
Fig. 15. The images of the field trial of the prepared virgin silicone (A-C) foul release coating formulation and (D-F) for the PDMS/GO-Al2O3 NRs hybrid sheet (1 wt.%) composite formulation up to 90 days of immersion in natural marine water [56].
Fig. 16. Comparison of the antibacterial properties with the previous literature of selected polymeric nanofibers with incorporated metal oxides and 2D materials. The antibacterial effects of electrospun polymer blends were also compared. The stars denote the materials from this study [191].
Fig. 17. SEM images of the bacteria on the surface (first column EVA and the second column EVA-halloysite formulations): (a) pure EVA, (c, e) EVA directly doped with TCPM, and (b) EVA composited with halloysite, (d, f) EVA with TCPM loaded halloysite. The samples were incubated in the bacterial suspension for 3 days (c, d) directly and (e, f) after shaking in seawater for 60 days [206].
Fig. 18. The photographs of the field tests for AF paints (Test period: 2012.07.14-2013.04.01; test site: the East Sea of China, Ningbo, Zhejiang province) [207].
Fig. 20. Schematic of antifouling and antibacterial mechanisms of polymer coatings loaded with nanomaterials: (I) changing surface properties, which include (a) surface roughness, (b) wettability, (c) stiffness (surface energy), (d) topography, and (e) surface charge; (II) ROS and oxidative and oxidative stress; and (III) ion release.
Fig. 22. Adhesion energy plots of modified polyesters interacting with amorphous carbon. The unmodified interface, polyester/AmCH, is also included as a reference point. The depth of the well in these curves provides a measure of the adhesion at the interface, and the greater the dip, the stronger the adhesion between coating (polymer) and contaminant (AmCH). Adhesion plots show that low-level hydroxyl (7OH) surface modifications reduce adhesion between coating and contaminant [271].
Fig. 23. The most stable complexes of (a) Gly, (b) Lys, (c) Phe, and (d) Asp upon the HEAA. The interactions distances (Å) of the more reactive atoms and their NBO charges (|e|) are reported by +/- sign. The intermolecular CH···O interactions are bolded.
Fig. 24. The most stable complexes of (a) Gly, (b) Lys, (c) Phe, and (d) Asp upon the HEA. The intermolecular interactions distances (Å) of the more reactive atoms and their NBO charges (|e|) are reported by +/- sign. The intermolecular CH···O interactions are bolded.
Fig. 25. The most stable complexes of (a) Gly, (b) Lys, (c) Phe, and (d) Asp upon the HPenAA. The interactions distances (Å) of the more reactive atoms and their NBO charges (|e|) are reported by +/- sign. The intermolecular CH···O interactions are bolded.
Complex | Eads | ||
---|---|---|---|
6-31g(d,p) | cc-pVDZ | Def2-TZVP | |
HEAA-Gly | -68.14 | -66.62 | - 64.51 |
HEAA-Lys | -50.62 | -59.46 | - 55.93 |
HEAA-Phe | -46.97 | -44.32 | - 42.68 |
HEAA-Asp | -36.66 | -35.54 | - 33.18 |
HEA-Gly | -63.68 | -54.08 | -52.11 |
HEA-Lys | -28.43 | -32.77 | -29.07 |
HEA-Phe | -38.59 | -35.29 | -33.79 |
HEA-Asp | -38.89 | -35.13 | -33.56 |
HPenAA-Gly | -71.68 | -70.85 | - 68.25 |
HPenAA -Lys | -17.20 | -11.72 | - 10.68 |
HPenAA -Phe | -39.53 | -36.08 | - 34.61 |
HPenAA -Asp | -43.84 | -39.57 | - 37.52 |
Table 5. Adsorption energies (kJ mol-1) of the protein components on the monomers at M06-2X-D3 method using different basis sets.
Complex | Eads | ||
---|---|---|---|
6-31g(d,p) | cc-pVDZ | Def2-TZVP | |
HEAA-Gly | -68.14 | -66.62 | - 64.51 |
HEAA-Lys | -50.62 | -59.46 | - 55.93 |
HEAA-Phe | -46.97 | -44.32 | - 42.68 |
HEAA-Asp | -36.66 | -35.54 | - 33.18 |
HEA-Gly | -63.68 | -54.08 | -52.11 |
HEA-Lys | -28.43 | -32.77 | -29.07 |
HEA-Phe | -38.59 | -35.29 | -33.79 |
HEA-Asp | -38.89 | -35.13 | -33.56 |
HPenAA-Gly | -71.68 | -70.85 | - 68.25 |
HPenAA -Lys | -17.20 | -11.72 | - 10.68 |
HPenAA -Phe | -39.53 | -36.08 | - 34.61 |
HPenAA -Asp | -43.84 | -39.57 | - 37.52 |
Systems | Molecularadsorption(Eads) | Clusteradsorption(Eads) | Number of moderateH-bond(OH···O) |
---|---|---|---|
HEAA-1 H2O | -31.26 | -31.26 | - |
HEAA-2 H2O | -29.91 | -36.66 | 1 |
HEAA-3 H2O | -36.97 | -38.31 | 3 |
HEAA-4 H2O | -26.59 | -29.47 | 4 |
HEAA-5 H2O | -40.19 | -41.87 | 5 |
HEA-1H2O | -25.82 | -25.82 | - |
HEA-2H2O | -25.42 | -29.42 | 1 |
HEA-3H2O | -32.15 | -18.75 | 2 |
HEA-4H2O | -26.42 | -23.01 | 4 |
HEA-5H2O | -39.75 | -33.21 | 5 |
HPenAA-1H2O | -22.79 | -22.79 | - |
HPenAA-2H2O | -23.86 | -35.38 | 1 |
HPenAA-3H2O | -32.14 | -33.43 | 2 |
HPenAA-4H2O | -25.08 | -27.89 | 3 |
HPenAA-5H2O | -19.76 | -27.77 | 4 |
Table 6. Adsorption energies (kJ·mol-1) and number of H-bond of the water molecules (clusters) on the monomers at M06-2X-D3 method.
Systems | Molecularadsorption(Eads) | Clusteradsorption(Eads) | Number of moderateH-bond(OH···O) |
---|---|---|---|
HEAA-1 H2O | -31.26 | -31.26 | - |
HEAA-2 H2O | -29.91 | -36.66 | 1 |
HEAA-3 H2O | -36.97 | -38.31 | 3 |
HEAA-4 H2O | -26.59 | -29.47 | 4 |
HEAA-5 H2O | -40.19 | -41.87 | 5 |
HEA-1H2O | -25.82 | -25.82 | - |
HEA-2H2O | -25.42 | -29.42 | 1 |
HEA-3H2O | -32.15 | -18.75 | 2 |
HEA-4H2O | -26.42 | -23.01 | 4 |
HEA-5H2O | -39.75 | -33.21 | 5 |
HPenAA-1H2O | -22.79 | -22.79 | - |
HPenAA-2H2O | -23.86 | -35.38 | 1 |
HPenAA-3H2O | -32.14 | -33.43 | 2 |
HPenAA-4H2O | -25.08 | -27.89 | 3 |
HPenAA-5H2O | -19.76 | -27.77 | 4 |
Fig. 29. The most stable complexes of Gly binding to (a) HEAA-8H2O, (b) HEA-8H2O, and (c) HPenAA-8H2O complex. The most important interaction distances (Å) are reported.
[1] | M.C.T. Castro, X. Bionic, MEPC 62 (2011) 1-24. |
[2] |
X. Li, J. Duan, H. Xiao, Y. Li, H. Liu, F. Guan, X. Zhai, Front. Microbiol. 8 (2017) 1737.
DOI URL |
[3] | F. Alonso, in: Evaluación de Efectos de Biocidas Contenidos en Recubrimientos “Antifouling “(AF coatings) en Ecosistemas Marinos, DISSERTATION, Universi-dad Técnica de Madrid, 2011, p. 233. in Spanish. |
[4] | S.A. Alghamdi, R.A.Q. Corodova, The Impact of Biofouling on Marine Environ- ment: A Qualitative Review of the Current Antifouling Technologies, Master Degree Thesis, World Maritime University, Sweden, 2019 (in English). |
[5] |
P.J. Schofield, M.E. Brown, Earth Syst. Environ. Sci.(2016), doi: 10.1016/B978-0-12-409548-9.09207-1.
DOI |
[6] | S. Kiil, C.E. Weinell, D.M. Yebra, K. Dam-Johansen, Chem. Prod. Des. 7 (2006) 181-238. |
[7] |
P.A. Vinagre, T. Simas, E. Cruz, E. Pinori, J. Svenson, J. Mar. Sci. Eng. 8 (2020) 495.
DOI URL |
[8] | M. El-Komi, A. Emara, M. Mona, Pak. J. Mar. Sci. 7 (1) (1998) 11-26. |
[9] | B.P. Masi, I. Zalmon, R. Coutinho, Pak. J. Mar. Sci. Oceanogr. 64 (2016) 387-400. |
[10] |
I. Banerjee, R.C. Pangule, R.S. Kane, Adv. Mater. 23 (2011) 690-718.
DOI URL |
[11] |
L.D. Chambers, K.R. Stokes, F.C. Walsh, R.J. Wood, Surf. Coat. Technol. 201 (2006) 3642-3652.
DOI URL |
[12] |
S. Soroldoni, Í.B. Castro, F. Abreu, F.A. Duarte, R.B. Choueri, O.O. Möller Jr, G. Fillmann, G.L.L. Pinho, Water Res. 137 (2018) 47-56.
DOI PMID |
[13] |
S. Cao, J. Wang, H. Chen, D. Chen, Sci. Bull. 56 (2011) 598-612.
DOI URL |
[14] |
A. Ali, M.I. Jamil, J. Jiang, M. Shoaib, B.U. Amin, S. Luo, X. Zhan, F. Chen, Q. Zhang, J. Polym. Res. 27 (2020) 1-17.
DOI URL |
[15] |
Y. Ma, Y. Zhang, R. Zhang, F. Guan, B. Hou, J. Duan, Appl. Microb. Biotechnol. 104 (2020) 515-525.
DOI URL |
[16] | T. Munk, D Kane, D. Yebra, in: The Effects of Corrosion and Fouling on the Performance of Ocean-Going Vessels: a Naval Architectural Perspective, Advances in marine Antifouling Coatings and Technologies, Elsevier, 2009, pp. 148-176. |
[17] |
M. Schultz, J. Bendick, E. Holm, W. Hertel, Biofouling 27 (2011) 87-98.
DOI PMID |
[18] |
I. Fitridge, T. Dempster, J. Guenther, R. De Nys, Biofouling 28 (2012) 649-669.
DOI PMID |
[19] | M. Salta, J.A. Wharton, P. Stoodley, S.P. Dennington, L.R. Goodes, S. Werwinski, U. Mart, R.J. Wood, K.R. Stokes, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 368 (2010) 4729-4754. |
[20] | J.A. Callow, M.E. Callow, Nat. Commun. 2 (2011) 1-10. |
[21] |
I. Amara, W. Miled, R.B. Slama, N. Ladhari, Environ. Toxicol. Pharmacol. 57 (2018) 115-130.
DOI URL |
[22] |
I. Omae, Appl. Organomet. Chem. 17 (2003) 81-105.
DOI URL |
[23] |
N. Voulvoulis, M.D. Scrimshaw, J.N. Lester, Chemosphere 47 (2002) 789-795.
PMID |
[24] |
S. Olsen, L. Pedersen, M. Hermann, S. Kiil, K. Dam-Johansen, J. Coat. Technol. Res. 6 (2009) 187.
DOI URL |
[25] |
M. Li, C. Schlaich, J. Zhang, I.S. Donskyi, K. Schwibbert, F. Schreiber, Y. Xia, J. Radnik, T. Schwerdtle, R. Haag, J. Mater. Sci. Technol. 68 (2021) 160-171.
DOI URL |
[26] |
I. Omae, Chem. Rev. 103 (2003) 3431-3448.
DOI URL |
[27] |
K.V. Thomas, S. Brooks, Biofouling 26 (2010) 73-88.
DOI PMID |
[28] |
I. Konstantinou, T. Albanis, Environ. Int. 30 (2004) 235-248.
PMID |
[29] |
E. Korkut, M. Atlar, Ocean Eng. 41 (2012) 1-12.
DOI URL |
[30] |
P. Buskens, M. Wouters, C. Rentrop, Z. Vroon, J. Coat. Technol. Res. 10 (2013) 29-36.
DOI URL |
[31] |
R.E. Baier, J. Mater. Sci. Mater. Med. 17 (2006) 1057-1062.
DOI URL |
[32] |
S.B. Chinnaraj, P.G. Jayathilake, J. Dawson, Y. Ammar, J. Portoles, N. Jakubovics, J. Chen, J. Mater. Sci. Tech. 81 (2021) 151-161.
DOI URL |
[33] | C. Ober, Green Mater. 5 (2017) 1-3. |
[34] |
R.F. Brady, I.L. Singer, Biofouling 15 (2000) 73-81.
DOI PMID |
[35] |
P. Shivapooja, Q. Yu, B. Orihuela, R. Mays, D. Rittschof, J. Genzer, G.P. López, ACS Appl. Mater. Interfaces 7 (2015) 25586-25591.
DOI URL |
[36] |
L. Zheng, H.S. Sundaram, Z. Wei, C. Li, Z. Yuan, React. Funct. Polym. 118 (2017) 51-61.
DOI URL |
[37] |
J. Yang, H. Qian, J. Wang, P. Ju, Y. Lou, G. Li, D. Zhang, J. Mater. Sci. Technol. 89 (2021) 233-241.
DOI URL |
[38] |
L.D. Blackman, P.A. Gunatillake, P. Cass, K.E. Locock, Chem. Soc. Rev. 48 (2019) 757-770.
DOI PMID |
[39] |
S. Nir, M. Reches, Curr. Opin. Biotechnol. 39 (2016) 48-55.
DOI URL |
[40] |
M. Ghasemlou, F. Daver, E.P. Ivanova, B. Adhikari, J. Mater. Chem. A 7 (2019) 16643-16670.
DOI |
[41] |
V.B. Damodaran, N.S. Murthy, Biomater. Res. 20 (1) (2016) 1-11.
DOI URL |
[42] |
B. Zhang, J. Duan, Y. Huang, B. Hou, J. Mater. Sci. Technol. 71 (2021) 1-11.
DOI URL |
[43] |
H. Jin, W. Bing, L. Tian, P. Wang, J. Zhao, Mater 12 (2019) 2608.
DOI URL |
[44] |
H. Palza, Int. J. Mol. Sci. 16 (2015) 2099-2116.
DOI URL |
[45] |
S. Tian, D. Jiang, J. Pu, X. Sun, Z. Li, B. Wu, W. Zheng, W. Liu, Z. Liu, Chem. Eng. Sci. 370 (2019) 1-9.
DOI URL |
[46] |
L. Al-Naamani, S. Dobretsov, J. Dutta, J.G. Burgess, Chemosphere 168 (2017) 408-417.
DOI PMID |
[47] |
L. Shtykova, C. Fant, P. Handa, A. Larsson, K. Berntsson, H. Blanck, R. Simons-son, M. Nydén, H.I. Härelind, Prog. Org. Coat. 64 (2009) 20-26.
DOI URL |
[48] |
B. Zhang, W. Xu, Q. Zhu, B. Hou, J. Mater. Sci. Technol. 66 (2021) 74-81.
DOI URL |
[49] |
S. Kang, M. Pinault, L.D. Pfefferle, M. Elimelech, Langmuir 23 (2007) 8670-8673.
DOI URL |
[50] |
D.Y. Lyon, J.D. Fortner, C.M. Sayes, V.L. Colvin, J.B. Hughes, Environ. Toxicol. Chem. 24 (2005) 2757-2762.
DOI URL |
[51] | A. Mostafaei, F. Nasirpouri, Prog. Org. Coat. 77 (2014) 146-159. |
[52] |
Q. Li, S. Mahendra, D.Y. Lyon, L. Brunet, M.V. Liga, D. Li, P.J. Alvarez, Water Res. 42 (2008) 4591-4602.
DOI URL |
[53] |
M. Michailidis, E. Gutner-Hoch, R. Wengier, R. Onderwater, R.A. D’Sa, Y. Be-nayahu, A. Semenov, V. Vinokurov, D.G. Shchukin, ACS Sustain. Chem. Eng. 8 (24) (2020) 8928-8937.
DOI URL |
[54] |
S. Verma, S. Das, S. Mohanty, S.K. Nayak, Polymers for Advanced Technologies 30 (2019) 2275-2300.
DOI URL |
[55] |
J. Chapman, L. Le Nor, R. Brown, E. Kitteringham, S. Russell, T. Sullivan, F. Re-gan, J. Mater. Chem. B 1 (2013) 6194-6200.
DOI PMID |
[56] | M.S. Selim, S.A. El-Safty, N.A. Fatthallah, M.A. Shenashen, Prog. Org. Coat. 121 (2018) 160-172. |
[57] |
M. Lejars, A. Margaillan, C. Bressy, Chem. Rev. 112 (2012) 4347-4390.
DOI URL |
[58] | Q. Xie, C. Liu, X. Lin, C. Ma, G. Zhang, ACS Appl, Polym 2 (2020) 3181-3188. |
[59] |
E. Guazzelli, F. Perondi, F. Criscitiello, C. Pretti, M. Oliva, V. Casu, F. Maniero, L. Gazzera, G. Galli, E. Martinelli, J. Mater. Chem. B 8 (2020) 9764-9776.
DOI PMID |
[60] | PubMed®. 2022 Available from: https://pubmed.ncbi.nlm.nih.gov/. |
[61] | D.M. Yebra, S. Kiil, K. Dam-Johansen, Prog. Org. Chem. 50 (2004) 75-104. |
[62] |
D. Howell, B. Behrends, Biofouling 22 (2006) 401-410.
DOI URL |
[63] |
A.G. Nurioglu, A.C.C. Esteves, J. Mater. Chem. B 3 (2015) 6547-6570.
DOI PMID |
[64] |
Y. Gu, L. Yu, J. Mou, D. Wu, M. Xu, P. Zhou, Y. Ren, Mar. Drugs 18 (2020) 371.
DOI URL |
[65] | C. Liu, Y.B. Fu, J.Y. Zheng, Dev. Appl. Mater. 4 (2009) 69-74. |
[66] | C.M. Magin, S.P. Cooper, A.B. Brennan, Mater. Today 13 (2010) 36-44. |
[67] | S.K. Kyei, G. Darko, O. Akaranta, J. Coat. Technol. Res. (2020) 1-18. |
[68] |
X. Han, J. Wu, X. Zhang, J. Shi, J. Wei, Y. Yang, B. Wu, Y. Feng, J. Mater. Sci. Technol. 61 (2021) 46-62.
DOI |
[69] |
J. Pan, Q. Peng, G. Zhang, Q. Xie, X. Gong, P.Y. Qian, C. Ma, G. Zhang, J. Mater. Sci. Technol. 84 (2021) 200-207.
DOI URL |
[70] |
Y. Zou, Y. Zhang, Q. Yu, H. Chen, J. Mater. Sci. Technol. 70 (2021) 24-38.
DOI |
[71] |
M.S. Selim, S.A. El-Safty, M.A. Shenashen, S.A. Higazy, A. Elmarakbi, J. Mater. Chem. B 8 (2020) 3701-3732.
DOI URL |
[72] | C.I. Idumah, C.M. Obele, E.O. Emmanuel, A. Hassan, N. Azikiwe, Surf. Inter-faces 21 (2020) 100734. |
[73] |
S. Pourhashem, F. Saba, J. Duan, A. Rashidi, F. Guan, E.G. Nezhad, B. Hou, J. Ind. Eng. Chem. 88 (2020) 29-57.
DOI URL |
[74] |
A.S. Adeleye, E.A. Oranu, M. Tao, A.A. Keller, Water Res. 102 (2016) 374-382.
DOI URL |
[75] |
K. Mageshwari, R. Sathyamoorthy, J. Mater. Sci. Technol. 29 (2013) 909-914.
DOI |
[76] |
M.S. Selim, N.A. Samak, Z. Hao, J. Xing, Mater. Chem. Phys. 239 (2020) 122300.
DOI URL |
[77] | J. Gu, L. Li, D. Huang, L. Jiang, L. Liu, F. Li, A. Pang, X. Guo, B. Tao, Open. J. Org. Polym. Mater. 9 (2019) 47-62. |
[78] | T. Mao, G. Lu, C. Xu, H. Yu, J. Yu, Prog. Org. Coat. 141 (2020) 105317. |
[79] |
A. Turner, Mar. Pollut. Bull. 60 (2010) 159-171.
DOI URL |
[80] | K. Chasse, A. Scardino, G. Swain, Prog. Org. Coat. 141 (2020) 105555. |
[81] |
W. Wu, W. Zhao, Y. Wu, C. Zhou, L. Li, Z. Liu, J. Dong, K. Zhou, Appl. Surf. Sci. 465 (2019) 279-287.
DOI URL |
[82] |
S. Meghana, P. Kabra, S. Chakraborty, N. Padmavathy, RSC Adv. 5 (2015) 12293-12299.
DOI URL |
[83] | W.Z. Shi, Y.S. Liang, B. Lu, M. Chen, Y. Li, Z. Yang, Quím. Nova 42 (2019) 638-641. |
[84] |
N. Nasrollahi, S. Aber, V. Vatanpour, N.M. Mahmoodi, Mater. Chem. Phys. 222 (2019) 338-350.
DOI |
[85] |
G. Kordas, Eng. Fail. Anal. (2019) 161-169, doi: 10.5772/intechopen.89261.
DOI |
[86] |
W. Zhang, Y. Yang, E. Ziemann, A. Be’er, M.Y. Bashouti, M. Elimelech, R. Bern-stein, Environ. Sci. Nano 6 (2019) 3080-3090.
DOI URL |
[87] |
P. Sathe, K. Laxman, M.T.Z. Myint, S. Dobretsov, J. Richter, J. Dutta, Sci. Rep. 7 (2017) 1-12.
DOI URL |
[88] |
G. Yi, Y. Yuan, X. Li, Y. Zhang, Small 14 (2018) 1703159.
DOI URL |
[89] | R.R. Gandhi, S. Gowri, J. Suresh, M. Sundrarajan, J. Mater. Chem. 29 (2013) 533-538. |
[90] |
S. Sultana, M.Z. Khan, K. Umar, M. Muneer, J. Mater. Sci. Technol. 29 (2013) 795-800.
DOI |
[91] | A. Nestler, C. Trebilcock, R. Pavlick, A. Baker, M. Heaney, A. Montgomery, L. Heine, Recreational Antifouling Boat Paint, and Puget Sound, Northwest Green Chemistry (US) (2018) 1-63. |
[92] |
M. Al-Fori, S. Dobretsov, M.T.Z. Myint, J. Dutta, Biofouling 30 (2014) 871-882.
DOI PMID |
[93] | J. Hemalatha, C. Kavitha, K.P. Dasan, Sci. Eng. Compos. 19 (2012) 357-360. |
[94] | H. Kamal, M. Antonious, M. Mekewi, A. Badawi, A. Gabr, K. El Baghdady, Egypt. J. Pet. 24 (2015) 397-404. |
[95] |
H.E. Yong, K. Krishnamoorthy, K.T. Hyun, S.J. Kim, J. Ind. Eng. Chem. 29 (2015) 39-42.
DOI URL |
[96] |
M.S. Selim, H. Yang, F.Q. Wang, N.A. Fatthallah, Y. Huang, S. Kuga, Appl. Surf. Sci. 466 (2019) 40-50.
DOI URL |
[97] |
S. Suresh, P. Saravanan, K. Jayamoorthy, S.A. Kumar, S. Karthikeyan, Mater. Sci. Eng. C 64 (2016) 286-292.
DOI URL |
[98] |
X.Y. Ma, W.D. Zhang, Polym. Degrad. Stab. 94 (2009) 1103-1109.
DOI URL |
[99] |
I.O. Arukalam, E.E. Oguzie, Y. Li, J. Colloid Interface Sci. 484 (2016) 220-228.
DOI URL |
[100] |
S. Palanivelu, D. Dhanapal, A.K. Srinivasan, Silicon 9 (2017) 447-458.
DOI URL |
[101] | V. Panaite, S. Boiciuc, V. Musat, Rev. Chim. 2 (2015) 213-218. |
[102] | D. Duraibabu, T. Ganeshbabu, R. Manjumeena, P. Dasan, Prog. Org. Coat. 77 (2014) 657-664. |
[103] |
I. Hölken, M. Hoppe, Y.K. Mishra, S.N. Gorb, R. Adelung, M.J. Baum, Phys. Chem. Chem. Phys. 18 (2016) 7114-7123.
DOI PMID |
[104] |
A. Mostafaei, F. Nasirpouri, J. Coat. Technol. Res. 10 (2013) 679-694.
DOI URL |
[105] |
R.J. Miller, A.S. Adeleye, H.M. Page, L. Kui, H.S. Lenihan, A.A. Keller, J. Nanopart. Res. 22 (2020) 1-15.
DOI URL |
[106] |
M.A. Al-Belushi, M.T.Z. Myint, H.H. Kyaw, L. Al-Naamani, R. Al-Mamari, M. Al-Abri, S. Dobretsov, Int. J. Biol. Macromol. 162 (2020) 1743-1751.
DOI PMID |
[107] | B. Khorshidi, I. Biswas, T. Ghosh, T. Thundat, M. Sadrzadeh, Sci. Rep. 8 (2018) 1-10. |
[108] | J. García-Ivars, M.J. Corbatón-Báguena, M.I. Iborra-Clar, in: Nanoscale Materi-als in Water Purification, Elsevier, 2019, pp. 153-178. |
[109] |
V. Vatanpour, S.S. Madaeni, A.R. Khataee, E. Salehi, S. Zinadini, H.A. Monfared, Desalination 292 (2012) 19-29.
DOI URL |
[110] | H. Etemadi, M. Fonouni, R. Yegani, Biotechnol. Rep. 25 (2020) e00414. |
[111] |
W. Szeto, M.K. Leung, D.Y. Leung, J. Mar. Sci. Technol. 26 (2020) 1-21.
DOI URL |
[112] |
Y. Song, J. Zhang, L. Yang, S. Cao, H. Yang, L. Jiang, Y. Dan, P. Le Rendu, T. Nguyen, Mater. Sci. Semicond. Process. 42 (2016) 54-57.
DOI URL |
[113] | X. Wang, H. Xu, Y. Nan, X. Sun, J. Duan, Y. Huang, B. Hou, J. Oceanol. Imnol. 38 (2020) 1018-1044. |
[114] |
B. Chen, J. Hou, K. Lu, Langmuir 29 (2013) 5911-5919.
DOI PMID |
[115] |
C. Kim, M. Choi, J. Jang, Catal. Commun. 11 (2010) 378-382.
DOI URL |
[116] |
D. Ding, Q. Hou, Y. Su, Q. Li, L. Liu, J. Jing, B. Lin, Y. Chen, J. Mater. Sci. Mater. Electron. 30 (2019) 12710-12717.
DOI URL |
[117] | J. Zhang, M. Pan, C. Luo, X. Chen, J. Kong, T. Zhou, J. Environ, Chem. Eng. 4 (2016) 2545-2555. |
[118] | X.D. Zhao, J. Yang, Open J. Adv. Mater. Res. 578 (2012) 215-218. |
[119] |
S. Natarajan, D.S. Lakshmi, V. Thiagarajan, P. Mrudula, N. Chandrasekaran, A. Mukherjee, J. Environ. Chem. Eng. 6 (2018) 6870-6880.
DOI URL |
[120] |
M.S. Selim, S.A. El-Safty, M.A. El-Sockary, A.I. Hashem, O.M.A. Elenien, A.M. EL-Saeed, N.A. Fatthallah, Mater. Des. 101 (2016) 218-225.
DOI URL |
[121] | P. Saravanan, K. Jayamoorthy, S.A. Kumar, J. Sci. Adv. Mater. Dev. 1 (2016) 367-378. |
[122] |
M.S. Selim, S.A. El-Safty, A.M. Azzam, M.A. Shenashen, M.A. El-Sockary, O.M. Abo Elenien, ChemistrySelect 4 (2019) 3395-3407.
DOI URL |
[123] | X. Zhao, W. Fan, J. Duan, B. Hou, Pak. J. Pharm. Sci. 27 (2014) 1117-1122. |
[124] |
H. Wu, J. Mansouri, V. Chen, J. Membr. Sci. 433 (2013) 135-151.
DOI URL |
[125] | Z. Yu, X. Liu, F. Zhao, X. Liang, Y. Tian, J. Appl. Polym. Sci. 132 (2015) 41267. |
[126] |
H. Zou, S. Wu, J. Shen, Chem. Rev. 108 (2008) 3893-3957.
DOI URL |
[127] | I.A. Rahman, V. Padavettan, J. Nanomater. 2012 (2012). |
[128] |
M. Chen, Y. Qu, L. Yang, H. Gao, Sci. China Ser. B Chem. 51 (2008) 848-852.
DOI URL |
[129] |
M.S. Selim, H. Yang, F.Q. Wang, X. Li, Y. Huang, N.A. Fatthallah, RSC Adv. 8 (2018) 9910-9921.
DOI URL |
[130] |
M.S. Selim, M.A. Shenashen, A. Elmarakbi, N.A. Fatthallah, S.-i. Hasegawa, S.A. El-Safty, Chem. Eng. J. 320 (2017) 653-666.
DOI URL |
[131] |
M.S.S.A. Saraswathi, D. Rana, K. Divya, S. Alwarappan, A. Nagendran, New J. Chem. 42 (2018) 15803-15810.
DOI URL |
[132] |
R.J. Gohari, E. Halakoo, W. Lau, M. Kassim, T. Matsuura, A. Ismail, RSC Adv. 4 (2014) 17587-17596.
DOI URL |
[133] |
R.J. Gohari, E. Halakoo, N. Nazri, W. Lau, T. Matsuura, A. Ismail, Desalination 335 (2014) 87-95.
DOI URL |
[134] |
M.S. Selim, H. Yang, S.A. El-Safty, N.A. Fatthallah, M.A. Shenashen, F.Q. Wang, Y. Huang, Colloids Surf. A Physicochem. Eng. Asp. 570 (2019) 518-530.
DOI URL |
[135] | N. Ahmad, A. Samavati, A.H.M. Nordin, J. Jaafar, A.F. Ismail, N.A.N.N. Malek, Surf. Purif. Technol. 239 (2020) 116554. |
[136] |
J.R. Li, J. Sculley, H.C. Zhou, Chem. Rev. 112 (2012) 869-932.
DOI URL |
[137] |
S.T. Meek, J.A. Greathouse, M.D. Allendorf, Adv. Mater. 23 (2011) 249-267.
DOI URL |
[138] |
M. Shen, F. Forghani, X. Kong, D. Liu, X. Ye, S. Chen, T. Ding, Compr. Rev. Food Sci. Food Saf. 19 (2020) 1397-1419.
DOI URL |
[139] |
H. Chen, F. Wang, H. Fan, R. Hong, W. Li, Chem. Eng. J. 408 (2021) 127343.
DOI URL |
[140] |
B. Chen, Z. Yang, Y. Zhu, Y. Xia, J. Mater. Chem. A 2 (2014) 16811-16831.
DOI URL |
[141] | W. Xu, H. Zhuang, Z. Xu, M. Huang, S. Gao, Q. Li, G. Zhang, Adv. Polym. Tech-nol. 2020 (2020). |
[142] |
H. Sun, B. Tang, P. Wu, ACS Appl. Mater. Interfaces 9 (2017) 21473-21484.
DOI URL |
[143] |
Q. Gu, H.Y. Ng, D. Zhao, J. Wang, APL Mater. 8 (2020) 040902.
DOI URL |
[144] |
A.A. Alswat, M.B. Ahmad, M.Z. Hussein, N.A. Ibrahim, T.A. Saleh, J. Mater. Sci. Technol. 33 (2017) 889-896.
DOI URL |
[145] |
A.K. Shukla, J. Alam, F.A.A. Ali, M. Alhoshan, Chem. Commun. 56 (2020) 5231-5234.
DOI URL |
[146] |
S. Yang, Q. Zou, T. Wang, L. Zhang, J. Membr. Sci. 569 (2019) 48-59.
DOI URL |
[147] | M.D. Firouzjaei, A.A. Shamsabadi, S.A. Aktij, S.F. Seyedpour, M. Sharifian Gh, A. Rahimpour, M.R. Esfahani, M. Ulbricht, M. Soroush, ACS Appl. Mater. Inter-faces 10 (2018) 42967-42978. |
[148] |
A. Elrasheedy, N. Nady, M. Bassyouni, A. El-Shazly, Membranes 9 (2019) 88.
DOI URL |
[149] |
M.P. Arpa Sancet, M. Hanke, Z. Wang, S. Bauer, C. Azucena, H.K. Arslan, M. Heinle, H. Gliemann, C. Wöll, A. Rosenhahn, Biointerphases 8 (2013) 29.
DOI PMID |
[150] |
H. Yang, X. Guo, R. Chen, Q. Liu, J. Liu, J. Yu, C. Lin, J. Wang, M. Zhang, Eur. Polym. J. 144 (2021) 110212.
DOI URL |
[151] |
A. Beigbeder, P. Degee, S.L. Conlan, R.J. Mutton, A.S. Clare, M.E. Pettitt, M.E. Callow, J.A. Callow, P. Dubois, Biofouling 24 (2008) 291-302.
DOI URL |
[152] |
R. Yuan, S. Wu, P. Yu, B. Wang, L. Mu, X. Zhang, Y. Zhu, B. Wang, H. Wang, J. Zhu, ACS Appl. Mater. Interfaces 8 (2016) 12481-12493.
DOI URL |
[153] | B. Arash, Q. Wang, V. Varadan, Sci. Rep. 4 (2014) 1-8. |
[154] | M. Azizi-Lalabadi, H. Hashemi, J. Feng, S.M. Jafari, Adv. Colloid Interface Sci. (2020) 102250. |
[155] |
T. Mocan, C.T. Matea, T. Pop, O. Mosteanu, A.D. Buzoianu, S. Suciu, C. Puia, C. Zdrehus, C. Iancu, L. Mocan, Cell. Mol. Life Sci. 74 (2017) 3467-3479.
DOI URL |
[156] |
A. Al-Jumaili, S. Alancherry, K. Bazaka, M.V. Jacob, Mater. 10 (2017) 1066.
DOI URL |
[157] |
S. Mostafavi, M. Mehrnia, A. Rashidi, Desalination 238 (2009) 271-280.
DOI URL |
[158] |
A. Beigbeder, R. Mincheva, M.E. Pettitt, M.E. Callow, J.A. Callow, M. Claes, P. Dubois, J. Nanosci. Nanotechnol. 10 (2010) 2972-2978.
DOI URL |
[159] | F. Irani, A. Jannesari, S. Bastani, Prog. Org. Coat. 76 (2013) 375-383. |
[160] | J. Dustebek, C. Kandemir-Cavas, S.F. Nitodas, L. Cavas, Prog. Org. Coat. 98 (2016) 18-27. |
[161] |
L. Cavas, P.G. Yildiz, P. Mimigianni, A. Sapalidis, S. Nitodas, J. Coat. Technol. Res. 15 (2018) 105-120.
DOI URL |
[162] |
C. Carl, A.J. Poole, M.J. Vucko, M. Williams, S. Whalan, R. de Nys, Biofouling 28 (2012) 1077-1091.
DOI PMID |
[163] |
H.M. Eyssa, D.E. Abulyazied, M.A. Abo-State, Polym. Compos. 39 (2018) E1196-E1207.
DOI URL |
[164] |
H. Jin, L. Tian, W. Bing, J. Zhao, L. Ren, Adv, Sustain. Syst. 5 (1) (2021) 2000076.
DOI URL |
[165] | A.T. Smith, A.M. LaChance, S. Zeng, B. Liu, L. Sun, Nano Mater. Sci. 1 (2019) 31-47. |
[166] | V. Alimardani, S.S. Abolmaali, S. Borandeh, J. Nanostruct. 9 (2019) 402-413. |
[167] |
L. Ou, B. Song, H. Liang, J. Liu, X. Feng, B. Deng, T. Sun, L. Shao, Part. Fibre Toxicol. 13 (2016) 1-24.
DOI URL |
[168] |
E. Aliyev, V. Filiz, M.M. Khan, Y.J. Lee, C. Abetz, V. Abetz, Nanomaterials 9 (2019) 1180.
DOI URL |
[169] |
W. Yu, L. Sisi, Y. Haiyan, L. Jie, RSC Adv. 10 (2020) 15328-15345.
DOI URL |
[170] |
P. Kumar, P. Huo, R. Zhang, B. Liu, Nanomaterials 9 (2019) 737.
DOI URL |
[171] |
D. Plachá, J. Jampilek, Nanomaterials 9 (2019) 1758.
DOI URL |
[172] | M.R. Younis, G. He, J. Lin, P. Huang, Front. Chem. 8 (2020). |
[173] |
S. Benítez-Martínez, M. Valcárcel, TrAC Trends Anal. Chem. 72 (2015) 93-113.
DOI URL |
[174] |
W. Shao, H. Ma, T. Yu, C. Wu, Z. Hong, Y. Xiong, Q. Xie, Ind. Eng. Chem. Res. 59 (2020) 20168-20180.
DOI URL |
[175] |
M. Kortel, B.D. Mansuriya, N. Vargas Santana, Z. Altintas, Micromachines 11 (2020) 866.
DOI URL |
[176] |
Z. Zeng, D. Yu, Z. He, J. Liu, F.X. Xiao, Y. Zhang, R. Wang, D. Bhattacharyya, T.T.Y. Tan, Sci. Rep. 6 (2016) 20142.
DOI URL |
[177] |
M.J. Nine, M.A. Cole, D.N. Tran, D. Losic, J. Mater. Chem. A 3 (2015) 12580-12602.
DOI URL |
[178] |
K. Krishnamoorthy, K. Jeyasubramanian, M. Premanathan, G. Subbiah, H.S. Shin, S.J. Kim, Carbon 72 (2014) 328-337.
DOI URL |
[179] |
S. Verma, S. Mohanty, S. Nayak, Soft Matter 16 (2020) 1211-1226.
DOI URL |
[180] |
S. Fazli-Shokouhi, F. Nasirpouri, M. Khatamian, J. Coat. Technol. Res. 16 (2019) 983-997.
DOI |
[181] |
S. Fazli-Shokouhi, F. Nasirpouri, M. Khatamian, RSC Adv. 11 (2021) 11627-11641.
DOI PMID |
[182] |
Z. Zhu, F. Zhou, S. Zhan, Y. Tian, Q. He, Appl. Surf. Sci. 430 (2018) 116-124.
DOI URL |
[183] |
Z. Liu, S. Tian, Q. Li, J. Wang, J. Pu, G. Wang, W. Zhao, F. Feng, J. Qin, L. Ren, ACS Sustain, Chem. Eng. 8 (2020) 6786-6797.
DOI URL |
[184] |
S. Pounraj, P. Somu, S. Paul, Appl. Surf. Sci. 452 (2018) 487-497.
DOI URL |
[185] | H. Jin, T. Zhang, W. Bing, S. Dong, L. Tian, J. Mat. Chem.B 7 (2019) 488-497. |
[186] |
V. Vatanpour, S.S.M. Khadem, M. Masteri-Farahani, N. Mosleh, M.R. Ganjali, A. Badiei, E. Pourbashir, A.H. Mashhadzadeh, M.T. Munir, G. Mahmodi, J. Water Process Eng. 38 (2020) 101652.
DOI URL |
[187] |
S.F. Seyedpour, A. Rahimpour, A.A. Shamsabadi, M. Soroush, Chem. Eng. Res. Des. 139 (2018) 321-334.
DOI URL |
[188] | R. Bi, Q. Zhang, R. Zhang, Y. Su, Z. Jiang, J. Mater. Sci. 553 (2018) 17-24. |
[189] |
S. Xu, F. Li, B. Su, M.Z. Hu, X. Gao, C. Gao, Desalination 451 (2019) 219-230.
DOI URL |
[190] |
C. Zhang, K. Wei, W. Zhang, Y. Bai, Y. Sun, J. Gu, ACS Appl. Mater. Interfaces 9 (2017) 11082-11094.
DOI URL |
[191] |
E.A. Mayerberger, R.M. Street, R.M. McDaniel, M.W. Barsoum, C.L. Schauer, RSC Adv. 8 (2018) 35386-35394.
DOI URL |
[192] |
M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, Adv. Mater. 26 (2014) 992-1005.
DOI URL |
[193] |
A. Arabi Shamsabadi, M. Sharifian Gh, B. Anasori, M. Soroush, ACS Sustain, Chem. Eng. 6 (2018) 16586-16596.
DOI URL |
[194] |
K. Rasool, M. Helal, A. Ali, C. Ren, Y. Gogotsi, K. Mahmoud, Y.Wei Ding, Y. Wang, H. Chen, J. Caro, H. Wang, Angew. Chem. Int. Ed 56 (2017) 1825-1829.
DOI PMID |
[195] |
K. Rasool, K.A. Mahmoud, D.J. Johnson, M. Helal, G.R. Berdiyorov, Y. Gogotsi, Sci. Rep. 7 (2017) 1-11.
DOI URL |
[196] |
Z. Shen, W. Chen, H. Xu, W. Yang, Q. Kong, A. Wang, M. Ding, J. Shang, Int. J. Environ. Res. Public Health 16 (2019) 4659.
DOI URL |
[197] | H.H. Murray, Dev. Clay. Sci. 2 (2006) 7-31. |
[198] |
R. Abedini, Polym. Bull. 76 (2019) 1737-1753.
DOI |
[199] |
S.C. Londono, L.B. Williams, Environ. Geochem. Health 38 (2016) 363-379.
DOI URL |
[200] |
L.B. Williams, D.W. Metge, D.D. Eberl, R.W. Harvey, A.G. Turner, P. Prapaipong, A.T. Poret-Peterson, Environ. Sci. Technol. 45 (2011) 3768-3773.
DOI PMID |
[201] | W. Guo, W. Liu, L. Xu, P. Feng, Y. Zhang, W. Yang, C. Shuai, J. Mater. Sci. Tech-nol. 46 (2020) 237-247. |
[202] |
G. Xu, X. Qiao, X. Qiu, J. Chen, J. Mater. Sci. Technol. 27 (2011) 685-690.
DOI URL |
[203] | M. Abd El-Malek, N. Messiha, M. Ayoub, Pigm. Resin Technol. 19 (8) (1990) 7-9. |
[204] |
Y. Huang, J. Huang, J. Cai, W. Lin, Q. Lin, F. Wu, J. Luo, Carbohydr. Polym. 134 (2015) 390-397.
DOI URL |
[205] |
Y. Fu, W. Wang, L. Zhang, V. Vinokurov, A. Stavitskaya, Y. Lvov, Materials 12 (2019) 4195.
DOI URL |
[206] | Y. Fu, C. Gong, W. Wang, L. Zhang, E. Ivanov, Y. Lvov, ACS Appl. Mater. Technol. 9 (2017) 30083-30091. |
[207] |
P. Li, C. Cai, Y. Long, T. Zhu, H. Dong, C. Zhu, N. Zhao, J. Xu, J. Coat. Technol. Res. 16 (2019) 25-30.
DOI URL |
[208] |
M. Sabu, Y.J.V. Ruban, P. Raja, S.G. Mon, S. Muthukrishnan, Compos. Commun. 24 (2021) 100606.
DOI URL |
[209] | Method for preparing clay modified polyvinyl alcohol antifouling hydrogel, Chinese Patent, No. CN104031275A, 2014. |
[210] |
I. Francolini, C. Vuotto, A. Piozzi, G. Donelli, APMIS 125 (2017) 392-417.
DOI PMID |
[211] |
A.M. Maan, A.H. Hofman, W.M. de Vos, M. Kamperman, Adv. Funct. Mater. 30 (2020) 2000936.
DOI URL |
[212] |
J. Andrade del Olmo, L. Ruiz Rubio, L. Saez Martinez, V. Perez-Alvarez, J.L. Vi-las Vilela, Coatings 10 (2020) 139.
DOI URL |
[213] |
U. Kadiyala, N.A. Kotov, J.S. VanEpps, Curr. Pharm. Des. 24 (2018) 896-903.
DOI URL |
[214] | A. Azam, A.S. Ahmed, M. Oves, M.S. Khan, S.S. Habib, A. Memic, Int. J. Nanomed. 7 (2012) 6003. |
[215] |
X. Zhai, P. Ju, F. Guan, J. Duan, N. Wang, Y. Zhang, K. Li, B. Hou, J. Mater. Sci. Technol. 75 (2021) 86-95.
DOI URL |
[216] |
S. Gowri, R.R. Gandhi, M. Sundrarajan, J. Mater. Sci. Technol. 30 (2014) 782-790.
DOI |
[217] | S. Jagadeeshan, R. Parsanathan, in: Advanced Nanostructured Materials for Environmental Remediation, Springer, 2019, pp. 59-90. |
[218] | V. Stanić, S.B. Tanasković, in: Antibacterial Activity of Metal Oxide Nanoparti- cles, Nanotoxicity, Elsevier, 2020, pp. 241-274. |
[219] |
A. Raghunath, E. Perumal, Int. J. Antimicrob. Agents 49 (2017) 137-152.
DOI URL |
[220] |
V.K. Yemmireddy, Y.C. Hung, Compr. Rev. Food Sci. Food Saf. 16 (2017) 617-631.
DOI URL |
[221] |
A. Manke, L. Wang, Y. Rojanasakul, Biomed. Res. Int. 2013 (2013), doi: 10.1155/2013/942916.
DOI |
[222] | M.M. Khan, S.F. Adil, A. Al-Mayouf, Metal Oxides as Photocatalysts, Elsevier, 2015. |
[223] |
M. Nolan, S.D. Elliott, Phys. Chem. Chem. Phys. 8 (2006) 5350-5358.
DOI URL |
[224] |
J.L. Yang, Y.F. Li, X.P. Guo, X. Liang, Y.F. Xu, D.W. Ding, W.Y. Bao, S. Dobretsov, Biofouling 32 (2016) 763-777.
DOI URL |
[225] |
D.M. Yebra, S. Kiil, C.E. Weinell, K. Dam-Johansen, Prog. Org. Coat. 56 (2006) 327-337.
DOI URL |
[226] |
X. Zhai, P. Ju, F. Guan, Y. Ren, X. Liu, N. Wang, Y. Zhang, J. Duan, C. Wang, B. Hou, Surf. Coat. Technol. 397 (2020) 125959.
DOI URL |
[227] | K. Giannousi, A. Pantazaki, C. Dendrinou-Samara, in: Nanostructures for An- timicrobial Therapy, Elsevier, 2017, pp. 515-529. |
[228] | S.S. Kumar, Int. J. Eng. Res. Technol. 2 (8) (2014) 260-265. |
[229] |
M. Mazani, S. Aghapour Aktij, A. Rahimpour, N. Tavajohi Hassan Kiadeh, Water 12 (2020) 91.
DOI URL |
[230] |
M. Pejman, M. Dadashi Firouzjaei, S. Aghapour Aktij, P. Das, E. Zolghadr, H. Ja-farian, A. Arabi Shamsabadi, M. Elliott, M. Sadrzadeh, M. Sangermano, ACS Appl. Mater. Interfaces 12 (2020) 36287-36300.
DOI URL |
[231] | S.M. Dizaj, A. Mennati, S. Jafari, K. Khezri, K. Adibkia, Adv. Pharm. Bull. 5 (2015) 19. |
[232] | S. Gurunathan, J.W. Han, A.A. Dayem, V. Eppakayala, J.-H. Kim, Int. J. Nanomed. 7 (2012) 5901. |
[233] |
K. Rasool, M. Helal, A. Ali, C.E. Ren, Y. Gogotsi, K.A. Mahmoud, ACS Nano 10 (2016) 3674-3684.
DOI URL |
[234] | B.Z. Ristic, M.M. Milenkovic, I.R. Dakic, B.M. Todorovic-Markovic, M.S. Milosavljevic, M.D. Budimir, V.G. Paunovic, M.D. Dramicanin, Z.M. Markovic, V.S. Trajkovic, Biomaterials 35 (2014) 4 428-4 435. |
[235] |
K. Rajendiran, Z. Zhao, D.S. Pei, A. Fu, Polymers 11 (2019) 1670.
DOI URL |
[236] |
L. Hui, J. Huang, G. Chen, Y. Zhu, L. Yang, ACS Appl. Mater. Interfaces 8 (2016) 20-25.
DOI URL |
[237] | M.S. Selim, S.A. El-Safty, A. Abbas, M.A. Shenashen, Colloids Surf. A. Physic-ochem. Eng. Asp. 611 (2021) 125793. |
[238] |
R. Nigmatullin, F. Gao, V. Konovalova, J. Mater. Sci. 43 (2008) 5728-5733.
DOI URL |
[239] |
N. Cankaya, R. ¸S ahin, Cellul. Chem. Technol. 53 (2019) 537-549.
DOI URL |
[240] |
L.A. Savas, M. Hancer, Appl. Clay Sci. 108 (2015) 40-44.
DOI URL |
[241] |
S. Patel, U. Jammalamadaka, L. Sun, K. Tappa, D.K. Mills, Bioengineering 3 (2016) 1.
DOI URL |
[242] |
A. Roy, M. Joshi, B.S. Butola, A. Srivastava, Polym. Compos. 39 (2018) E366-E377.
DOI URL |
[243] |
S. Cai, B. Pourdeyhimi, E.G. Loboa, ACS Appl. Mater. Interfaces 9 (2017) 21105-21115.
DOI URL |
[244] |
M. Penna, K.J. Ley, A. Belessiotis-Richards, S. MacLaughlin, D.A. Winkler, I. Yarovsky, J. Phys. Chem. C 123 (2019) 30360-30372.
DOI URL |
[245] |
R. Atif, F. Inam, Graphene 5 (2016) 96-142.
DOI URL |
[246] |
J. Zhao, L. Wu, C. Zhan, Q. Shao, Z. Guo, L. Zhang, Polymer 133 (2017) 272-287.
DOI URL |
[247] |
X. Xu, D. Cao, J. Wu, Soft Matter 6 (2010) 4631-4646.
DOI URL |
[248] |
J. Song, H. Lei, G. Zhao, Comput. Mater. Sci. 168 (2019) 131-136.
DOI URL |
[249] |
T. Huang, Y. Xin, T. Li, S. Nutt, C. Su, H. Chen, P. Liu, Z. Lai, ACS Appl. Mater. Interfaces 5 (2013) 4878-4891.
DOI URL |
[250] |
Y. Li, S. Wang, Q. Wang, Carbon 111 (2017) 538-545.
DOI URL |
[251] |
A. Alian, M. Dewapriya, S. Meguid, Mater. Des. 124 (2017) 47-57.
DOI URL |
[252] | S.A. Meguid, A.R. Alian, M. Dewapriya, in: Micromechanics and Nanomechan- ics of Composite Solids, Springer, 2018, pp. 39-70. |
[253] |
S.F. Ferdous, M.F. Sarker, A. Adnan, Polymer 54 (2013) 2565-2576.
DOI URL |
[254] | A. Khodadadi, M. Haghighi, H. Golestanian, F. Aghadavoudi, Mech. Adv. Com-pos. Struct. 7 (2020) 233-243. |
[255] |
Y. Zare, K.Y. Rhee, JOM 71 (2019) 3989-3995.
DOI URL |
[256] | P. Valavala, G. Odegard, Rev. Adv. Mater. Sci. 9 (2005) 34-44. |
[257] |
F. Lin, Y. Xiang, H.-S. Shen, Compos. Part B Eng. 111 (2017) 261-269.
DOI URL |
[258] |
F. Rahmani, S. Nouranian, ACS Appl. Nano Mater. 1 (2018) 2521-2525.
DOI URL |
[259] |
J. Zhang, J. Lou, S. Ilias, P. Krishnamachari, J. Yan, Polymer 49 (2008) 2381-2386.
DOI URL |
[260] |
S. Zainuddin, M. Hosur, Y. Zhou, A.T. Narteh, A. Kumar, S. Jeelani, Mat. Sci. Eng. A 527 (2010) 7920-7926.
DOI URL |
[261] |
Y. Wu, J. Ma, C. Liu, H. Yan, Polymers 12 (2020) 170.
DOI URL |
[262] |
S. Pourhashem, A. Rashidi, M.R. Vaezi, Z. Yousefian, E. Ghasemy, J. Alloy. Compd. 764 (2018) 530-539.
DOI URL |
[263] |
E. Javadi, M. Ghaffari, G. Bahlakeh, P. Taheri, Prog. Org. Coat. 135 (2019) 496-509.
DOI |
[264] | M.R. Saeb, H. Rastin, M. Shabanian, M. Ghaffari, G. Bahlakeh, Prog. Org. Coat. 110 (2017) 172-181. |
[265] |
Y. Li, Q. Wang, S. Wang, Compos. Part B Eng. 160 (2019) 348-361.
DOI URL |
[266] | F. Rahmani, Molecular Dynamics Simulation of Polymer Nanocomposites in Extreme Environments, PhD. Thesis, University of Mississippi, 2018 (in English). |
[267] |
F. Rahmani, S. Nouranian, X. Li, A. Al-Ostaz, ACS Appl. Mater. Interfaces 9 (2017) 12802-12811.
DOI URL |
[268] |
C. Zhao, J. Zhao, X. Li, J. Wu, S. Chen, Q. Chen, Q. Wang, X. Gong, L. Li, J. Zheng, Biomaterials 34 (2013) 4714-4724.
DOI URL |
[269] |
A.R. Shaikh, S. Rajabzadeh, R. Matsuo, H. Takaba, H. Matsuyama, Appl. Surf. Sci. 369 (2016) 241-250.
DOI URL |
[270] |
Z. Zhou, S. Rajabzadeh, A.R. Shaikh, Y. Kakihana, W. Ma, H. Matsuyama, J. Membr. Sci. 514 (2016) 537-546.
DOI URL |
[271] | G. Yiapanis, Theoretical Nanoscale Design of Self-Cleaning Coatings, RMIT University, 2010. |
[272] |
G.G. Vogiatzis, D.N. Theodorou, Arch. Comput. Methods Eng. 25 (2018) 591-645.
DOI URL |
[273] |
R. Nagumo, K. Akamatsu, R. Miura, A. Suzuki, H. Tsuboi, N. Hatakeyama, H. Takaba, A. Miyamoto, Ind. Eng. Chem. Res. 51 (2012) 4458-4462.
DOI URL |
[274] |
Y. Liu, Y. Zhang, B. Ren, Y. Sun, Y. He, F. Cheng, J. Xu, J. Zheng, Langmuir 35 (2019) 3576-3584.
DOI URL |
[275] | S. Kiil, K. Dam-Johansen, C.E. Weinell, M.S. Pedersen, S.A. Codolar, J. Coat. Technol. 74 (2002) 45-54. |
[276] |
H. Chen, C. Zhao, M. Zhang, Q. Chen, J. Ma, J. Zheng, Langmuir 32 (2016) 3315-3330.
DOI URL |
[277] |
Y. Liu, D. Zhang, B. Ren, X. Gong, L. Xu, Z.Q. Feng, Y. Chang, Y. He, J. Zheng, J. Mater. Chem. B 8 (2020) 3814-3828.
DOI URL |
[278] |
H. Yang, S. Wang, C. Li, H. Li, Processes 9 (2021) 319.
DOI URL |
[279] |
S. Sheikh, C. Blaszykowski, R. Nolan, D. Thompson, M. Thompson, J. Colloid Interface Sci. 437 (2015) 197-204.
DOI URL |
[280] | S.H. Kwon, I. Lee, H. Park, S.G. Lee, Prog. Org. Coat. 138 (2020) 105406. |
[281] |
L. Xie, L. Gong, J. Zhang, L. Han, L. Xiang, J. Chen, J. Liu, B. Yan, H. Zeng, J. Mater. Chem. A 7 (2019) 21944-21952.
DOI URL |
[282] |
V. Ganesan, A. Jayaraman, Soft Matter 10 (2014) 13-38.
DOI PMID |
[283] |
C. Zhao, Q. Chen, K. Patel, L. Li, X. Li, Q. Wang, G. Zhang, J. Zheng, Soft Matter 8 (2012) 7848-7857.
DOI URL |
[284] |
T. Clark, J.S. Murray, P. Politzer, Phys. Chem. Chem. Phys. 20 (2018) 30076-30082.
DOI URL |
[285] |
S. Scheiner, T. Kar, J. Phys. Chem. B 109 (2005) 3681-3689.
DOI URL |
[286] | S. Scheiner, Noncovalent Forces, Springer, 2015. |
[287] | G.A. Jeffrey, W. Saenger, Hydrogen Bonding in Biological Structures, Springer Science & Business Media, 2012. |
[288] | N. Kolb, L. Vallorani, N. Milanović, V. Stocchi, Food Technol. Biotechnol. 42 (2004) 57-61. |
[289] |
J. Robles, M. López, J. Alonso, Eur. Phys. J. D 61 (2011) 381-388.
DOI URL |
[290] |
M. Cossi, N. Rega, G. Scalmani, V. Barone, J. Comput. Chem. 24 (2003) 669-681.
DOI URL |
[291] |
S. Horowitz, L.M. Dirk, J.D. Yesselman, J.S. Nimtz, U. Adhikari, R.A. Mehl, S. Scheiner, R.L. Houtz, H.M. Al-Hashimi, R.C. Trievel, J. Am. Chem. Soc. 135 (2013) 15536-15548.
DOI PMID |
[292] |
R. Mesgarian, A. Heydarinasab, A. Rashidi, Y. Zamani, Sep. Purif. Technol. 239 (2020) 116512.
DOI URL |
[293] |
A. Seif, M. López, A. Granja-DelRío, K. Azizi, J. Alonso, Phys. Chem. Chem. Phys. 19 (2017) 19094-19102.
DOI PMID |
[294] |
H.O. Ham, S.H. Park, J.W. Kurutz, I.G. Szleifer, P.B. Messersmith, J. Am. Chem. Soc. 135 (2013) 13015-13022.
DOI URL |
[295] |
J. Zheng, L. Li, H.K. Tsao, Y.J. Sheng, S. Chen, S. Jiang, Biophys. J. 89 (2005) 158-166.
PMID |
[296] |
J. Zheng, L. Li, S. Chen, S. Jiang, Langmuir 20 (2004) 8931-8938.
PMID |
[297] |
J. Yang, M. Zhang, H. Chen, Y. Chang, Z. Chen, J. Zheng, Biomacromolecules 15 (2014) 2982-2991.
DOI URL |
[298] |
X.J. Meng, H.L. Zhao, X.S. Ju, Comput. Theor. Chem. 1001 (2012) 26-32.
DOI URL |
[299] |
K. Leung, S.B. Rempe, J. Chem. Phys. 122 (2005) 184506.
DOI URL |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||