J. Mater. Sci. Technol. ›› 2022, Vol. 118: 64-72.DOI: 10.1016/j.jmst.2021.10.053
• Research Article • Previous Articles Next Articles
Chengxiong Wei, Xin Jin, Chengwei Wu, Wei Zhang()
Received:
2021-07-16
Revised:
2021-09-28
Accepted:
2021-10-27
Published:
2022-08-10
Online:
2022-02-22
Contact:
Wei Zhang
About author:
* E-mail address: wei.zhang@dlut.edu.cn (W. Zhang).Chengxiong Wei, Xin Jin, Chengwei Wu, Wei Zhang. Injectable composite hydrogel based on carbon particles for photothermal therapy of bone tumor and bone regeneration[J]. J. Mater. Sci. Technol., 2022, 118: 64-72.
Fig. 1. Schematic illustration of the preparation of injectable hydrogel and the application in photothermal therapy of bone tumor and bone regeneration.
Fig. 2. SEM images and photographs of (a) Gel, (b) Gel/CPs. (c-f) Rheological analyses of hydrogel with CPs concentrations of 0-2 mg mL-1. (g, h) SEM images of CPs without/with soaked in SBF (scale bar of inset: 300 nm). (i) FTIR spectra and (j) XRD spectra of CPs without/with soaked in SBF. (k) XRD spectra of Gel/CPs soaked in SBF for 0, 10, and 28 days.
Fig. 3. Photothermal effects of hydrogel (a) with different concentrations of CPs at 0.37 W cm-2 and (b) different laser power densities at 1 mg mL-1. (c) Infrared thermal images of Gel/CPs with laser irradiation. (d) Photothermal effects of Gel/CPs with four heating-cooling cycles with laser irradiation of 0.52 W cm-2. (e) Photothermal response of CPs in aqueous solution with laser irradiation of 0.52 W cm-2 and then the laser is turned off to cool naturally at 840 s. (f) Time versus - lnθ obtained from the cooling period of Fig. 3(e).
Fig. 4. Cell cytotoxicity assay and photothermal effects on ablating tumor cells of hydrogel. (a) Cell cytotoxicity assay of human osteoblast cells co-cultured with hydrogel for 24, 48, and 72 h. Photothermal effects of hydrogel with (b) different irradiation durations and (c) different irradiation times after NIR laser irradiation of 0.52 W cm-2. (d) Fluorescence microscopic images of tumor cells co-cultured with hydrogel after irradiated for 0, 10, 20, and 30 min (green: live cells; red: dead cells). (e) SEM images of tumor cells co-cultured with hydrogel after irradiated for 0 and 20 min. Flow cytometry of tumor cells co-cultured with hydrogel after irradiated for 10 min: (f) Gel, (g) Gel + NIR, (h) Gel/CPs, (i) Gel/CPs + NIR. Error bars represent standard deviation from the mean (n = 4). Asterisks indicate statistically significant differences (*p < 0.05, **p < 0.01, ***p < 0.001).
Fig. 5. Photothermal effects on anti-tumor efficiency of injectable hydrogel in vivo. (a) Infrared thermal images, (b) photothermal curves of tumor-bearing mice with laser irradiation of 0.52 W cm-2 for 10 min. (c) Relative tumor volume and (d) body weight of tumor-bearing mice over the treatment time. (e) Tumor inhibition rates after treatment at 10 days. (f) Representative photographs of tumor-bearing mice after 0, 5, and 10 days. Photographs of tumor tissues at 10 days are shown in the bottom row. (g) H&E and TUNEL staining images of tumor tissues at 10 days (scale bar: 100 μm in H&E staining images, 50 μm in TUNEL staining images). Error bars represent standard deviation from the mean (n = 3). Asterisks indicate statistically significant differences (*p < 0.05, **p < 0.01, ***p < 0.001).
Fig. 6. Bone regeneration assessment in vivo. (a) Representative CT reconstructed images at 0, 4, and 8 weeks. (b) Representative images of CT slices in calvarial-defect site at 0 and 8 weeks. (c) Photographs of dissected calvaria at 8 weeks. (d) BV/TV ratios at 4 and 8 weeks. (e) Histological analysis at 8 weeks (scale bar: 500 μm zoomed in 40 × and 200 μm zoomed in 100 ×; yellow H: host bone; green N: new bone). Error bars represent standard deviation from the mean (n = 4). Asterisks indicate statistically significant differences (*p < 0.05, **p < 0.01, ***p < 0.001).
[1] | T.J. Martin, J.M. Moseley, Endocr. Relat. Cancer 7 (2000) 271-284. |
[2] |
B.A. Gartrell, F. Saad, Nat. Rev. Clin. Oncol. 11 (2014) 335-345.
DOI URL |
[3] |
A. Luetke, P.A. Meyers, I. Lewis, H. Juergens, Cancer Treat. Rev. 40 (2014) 523-532.
DOI PMID |
[4] |
J. Crawford, D.C. Dale, G.H. Lyman, Cancer 100 (2004) 228-237.
PMID |
[5] |
T.W. Meijer, J.H. Kaanders, P.N. Span, J. Bussink, Clin. Cancer Res. 18 (2012) 5585-5594.
DOI URL |
[6] |
L.T.A. Hong, Y.M. Kim, H.H. Park, D.H. Hwang, Y. Cui, E.M. Lee, S. Yahn, J.K. Lee, S.C. Song, B.G. Kim, Nat. Commun. 8 (2017) 533.
DOI PMID |
[7] |
J.J. Li, C.R. Dunstan, A. Entezari, Q. Li, R. Steck, S. Saifzadeh, A. Sadeghpour, J.R. Field, A. Akey, M. Vielreicher, O. Friedrich, S.I. Roohani-Esfahani, H. Zreiqat, Adv. Healthc. Mater. 8 (2019) 1801298.
DOI URL |
[8] |
J.T. Robinson, S.M. Tabakman, Y. Liang, H. Wang, H.S. Casalongue, D. Vinh, H. Dai, J. Am. Chem. Soc. 133 (2011) 6825-6831.
DOI PMID |
[9] |
C. Liang, S. Diao, C. Wang, H. Gong, T. Liu, G. Hong, X. Shi, H. Dai, Z. Liu, Adv. Mater. 26 (2014) 5646-5652.
DOI URL |
[10] |
Y. Zhang, J. Zhu, G. Huang, J. Zhu, D. He, Carbon 163 (2020) 128-136.
DOI URL |
[11] |
Y. Luo, H. Shen, Y. Fang, Y. Cao, J. Huang, M. Zhang, J. Dai, X. Shi, Z. Zhang, ACS Appl. Mater. Interfaces 7 (2015) 6331-6339.
DOI URL |
[12] |
W.C. Lee, C.H. Lim, C.Su Kenry, K.P. Loh, C.T. Lim, Small 11 (2015) 963-969.
DOI URL |
[13] |
J.H. Lee, Y.C. Shin, S.M. Lee, O.S. Jin, S.H. Kang, S.W. Hong, C.M. Jeong, J.B. Huh, D.W. Han, Sci. Rep. 5 (2015) 18833.
DOI URL |
[14] |
A. Abarrategi, M.C. Gutierrez, C. Moreno-Vicente, M.J. Hortiguela, V. Ramos, J.L. Lopez-Lacomba, M.L. Ferrer, F. del Monte, Biomaterials 29 (2008) 94-102.
PMID |
[15] |
L.P. Zanello, B. Zhao, H. Hu, R.C. Haddon, Nano Lett. 6 (2006) 562-567.
DOI PMID |
[16] |
D. Shao, M. Lu, D. Xu, X. Zheng, Y. Pan, Y. Song, J. Xu, M. Li, M. Zhang, J. Li, G. Chi, L. Chen, B. Yang, Biomater. Sci. 5 (2017) 1820-1827.
DOI URL |
[17] |
C. Sarkar, A.R. Chowdhuri, A. Kumar, D. Laha, S. Garai, J. Chakraborty, S.K. Sahu, Carbohydr. Polym. 181 (2018) 710-718.
DOI URL |
[18] |
J. Rejman, V. Oberle, I.S. Zuhorn, D. Hoekstra, Biochem. J. 377 (2004) 159-169.
DOI URL |
[19] |
G. Yang, S.Z.F. Phua, A.K. Bindra, Y. Zhao, Adv. Mater. 31 (2019) 1805730.
DOI URL |
[20] |
C. Wu, H. Chen, X. Wu, X. Cong, L. Wang, Y. Wang, Y. Yang, W. Li, T. Sun, Biomater. Sci. 5 (2017) 1531-1536.
DOI URL |
[21] |
W. Zhang, X. Jin, H. Li, R.R. Zhang, C.W. Wu, Carbohydr. Polym. 186 (2018) 82-90.
DOI URL |
[22] |
C. Wu, C. Wei, X. Jin, R. Akhtar, W. Zhang, J. Mater. Sci. 54 (2018) 5127-5135.
DOI URL |
[23] |
W. Zhang, X. Jin, H. Li, R.R. Zhang, C.W. Wu, Data Brief 17 (2018) 419-423.
DOI PMID |
[24] |
Y. Liu, K. Ai, J. Liu, M. Deng, Y. He, L. Lu, Adv. Mater. 25 (2013) 1353-1359.
DOI URL |
[25] |
S. Backes, P. Krause, W. Tabaka, M.U. Witt, R. von Klitzing, Langmuir 33 (2017) 14269-14277.
DOI URL |
[26] |
S. Yan, J. Yin, L. Cui, Y. Yang, X. Chen, Colloids Surf. B Biointerfaces 86 (2011) 218-224.
DOI URL |
[27] |
C. Wu, J. Chang, Mater. Lett. 61 (2007) 2502-2505.
DOI URL |
[28] |
Y. Wang, W. Cui, X. Zhao, S. Wen, Y. Sun, J. Han, H. Zhang, Nanoscale 11 (2018) 60-71.
DOI PMID |
[29] |
K. Ren, C. He, C. Xiao, G. Li, X. Chen, Biomaterials 51 (2015) 238-249.
DOI URL |
[30] |
W. Liu, J. Sun, Y. Sun, Y. Xiang, Y. Yan, Z. Han, W. Bi, F. Yang, Q. Zhou, L. Wang, Y. Yu, Chem. Eng. J. 394 (2020) 124875.
DOI URL |
[31] |
K.K. Wang, W.N. Cheng, Z.Z. Ding, G. Xu, X. Zheng, M.R. Li, G.Z. Lu, Q. Lu, J. Mater. Sci. Technol. 63 (2021) 172-181.
DOI URL |
[32] |
C.M. Curtin, G.M. Cunniffe, F.G. Lyons, K. Bessho, G.R. Dickson, G.P. Duffy, F.J. O’Brien, Adv. Mater. 24 (2012) 749-754.
DOI URL |
[33] |
M. Farokhi, F. Mottaghitalab, S. Samani, M.A. Shokrgozar, S.C. Kundu, R.L. Reis, Y. Fatahi, D.L. Kaplan, Biotechnol. Adv. 36 (2018) 68-91.
DOI PMID |
[34] |
H. Zhou, J. Lee, Acta Biomater. 7 (2011) 2769-2781.
DOI URL |
[35] |
D. Jaque, L. Martinez Maestro, B. del Rosal, P. Haro-Gonzalez, A. Benayas, J.L. Plaza, E. Martin Rodriguez, J. Garcia Sole, Nanoscale 6 (2014) 9494-9530.
DOI PMID |
[36] |
J.R. Melamed, R.S. Edelstein, E.S. Day, ACS Nano 9 (2015) 6-11.
DOI PMID |
[37] |
F. Yang, J. Lu, Q. Ke, X. Peng, Y. Guo, X. Xie, Sci. Rep. 8 (2018) 7345.
DOI PMID |
[38] |
H. Ma, C. Jiang, D. Zhai, Y. Luo, Y. Chen, F. Lv, Z. Yi, Y. Deng, J. Wang, J. Chang, C. Wu, Adv. Funct. Mater. 26 (2016) 1197-1208.
DOI URL |
[39] |
L. Ma, X. Feng, H. Liang, K. Wang, Y. Song, L. Tan, B. Wang, R. Luo, Z. Liao, G. Li, X. Liu, S. Wu, C. Yang, Mater. Today 36 (2020) 48-62.
DOI URL |
[40] |
S.J. Lee, H. Nah, D.N. Heo, K.H. Kim, J.M. Seok, M. Heo, H.J. Moon, D. Lee, J.S. Lee, S.Y. An, Y.S. Hwang, W.K. Ko, S.J. Kim, S. Sohn, S.A. Park, S.Y. Park, I.K. Kwon, Carbon, 168 (2020) 264-277.
DOI URL |
[41] |
R. Eivazzadeh-Keihan, A. Maleki, M. de la Guardia, M.S. Bani, K.K. Chenab, P. Pashazadeh-Panahi, B. Baradaran, A. Mokhtarzadeh, M.R. Hamblin, J. Adv. Res. 18 (2019) 185-201.
DOI PMID |
[42] |
A. Di Martino, M. Sittinger, M.V. Risbud, Biomaterials 26 (2005) 5983-5990.
DOI URL |
[43] |
H. Zhu, N. Mitsuhashi, A. Klein, L.W. Barsky, K. Weinberg, M.L. Barr, A. Demetriou, G.D. Wu, Stem Cells 24 (2006) 928-935.
DOI URL |
[44] |
B. You, Q. Li, H. Dong, T. Huang, X. Cao, H. Liao, J. Mater. Sci. Technol. 34 (2018) 1016-1025.
DOI URL |
[45] |
H.Y. Jang, J.Y. Shin, S.H. Oh, J.H. Byun, J.H. Lee, ACS Biomater. Sci. Eng. 6 (2020) 5172-5180.
DOI PMID |
[1] | Ying Guo, Congqi Li, Peiling Wei, Kai Hou, Meifang Zhu. Scalable carbon black deposited fabric/hydrogel composites for affordable solar-driven water purification [J]. J. Mater. Sci. Technol., 2022, 106(0): 10-18. |
[2] | Luohuizi Li, Guize Li, Yong Wu, Yuancheng Lin, Yangcui Qu, Yan Wu, Kunyan Lu, Yi Zou, Hong Chen, Qian Yu, Yanxia Zhang. Dual-functional bacterial cellulose modified with phase-transitioned proteins and gold nanorods combining antifouling and photothermal bactericidal properties [J]. J. Mater. Sci. Technol., 2022, 110(0): 14-23. |
[3] | Huihui Bai, Zhixing Zhang, Yajie Huo, Yongtao Shen, Mengmeng Qin, Wei Feng. Tetradic double-network physical crosslinking hydrogels with synergistic high stretchable, self-healing, adhesive, and strain-sensitive properties [J]. J. Mater. Sci. Technol., 2022, 98(0): 169-176. |
[4] | Zhengyi Mao, Mengke Huo, Fucong Lyu, Yongsen Zhou, Yu Bu, Lei Wan, Lulu Pan, Jie Pan, Hui Liu, Jian Lu. Nacre-liked material with tough and post-tunable mechanical properties [J]. J. Mater. Sci. Technol., 2022, 114(0): 172-179. |
[5] | Jianglong Yan, Dandan Xia, Pan Xiong, Yangyang Li, Wenhao Zhou, Qiyao Li, Pei Wang, Yufeng Zheng, Yan Cheng. Polyetheretherketone with citrate potentiated influx of copper boosts osteogenesis, angiogenesis, and bacteria-triggered antibacterial abilities [J]. J. Mater. Sci. Technol., 2021, 71(0): 31-43. |
[6] | Wenyu Wang, Dejun Ding, Kunpeng Zhou, Man Zhang, Weifen Zhang, Fang Yan, Ni Cheng. Prussian blue and collagen loaded chitosan nanofibers with NIR-controlled NO release and photothermal activities for wound healing [J]. J. Mater. Sci. Technol., 2021, 93(0): 17-27. |
[7] | Xin Wang, Jiaqian Zhu, Xiang Yu, Xionghui Fu, Yi Zhu, Yuanming Zhang. Enhanced removal of organic pollutant by separable and recyclable rGH-PANI/BiOI photocatalyst via the synergism of adsorption and photocatalytic degradation under visible light [J]. J. Mater. Sci. Technol., 2021, 77(0): 19-27. |
[8] | Xu Han, Jianhua Wu, Xianhui Zhang, Junyou Shi, Jiaxin Wei, Yang Yang, Bo Wu, Yonghui Feng. Special issue on advanced corrosion-resistance materials and emerging applications. The progress on antifouling organic coating: From biocide to biomimetic surface [J]. J. Mater. Sci. Technol., 2021, 61(0): 46-62. |
[9] | Kyubae Lee, Yazhou Chen, Xiaomeng Li, Naoki Kawazoe, Yingnan Yang, Guoping Chen. Influence of viscosity on chondrogenic differentiation of mesenchymal stem cells during 3D culture in viscous gelatin solution-embedded hydrogels [J]. J. Mater. Sci. Technol., 2021, 63(0): 1-8. |
[10] | Se Heang Oh, June-Ho Byun, So Young Chun, Young-Joo Jang, Jin Ho Lee. Plasmid DNA-loaded asymmetrically porous membrane for guided bone regeneration [J]. J. Mater. Sci. Technol., 2021, 63(0): 161-171. |
[11] | Keke Wang, Weinan Cheng, Zhaozhao Ding, Gang Xu, Xin Zheng, Meirong Li, Guozhong Lu, Qiang Lu. Injectable silk/hydroxyapatite nanocomposite hydrogels with vascularization capacity for bone regeneration [J]. J. Mater. Sci. Technol., 2021, 63(0): 172-181. |
[12] | Xiaoxue Yuan, Ran Liu, Wenchang Zhang, Xiaoqiang Song, Lei Xu, Yan Zhao, Lei Shang, Jingsong Zhang. Preparation of carboxylmethylchitosan and alginate blend membrane for diffusion-controlled release of diclofenac diethylamine [J]. J. Mater. Sci. Technol., 2021, 63(0): 210-215. |
[13] | Yuxuan Mao, Peng Li, Jiewei Yin, Yanjie Bai, Huan Zhou, Xiao Lin, Huilin Yang, Lei Yang. Starch-based adhesive hydrogel with gel-point viscoelastic behavior and its application in wound sealing and hemostasis [J]. J. Mater. Sci. Technol., 2021, 63(0): 228-235. |
[14] | Kai Chen, Changci Tong, Jinge Yang, Peifang Cong, Ying Liu, Xiuyun Shi, Xu Liu, Jun Zhang, Rufei Zou, Keshen Xiao, Yuyang Ni, Lei Xu, Mingxiao Hou, Hongxu Jin, Yunen Liu. Injectable melatonin-loaded carboxymethyl chitosan (CMCS)-based hydrogel accelerates wound healing by reducing inflammation and promoting angiogenesis and collagen deposition [J]. J. Mater. Sci. Technol., 2021, 63(0): 236-245. |
[15] | Gopinathan Janarthanan, Insup Noh. Recent trends in metal ion based hydrogel biomaterials for tissue engineering and other biomedical applications [J]. J. Mater. Sci. Technol., 2021, 63(0): 35-53. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||